Improving Web
Application Security

Threats and Countermeasures

patterns & practices

Forewords by Mark Curphey, Joel Scambray,
and Erik Olson

Improving Web
Application Security

Threats and Countermeasures

J.D. Meier, Microsoft Corporation

Alex Mackman, Content Master

Srinath Vasireddy, Microsoft Corporation
Michael Dunner, Microsoft Corporation

Ray Escamilla, Microsoft Corporation

Anandha Murukan, Satyam Computer Services

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, BizTalk, IntelliSense,
MSDN, Visual Basic, Visual C#, Visual C++, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

© 2003 Microsoft Corporation. All rights reserved.
Version 1.0
6/30/2003

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Forewords xliii
Foreword by Mark CUIPRNEY ettt e e e e e e eas xliii
Foreword by JOEI SCAMDIAYieuiiieie et e e eaas xlv
FOreword DY EriK OISON ...ttt et e e e e e e e e e e e e e e e enaaeas xlvi

Introduction xlix

Why We Wrote ThisS GUIE ...cuiieiieiiii e et e e e e e e e e e e e e e en e e ens xlix
What Is a Hack-Resilient AppliCatioN?cu i e e e I
SCOPE OF ThIS GUIAE .ueeieiiiii e e e et et e e e e e e et e e e e e e e ennenns li
Securing the Network, Host, and AppliCationccuovii i li
TECNNOIOZIES 1N SCOPE cuuitniitieei ettt et e e e e e e e e e e e e a e e e e aeans lii
Who Should Read ThiS GUILEieuiiiiiiiieie ettt e e e e e e e e e e e eanas lii
HOW t0 USE ThiS GUITE ..evuieeieeiiiie ettt e e e r e s e e e e e e e e e e e e e e e e ea e eneenns lifi
Applying the GuIdance 10 YOUr ROIEc.uiiuiiiiie e e liii
Applying the Guidance to Your Product Life CYClecuiviuiiiiiiiiiiiiiii e liv
Microsoft SOIULIONS FramMEWOIKuiuiiiiiiiei et e e eans Iv
Organization Of ThiS GUIAEuiiuiiiii e e e e e e e e e e e Iv
SOIULIONS @t @ GIANCE .. v s e e e e e e e e e Iv
L A [= o < PPN Iv
=] T PP UPRPRUPTPR Ivi
L0 1Tt 2q 1= S Ivii
B 101 VA Lo T AN o3 1= PSPPI Iviii
Approach Used in ThiS GUIAEcuuiuieiiiii e e et e e et e e e e e e e e e e aeanaen Iviii
Secure Your Network, Host, and AppliCationccuveeieiiiiiiieiii e Iviii
o Lo U (R0 T T I == =P lix
Follow a Principle-Based APProach ...t e e Ix
POSItioNING Of ThiS GUIAE . .ceuniiiiiiiciee e e e e e e e eaa s I
Volume |, Building Secure ASP.NET AppliCatioNSc.vuiiiiiiiiiiii e Ix
Volume I, Improving Web Application SECUNtYovuiiiiiiiiiiiiii e, IXi
Feedback and SUPPOI ... et aaas Ixii
FEEADACK ON the GUIAE ... e i e e e e e e e e e e e e ens e eneanes Ixii
TECNNICAl SUPPOI e e e e et e e e e aas Ixii
Community and NeWSEIroUD SUPPOITcuiiuieiiieie ettt e e e e Ixii
The Team Who Brought YOU ThiS GUIAE ...ceuieuiieiiiii ettt e e Ixiii
ContribULOrs and REVIEWETScuiiiiiiiiii ettt et e e e e e e eae e eaenes Ixiii
Tell US ADOUL YOUI SUCCESS ..uiiuitiiiiit ettt et et e e et e et e et et e et ea et eaeaeaeaeanearaneaneen IXiv

100 = T PP Ixiv

vi Improving Web Application Security: Threats and Countermeasures

Solutions at a Glance Ixv
Architecture and Design SOIULIONScuuiiuiei e e e e e e e eens Ixv
DevelopmMENT SOIULIONS ..cuiieiiiii e e e e e e e e e e e e e e aans Ixvi
AdMINIStration SOIULIONS. ... iui i Ixx

Fast Track—How To Implement the Guidance Ixxv
LC 0T I=1 o Lo [YT o o TS IXxv
B I =30 [1S oY o o] o Y= T o P IXxvi
SECUNNE YOUN NETWOIK. 1. ttiitieeii ettt e et r e e e e e e s e e e e e e e e aen Ixxvii
SECUNNE YOUI HOST. ittt e e r e e e e eaes Ixxvii
Securing YOUr APPICATION ..uuiieiiiiiii e eas Ixxviii
L0 L= VAR T (= 1 €= R IXXix
Applying the Guidance to Your Product Life CyCleoiiiiiiiiiiiiiiiiiii e IXXXi
IMplementing The GUIANCEc.iuiieiiii e e e e e e e IXxxii
WHO DOES WHat? ... e e e e e e r e eas IXxxiii

A 0 4 4 - Ixxxiii
10 /0] =Y YN IXxxiv

Introduction to Threats and Countermeasures 1

Web Application Security Fundamentals 3
We Are Secure —We Have @ FireWallcoeniiiiiiiiii e e e e 3
What Do We Mean By SECUITY? ...uieiie et e e e e e e e e e e e e ea e 4

The FouNdations Of SECUNTYcuiiie e e e e ees 4
Threats, Vulnerabilities, and Attacks Defined.......cocvviiiiiiiiiiiiii e 5
How Do You Build a Secure Web Application?........cc.veiiiiii e e 5
Secure Your Network, Host, and Applicationc.veeeoeiii i 6
SECUNNG YOUI NETWOIK. ..ttt ettt r e r e e e e e eas 7

Network CoOmpPOoNENTt CateBOrIES . .uuiu it e e eae 7
SECUNNEG YOUI HOST. . ettt e e e e e e e e e en e eneas 7

Host Configuration CategOriesS. .. uu it ee e e 8
S T=To N] g (01U Y o o] [To7= o] o I PP 9

Application Vulnerability CategOries ... cviuiiiiiiieiieie e e e e 9
L= Y oW Y d] o o] 1= = 11
T 1010 F= YRR 12
JaXe [o 1A To g b= I (=TT TH] (o= PP 12

Threats and Countermeasures 13
LTI 4T E= T 0 =T L (] 13

L0 1YY V1 13

Contents vii

HOW 10 USE ThisS Chapler ..uu ettt et e e e e e e eanen 14
ANAtomy OF AN ATTACK ..uueeeie e 14
SUIVEY ANA AS S S euiuiiiiiit it ettt ettt et e et e e e e et e e e raa e ra e raseeaneenranenns 15
EXPIOit @and PENEIratec.inie i e 15
ESCAlate PriVIIEEES c.u et aan 15
MAINTAIN ACCESS uuieitiietieie ettt e et e et e e et et s e ea s e ea e ea e easeneen e eaenreneensennens 16
[T 0V 1= o= R 16
Understanding Threat CategOries .. i e e eas 16
ST RIDE ittt ettt aan 16
STRIDE Threats and COUNtEIMEASUIESc.uiiuiiiieieeieeie e e e e e e e e e e e eeans 17
Network Threats and COUNTEIMEASUIEScuuuiiuiii i ieece e e e e e e e e e e e eans 18
INFOrMation GatheriNgvvu i e e e e eaas 18
S 11 = 19
S 0T Yo 1 = 19
TS TT= 1o o T 1= Tod 24 o= 19
DTS a1 = oY Y= T o 20
Host Threats and COUNTEIMEASUIESiuuiiiiiiiie et e e e e e eas 20
Viruses, Trojan Horses, and WOIMS ... et e e e e e 21
0o 1 14 1oV~ 0P 21
PaSSWOIA CraCKiNg euuieuiiiiii ettt e e e e s e ea e e e e e e e e eaneeans 22
DENIAI OF SEIVICE ..iiuiitiiiii et e e e e r e e e e e e e eaas 22
Arbitrary Code EXECULION.....cu it e e e e e e et e e e aea e e eaeanaanns 23
UNQUENOIZEA ACCESS .vuiieieeit ettt ettt ettt et e e e e e s e e e e et e e e s ea e e e e e e e eeans 23
Application Threats and COUNTEIMEASUIESiuiuieiiiieiiiie et e e e eeaeeneaenes 23
LY o0 A 7= T = o o N 24
==Y O AV7=T 1101V 25
CrOSS-SIte SCIPUING ..euieietieti it r e e e s e e e e e e e e e e aeanas 26
10] I][Tox 4 o o I PP 27
(OF= T aTo] Y (7= = 1 (o] o [N 28
FN W £ [T o= o o PN 29
I V0T S = V=TT 0] o] o ¥ =S 29
TV T o oI 1 = T €= S 30
DICTIONAIY ATTACKS ..ttt e et e e e e e e e eeeaeeeneeennaes 30
COOKIE REPIAY ATLACKS ..eunieieeieie ettt ee et e e e e e eanas 31
(O C=T0 =T a1 E=Y B =Y 1 (PPN 31
F W [2= 1 ¥ Lo o S 31
Elevation Of PriVIIEEEeeieei et eas 32
Disclosure of Confidential Data........ccoiuiiiiiiiiiiiii e e e ens 32
(D= e T F= T g 01T o o F PP 32
[0] o= =T L PP 33
Configuration ManagemMENTiiuiiii et e e e a e 33
Unauthorized Access to Administration Interfacesccocoveiiiiiiiiiiiiiciiiciee, 33
Unauthorized Access to Configuration STOreSoouviuiiiiiiiiiii e 34
Retrieval of Plaintext Configuration SECretS ..o 34
Lack of Individual ACCOUNTADITITYevuneeeeeiee e e 34

Over-privileged Application and Service ACCOUNTSceviiiiiiiiii e, 34

viii

Improving Web Application Security: Threats and Countermeasures

SENSITIVE DAt ..ttt aaae 35
Access 1o Sensitive Data in STOragevvuiiuiiniiiei e e 35
NN o T A o \V T Te [o] o] o] = PP 35
(D= e T F= T g 01T oV PP 35

SESSION MaANAEEIMENT .ouiiiiiiii it e e s e e e e e e s e e r e e enns 36
SESSION HIJACKING vuieiitiie ittt ettt e e e e e e e e e e ans 36
Y=Y S Lo T =T o] = YRR 36
Man in the MiddIe ATEACKScvnieieie e e e e e e e eas 37

L0757 01024 7= T o] o 1Y PPN 37
Poor Key Generation or Key Management........couviiiiiiiiiiiiiiiiees e e 38
ET=] o T 01U =3 o' I =1 g Vo 57 o)1 o o 1 38
L0 T=Tod2CS YU T] oo Yo 1 = 38

Parameter Manipulationcoeeiiiiiiii s 39
Query String Manipulationceiiei e 39
Form Field Manipulation ...t e e e e ens 40
(0o o) (=T \Y, =T 110101 =1 o o o 40
HTTP Header Manipulation.........ccu it e e e e e e e e e e e e aaeen 40

EXCEPLION MaANABEMENT .. enieciie it e e e e e e e e ea e en e e ranenns 40
Attacker Reveals Implementation DEtailSoeveveieiiiiiiiie e 41
DENIAI OF SEIVICE ..ivuiitiiei et e e e e e e e e e e e aas 41

JAX0 Lo LA aT=r=T oo B o)== = OO 41
User Denies Performing an Operation ... iieieiiieesee et aas 42
Attackers Exploit an Application Without Leaving a Traceccvcvveieiiiiiiiiiiieieeieeeennes 42
Attackers COVEr TREIN TrACKS ..uvuuieeiiiiii ettt s r e e e e e e e e e e eaaes 42

T 1210 F= YRR 42

AdAItIONAl RESOUITES ..vuiiiiiiiiieiiie ettt et s e e e e e e e e e s e e e ea s ea e e e eanees 43

Threat Modeling 45

LTI a1 ES 04 =T (] 45

L0 172 Y= PR 45

27 (o] (I (o U ==Y = o PP 45

HOW 10 USE ThisS Chapter cuu e e it e et e et e e e et e e e e e e e e e e e ans 46

Threat Modeling PrinCIPIES ... o e e e e e 47
T PrOCESS ittt e 47
L= L0140 1 S 48

STEP L. 1dENTITY ASSEES ..uuiiiiiiit e 49

Step 2. Create an ArchiteCture OVEIVIEWcuiuiiiiiiii e e eaaas 49
Identify What the Application DOEScuiiuiiuiiiiiiee e e e a e 50
Create an ArchiteCture Diagram......ocu et e e e e eanas 50

Identify the TEChNOIOZIES ...cuuii i 51

Contents iXx

Step 3. Decompose the AppliCation.......c.ve e 52
Identify TrUST BOUNGAIIES .. .c.oeieeiie e e e e e e e e e eas 53

[0 L= a1V 0 = | = N ol 1 53
Identify ENtry POINTS .uieiiii e e et e e e e e e e e e e e e e aeaeanean 54
Identify Privileged COEiuniiieieiiie ettt et e e e e e e e e e eaas 54
Document the SeCUNity Profile ..o e e e e e 55
Step 4. 1dentify The Treals ... e eaas 56
Identify NetWOrk Thr@atS ... cuiuii i e e e e e e e e e e e e eanees 57

Lo T a1V 101 A 1= T= 58
Identify Application ThreatSccu i e e e e eas 58
Using Attack Trees and Attack Patterns. ... e 59
Step 5. DocUMENT the ThIrEaATS ...cvnii i e eans 62
StEP B. RAtE the ThrEatS ..cvniiee i e et e et e e e e e e e e e e aneanas 62
Risk = Probability * Damage Potentialcouuiieiieiiiiiie e 63
High, Medium, and LOW RatiNgScuiiiuiiiiiiiiieeei ettt ee e e e e e 63

D Y 63
What Comes After Threat MOdeliNg?......ovuuiieiiiie e ea e 65
Generating @ Work Hem REPOITvuiiiii e e 66
T 1010 F= YRR 66
AdAItIONAl RESOUITES ..vuiitiiitiiiiite ettt ettt e e e e s e e e e e e s e e e e e e ea e e e eanees 66
Designing Secure Web Applications 67
Design Guidelines for Secure Web Applications 69
LTI 4T ES T O3 =T (] 69
[0 172 Y= 69
HOW 10 USE ThisS Chapter cuueece e e et e et e et e et e e e e e e e e e eaneens 70
Architecture and Design Issues for Web Applicationsc.ccoiviiiiiiiiiiciii e, 70
Deployment CoNSIAEratioNSiiuiiiiiie e e e e eas 72
Security Policies and PrOCEAUIEScuuiiuiiii ettt eae e 73
Network Infrastructure COMPONENTSccuiiuiiiiiii e 73
[DT=To][0)Y 0 al=T o1 A [o] o1] (o] =41 S PP 73
Intranet, Extranet, and INterMEeT.... ... e e 74

L] o0 LAY = 1T £ 1 o] o PPN 74
Assume All INPUL IS MalICIOUS ..uuuuiiiiiiiie e ea s 75
Centralize YoUr APPrOaChcu i e e e e 75
Do Not Rely on Client-Side Validationc.oiiiiiiiiiiieie e 76
Be Careful with Canonicalization ISSUES........ccuviuiiiiiiii e e 76
Constrain, Reject, and Sanitize YOUr INPUL ... 77

LB = T3 1 o = 79

X Improving Web Application Security: Threats and Countermeasures

DAY 014 o =T o Aoz o o I OO 80
Separate Public and ReStICIEA Ar€aSvueu i e e 81
Use Account Lockout Policies for End-User ACCOUNTSocuveeiiuiiniiniieiniiee e e 81
Support Password EXpiration PEeriods. ..o e 81
Be Able t0 DiSable ACCOUNTSuuiiieiii ettt e e e e e e e e e e eeaees 82
Do Not Store Passwords in USEr STOreSvvviiiiiiiiiiiiiieieieeee st 82
RequUire StroNg PaSSWOIUScuuiuiiiiie i e e e e e e e e e e e eas 82
Do Not Send Passwords Over the Wire in Plaintextcooevviiiiiiiiiiiiiincee e, 82
Protect Authentication COOKIESiiuiieiiii i eaes 82

YU 1 T = 1 o o 83
Use MUILIPIE GAtEKEEPEIS ..uuieiiiieiii e e e e e e e e e e et e e e a e e eaneen 83
Restrict User Access to System Level RESOUICEScuivviiniiiiiiiiiiiei e, 83
Consider Authorization GranUIarityceeeieiei i 83

Configuration ManagemMeENT........iiu it e e e e e e 86
Secure Your Administration INterfacesceeuvieiiiiiii e 86
Secure Your Configuration STOIESivuiiiii e 86
Separate AdmMINISTration PriVIIEEES ..uvu.iieiiiiiiiiee e aas 87
Use Least Privileged Process and Service ACCOUNTS......vvuiiuieiiiineeiieineineeneeeeeeeens 87

SENSITIVE DATA ceuiiiii i 87
RS 1T = £ PP 87
SENSITIVE Per USEr Dala@. . cuiieiiiiiiiii ittt e e e 89

SESSION MANABEMENT ..ciuiitiiiii e e e e e e e e e e e e e e e e e ranas 90
Use SSL to Protect Session Authentication COOKIESc.cveuiiiiiiiiiiiiiiiiieiiieee e, 90
Encrypt the Contents of the Authentication COOKIES.......ccceuviiiiiiiiiiiici e, 90
Limit SESSION Lifetime .. et e 91
Protect Session State from Unauthorized ACCESSovvuiiviiiiiiiiiiiiii i 91

L0715 100 == o] 1Y/ N 91
Do Not Develop Your OWN Cryptography ...ee. e e i e e e eaas 92
Keep Unencrypted Data Close 1o the AIZOrthmc.veeiiiiiiiiiii e, 92
Use the Correct Algorithm and Correct Key Size......coiviiiiiiiiiiiiiii e 92
Secure YOUr ENCIYpLiON KEYS ... iu ittt et e e e e e e 92

Parameter Manipulation ..o 93
Encrypt Sensitive COOKIE Stateivuiiiiiiiiii e 93
Make Sure that Users Do Not Bypass YOUr CheCKS......ovcuiviiiiiiiiiiiiieiieecenee e 93
Validate All Values Sent from the Clentc.oeiiiiiiiii e 94
Do Not Trust HTTP Header INformation.........cceueeuiiiiiiiceccc e e e e e 94

EXCEPLioN MaANaZEMENT e e e e e e e e e e e ranenns 94
Do Not Leak Information 10 the CHent........ccuiiiiiiii e 94
Log Detailed ErfOor MESSAZES ...cunin i ettt e e e 95
(072 (o] AT = (o =Y o] 1 To o 1= 95

JAX0 Lo L1 aT==T oo B o) = =1 = PPN 95
Audit and Log Access Across Application TIiEerSvuiiiieiiiiii e 95
ConSider [AENTILY FIOW ...uieeieeieii et e e e e e 96
LOZ KEY EVENTS .. e e e e e e e e 96
SECUIE LOZ FIlES ..ttt et e e e e e e e e e e eans 96

Back Up and Analyze Log Files Regularly........ccouieieiieiii e 96

Contents Xxi

Design GUIAENNES SUMMAIYiunieiiiiiiie e e e e e ea s e ea e e ra e e eanenns 97
010 10 =7 98
JAYe [o 1A To g P I =TT TH] (o= PP 98
Architecture and Design Review for Security 99
LT I T ST = T 0 = 99
=T = 99
HOW 10 USE ThisS Chapter cuuiuiiiiiei i e et e et e et e e e et e e e s e e e s eaneaneanns 100
Architecture and Design REVIEW PrOCESSiiu i e 100
Deployment and Infrastructure Considerationsccccveuvieviiiiiiiieieic e e aeaaas 101
Does the Network Provide Secure CommuniCation?c.veeivieiiiiiiiiieiieeeieeeeeeeeeanas 102
Does Your Deployment Topology Include an Internal Firewall?cccoeviiieiiiiiiinnnennns 102
Does Your Deployment Topology Include a Remote Application Server? 102
What Restrictions Does Infrastructure Security IMpoSe?cccovevviiviiiiiiiiiiiiiieeeenne, 103
Have You Considered Web Farm ISSUES?....cuu it e e 104
What Trust Levels Does the Target Environment Support?cccevevivieiiinieiiiiiinennenn, 104

[T o1 Z= 1o F= 1€ o] o S 105
HOoW DO YOU Validate INPUL? ..e.enieiii et e e e e e e aens 106
What Do You DO With The INPUL? ...eeeiei e e eas 107
AUTNENTICATION L.ttt e e e e 107
Do You Separate Public and Restricted ACCESS? ...uiuniiiiiiiiie e, 108
Have You Identified Service Account ReqQUIremMeNntS?ccvuviiiiiiieiiiiieiieiieeeenens 108
How Do You Authenticate the Caller?o viiiiiiiiii e 109
How Do You Authenticate with the Database?c.vveviiiiiiiiiiiiiicce s 109
Do You Enforce Strong Account Management PractiCes?c.ovvuvieuiiiiiiiniiiiiiiiiinnennns 111

FAN W 1o = 1 ¥ o] o 1PN 111
How DO YOU AUTNOKIZE ENA USEIS .. e ittt et ee e ens 112
How Do You Authorize the Application in the Database?........ccoeevieiiiiiiiiiiiiiniieenens 113
How Do You Restrict Access to System-Level Resources?ccovvuveeveniiiieiieinennennnnn. 113
Configuration ManagemMeENT.........iiu i 114
Do You Support Remote Administration?ceuveeiiniiiiii e e 114
Do You Secure Configuration StOreS?cuuiiiiiiiiiiieie e 115
Do You Separate Administrator PrivIlEBES?cuu v 115
Y= LT LAY ST D= | = [P PP 115
(Do (1N (0] (SIS T=Tol (=] €3 PP 116
How Do You Store Sensitive Data?cc.viuiiiiiiiiiiii e 117
Do You Pass Sensitive Data Over the Network?coveiviiiiiiiiiiiii e 117
DO YOU LOE SENSITIVE DAta?...c.iiuiiiiiiiiii ettt e 117
SESSION MANAEEMENT ..ttt et e e s e e e e e e e e e e e een 117
How Are Session ldentifiers EXChanged?.......ccuu i 118
Do You Restrict Session Lifetime?. ... 118

How Is the Session State STore SECUIEd?.... ..o 118

xii

Improving Web Application Security: Threats and Countermeasures

L0757 10 =721 o] 1Y PP 119
Why Do You Use Particular AlgOrHTNMS? ... e 119
How Do You Secure ENCryption KEYS? .. . i ittt e e e e 120

Parameter Manipulationcve i e 120
Do You Validate All Input Parameters? ... i eas 121
Do You Pass Sensitive Data in Parameters?.........ooeu i 121
Do You Use HTTP Header Data for SECUNtY?ovuiiriieiiiiiieeeeeeeeeeeeee e e e e e e 121

EXCEPLION MaANABEMENT . cvuieiiie et e e e e e e s e e en e e e e e e e ennes 122
Do You Use Structured Exception HandliNg?......cveuiiiiiiiiiiiineeee e 122
Do You Reveal Too Much Information to the Client?ccoiiiiiiiiiiiiieeee, 122

DAY To [T T == T aTo I oY= = o V= S 123
Have You Identified Key Activities t0 AUdIt?c.oeeiieiiii e 123
Have You Considered How to Flow Original Caller Identity?cccoeiveeiiiiiiiiiieeneenn. 124
Have You Considered Secure Log File Management POliCIES?c.cvvviviuiiieiiienniennns 124

10T 100 F= T Y 124

AAAItIONAI RESOUICTES ...eeuieei ettt e e et e e e e e e e e e e e e e enneeena s 125

Building Secure Web Applications 127
.NET Security Overview 129

LT I T304 1 F= T o = 129

OVEBIVIBW ettt ettt et e et e et e e e e e ea e e se e e e e e e e e ee e e a e e e e ra e ernas 129

HOW t0 USE ThiS CNaPler euuiiiiiiiie ettt ettt et e e e e e e e e aeenennen 130

Managed Code BENETItSiuuiieiiiiei e 130

(8T T 0 To (=BT =T o] U 2R 131
ROIE-BASEU SECUILY ..evuieeiieeiee ittt e e e e e e e e e e eeans 131
COAE ACCESS SECUITY . avutetiet ettt ettt e e e e e e e e e e e e e e e e eanaens 132

.NET Framework Role-Based SECUINLYccuiiiiiiiiiiiieii et 133
Principals and IdeNTitiES .uiuueuieiiii i 134
PrincipalPermission ODJECTSuiiu i 134
Role-Based SeCUrity ChECKS.iiu i eans 137
L8] IRV 14 g 4= Y4 o o [PP 138

.NET Framework SeCurity NameSPACEScuiiuiiiieiieieee et et e e e e e e e e eans 139
S (=T LIRS T=To] U PPN 140
SYSTEM.WED . SECUNTY ...t 141
System.Security.CryptOgraphyo. e 141
SyStemM.SECUNtY.PrINCIPAL..c..iieieeii et 141
SYSTEM.SECUNTY.POLICY .. ettt ettt e e e e e 142
SyStemM.SECUNitY.PErMISSIONS ...vuie it e e 142

S0 0] 4= PR UPRPPRPRRN 144

AJAITIONA] RESOUITES .uniiiiiii ittt ettt et sea e et s et s s eneasrasnrarananennes 144

Contents Xxiii

Building Secure Assemblies 145
LT I T 304 =T 0 = 145
OVBIVIBW .eitit ittt et e e e et e et e et e e et e e e e s e e e e e e e s e e e e e e e e ee e e enennaen 145
HOW 10 USE ThiS Chapleru i et e e e e e ean e 146
Threats and COUNTEIMEASUIESiu i iiei ettt ettt r e s e e s e e e e e eneenrenns 146

Unauthorized Access or Privilege Elevation, or both.........cccoveiiiiiiiiini e 147
{070 Yo [0 1] =T o1 € o] o R 147
INFOrMation DISCIOSUIEueeeieeieee ettt e e e e e e e eeaes 148
JLE 101 01] =S 149
V1= <1< o I 0o o - PP 149
PrivIlEBEad RESOUICES ... itiiieeie et et e et ettt ea e e eeneeneen 150
V1= =1 To IO o 1= = 1A T 1= P 150
Assembly Design CONSIAEratioNSuiieuiieiiiieie et e a e eaaas 150
Identify Privileged COUE ...uiiuiiiiii ettt e e e e eans 150
Identify the Trust Level of Your Target Environment........cc.oveiiiiiiiiiiiiiiciccc e 151
Sandbox Highly Privileged COOE.......ouuiiuiiiiiiiiie ettt e e e 152
Design Your PUBIIC INterface.uuu i 153
Class Design CoNSIAEIratiONSuuiiuiiiiii it ea e e e e eans 153
Restrict Class and Member Visibility. ..o e 153
Seal NON-BASE ClasSSES cuuuiuniiiiiiiiiiii ittt r e e e e e e e e 153
Restrict Which Users Can Call YOUr COUEuiiuuiieiiiiiiiiiieei et 154
EXpose Fields USING PrOPErtiES ...cu et e e e e e e e e 154
LU0 T~ NN F= T =TS 155
Security Benefits of STrong Namesoveuiieiiiiii e 156
USING SrONE NAMES ..cuiiiiieiiee ettt e et e e e e e e et e e e e e e e eaeeanas 156
D7 = ST = 1oV PP 157
ASP.NET and StrONg NaMES. .. cuuiiiiiiiiiee et e et et et e e e e e e e e e e e e e eeans 158
Authenticode Vs. STrong NaAMEScuiiieiii e e 159
AUTNOTIZATION .ot e, 160
EXCEPLiON MANABEMENT e e e e e e e e e e e e ea e ennes 161
Use Structured EXception HandliNg.......ccuu it 161
DO NOt LOZ SENSITIVE DAticuieeiiiiieiiieiee et ae 162
Do Not Reveal Sensitive System or Application Information.........c.ccceeveiiiiiiiinnnanns 162
Consider EXception FIer ISSUES ... e 162
Consider an Exception Management FrameWorkcocuviiiiiiiiiiieiieiiieeeee e 163
1 PPN 164
Avoid Untrusted Input for File Names......cccoiiiiiiiiii e 164
Do Not Trust Environment VariablesS 164
Validate INpUt File NaMESiiiiiiiiii e e e e aneas 164
Constrain File 1/0 Within Your Application’s Context......ccccoveiviiiiiiiiiiiiiiie e 165

V=T o L o= PPN 165

xiv Improving Web Application Security: Threats and Countermeasures

T] U PP 166
HKEY_LOCAL_MACHINE ... et ettt e e et e e e e e e e e e e e e e e e e e eaneennas 166
HKEY_CURRENT_USER.. ... ittt e e e e et e e e e e e e e e e eanas 166
Reading from the ReZISTIY ..uuiinie e 167

DATA ACCESS uiuiiiiiiet ettt et e et e e e e 167

UNMANAEEA COUEovieiiiiiee i e e e e e e e e e ea s e e ea s e e r e ea e ennes 168
Validate Input and Output String Parameterscocvvviiiiiiiiciiiec e 168
Validate Array BOUNGScuieii e e e e e e e e e eas 169
Check File Path LENGINS ...cuieiiei e e e e 169
Compile Unmanaged Code With the /GS SWitChc.coiviiiiiiiiiii e, 169
Inspect Unmanaged Code for Dangerous APISccuveiiiiiiiiiiiiei e 169

DTS = == | = 169
Do Not Accept Delegates from Untrusted SOUICESovuviivieiiiiiiiiieieeie e 169

ST A T= 7= | o o S 170
Do Not Serialize Sensitive Data.......cocuiieiiiiiiieie e 170
Validate Serialized Data StreamsSovuuiieiieiiiee e 170
Partial Trust CONSIAEIratioNSuivuiee i e e e eaaes 171

B L1 L1 = PP 171
Do Not Cache the Results of Security CheCKSccuviuiiiiiiiieiiic e 171
Consider IMmpersonation TOKENSiuiieiiiiiii e e e e e e enennes 172
Synchronize Static Class CONSIIUCTOIS......uiiiiiiiii e 172
Synchronize DispoSe MethOdsc.vuiiiiiiiiii e e 172

= =1 4 o) o P 172

(00 11 =Tor= 1 o] o 1S 173

L0701 (0T =1=T'o] VP 174
Use Platform-provided CryptographiC SErVICESc.uiiuiiieiiiiiiiiiii et 174
LGV C 1T a1 = 4o o 174
VRS 1 o] = =L PP 176
KEY EXCRANEE ..ttt et et e e e e e e e e e e e aans 178
KEY MaINTENANCE ...eeeeieiei e e e e et e e e e e e e e e e e ee e e eneaneeneens 178

S0 0] 4= PPN 179

AdditiONAl RESOUICES vttt et r e s e e e e e a e e r e eaees 179

Code Access Security in Practice 181

LT I 4T ES T O 1 =T (] S 181

L0 172 1= 181

HOW 10 USE ThisS Chapter cuueii it e et e et e et e e e e e e e e e e e aneanns 182

Code Access SeCurity EXPlaiNediuuiiieiiiiiee e e 182
Lo o - N 183
LAY T0 =T Vo PP 183
P NI S S ONS . uieeet ittt 184
Assert, Deny, and PermitOnly MethOods........c.oviiiiiiiiiiii e 185
PO CY ettt e e e eans 185

Contents Xxv

Code Access Security Explained (continued)

HOW DOES [T WOIK?. . et e e e e e e e e e e e e e e e e a e e e neeenns 186
HOW IS POlIiCYy EVAIUGTEA? ... e e e e e e e 187
e O PP PPN 191
AVOId USING APTCA <.ttt e e et e e e e e e et e e ee e ean e e e e e eeaneeennaaeen 191
DIiagnoSiNg APTCA ISSUES ...uuiiiiiiiieieieee e e e e e e e e e e s e e e s e e nenns 192
e GV 1 [T 1=Te 6o o [P PUPRPRPR 193
PrIVIIEZEd RESOUICES ..viiiiieii e s e e eans 193
Privileged OPEratioNSiiuiiuii et e e e e e e e e e e e e e e eaaae 194
REQUESTING PEIMISSIONS ..vuieiiiiiieti ettt e s e e e e e e e e e e e aannns 194
REQUESTMINIMUM ...t e e e e e n e e e n e e e ea e en e eneenreneenrenns 195
o 8 TST 0 01T = | 195
REQUESTRETUSEAeneiiiiiei et e et e et e e e et e e e a e e eaneaneans 195
Implications of Using RequestOptional or RequestRefuseccccvveeiiiiiiiiiiiiiiniennns 196
DU T 4T Y= 0o o = 196
Restrict Which Code Can Call YOUr COUE ... cuuiiiniiiiiiieii et 197
RESTIHICT INNEITANCE .. ettt e eans 198
Consider Protecting Cached Datac.uviuiiiiieiiiiei e 199
Protect Custom Resources with Custom PermisSSionsccuvvevvieniiinieiniiiieiiienieennes 199
TS 1= ' =T o P 199
DT T = Lo £ R 200
Performance and LINK DEMaNndS..........viuiiuiieeiiiie et e s s e e e e e e e eannes 201
Calling Methods With LiNK DEMANAScuuiieiieiiiiiiiei et e e e e e e 201
Mixing Class and Method Level Link DEMaNdSc.veuiieeiiiiiiiiieiieee e e e e 201
Interfaces and LINK DEMANAScuiiuiiiiiie et e e e e e e e eans 202
Structures and LINK DEMANAS ...c.uivuiiiiiieiiee ettt e e e e e e e e e eaaees 202
Virtual Methods and Link DEM@aNAS ... cc.iieuiieiiiiiiee e e e e 203
ASSErt aNd REVEIMASSEI. . e i it 203
Use the Demand / ASSErt Pattern ... e 204
Reduce the ASSert DUrationcieiiie e e eas 204
{070 S =111 7= 6 To 1= 2P 204
Using Policy Permission Grantsc.cicuiiuiiiiiiiiie st e e 205
Using Stack Walk MOIfIErS ...cuuieiiiie et eas 205
1 O RPN 205
Constraining File I/0 within your Application’s Contextccocvveiiiiiiiiii i, 205
Requesting FIlelOPermMIiSSIONcui it 207
V=T o L o= PPN 207
Constraining Event LOZEING COUEivuiiuiiiiiiieeieie ettt e e e 208
Requesting EventLOgPEerMIiSSION.....cuu e e e e e e enns 208
ST 1 L PPN 208
ConstrainNing REGISTIY ACCESS ...iuuiiuiiiiii it e re e e e e eans 209
Requesting RegistryPermiSSiON i 209
(D= = Vo] 12T 209
D1 (=Yoo o RS 1= Y (o= T PP 210
Constraining DIreCtory SErviCe ACCESS ...uiuniiuiin ittt e e 210

Requesting DirectoryServiCeSPEermiSSIiONcuuiieiieiiiieee e 211

Xvi

Improving Web Application Security: Threats and Countermeasures

ENVIironment Variables oo 211
Constraining Environment Variable ACCESScuiiiiiiiiiiiiiiieieee e 211
Requesting ENVironmentPermiSSiON v.uvu it e e 211

WED SEIVICES ..t e e e eeaas 212
Constraining Web Service CONNECTIONS .. cu.iuiiuiiiiiiii e e 212

SOCKETS @NA DINS e e e e e e e e 213
CONStraiNiNg SOCKET ACCESS . uuiuiiuiiiiii et e e e e e eaes 213
Requesting SocketPermission and DNSPermisSSion.......cocoveuveveieieiiieiniieieeeee e 214

UNMANAEEA COUEoenieiiiiiie e e e e e e e e e e e s e e ea s e e n e ea e ennes 214
Use Naming Conventions to Indicate RiSK........civuiiiiiiiiiiiiei e 214
Request the Unmanaged Code PermiSSiON.......cicueveuviiieeieeiiei e e e e e e 215
Sandbox Unmanaged APl CallS........ceuuiieieeiiiie ettt e e e e e e e e e eaaees 215
Use SuppressUnmanagedCodeSecurity with Cautionccccveeiveiiiiiiiiiiie e, 216

(DTS = == | = 217

ST =142 1o o PSPPSR 218
ReStricting Serialization e 218

T 100 F= T Y 219

AJAItIONAI RESOUITES ...ceuieeeieie ettt ettt e e e et e e e e e e e e e e e e e enneeenaas 219

Using Code Access Security with ASP.NET 221

LT I T30 1 F= T 0 (= 221

OVEBIVIBW ettt ettt e et e et e et e e e e e ea e e sea e e e e e e e e ea e ea e e e e ea e rnas 221

HOW 10 USE ThiS CNaPler euuiiiiiiieiee ettt ettt e e e e e e aeenennen 223

RESOUICE ACCESS ...iiuiieeieiet et e et et e e et e e e e e et e e e e e eea e eaa e e en e e enn e ena e eeenneennneees 223

Full Trust @nd Partial TrUSTeeeeee e e e e e e e e e e 224

Configuring Code Access Security in ASP.INET ... e 225
CoNFIUING TrUST LEVEIS. . et e e e e eas 225
LOCKING The TrUST LEVEI ... e e e e e e e e 226

DN 1 I o o ol = PR 227

LT N o N 227
Inside an ASP.NET POHCY Fil€ .cuuiuiiieiiiie et es 228
Permission State and Unrestricted PErmMiSSIONSvvvuiivniiiiiiiiiiieii e 229
The ASP.NET Named Permission Set......ccciiiiiiiiiiiii e e 229
SUbSTITULION Parameters e 230

Developing Partial Trust Web AppliCationsc.vviiiiiiiiiiic e 231
WhY Partial TrUST? ..t e e e e e e e e e e e e eans 231
Problems You Might ENCOUNTETcunii et eeaas 231

L0 S A IS £ P 232

Approaches for Partial Trust Web AppliCationsccviuiiiiiiiii e 234

CUSTOMIZE POLICY ettt et e e e e e e e e e e eas 235

ST ale] o o) QR 1Y/ 1=7= (Yo [0o To L= S PPN 236

A SandboXiNg Pattern 236

Contents Xxvii

Deciding Which Approach 10 TaKecuiuiiniiicie e e 238
CUSTOMIZING POLICY «eueiiei ittt e e e e e r e eaen 238
SANADOXING ettt e e aans 238

Y =Yoo g T T = PPN 239
Reduced AttaCK SUIMACEcuu it e e 239
ApPlication 1SOIAtION ... e 239

Medium TruSt RESTICTIONS ...ucviieeiieeee et e e e e e e e e e e e eenas 240
I 5 N 240
Y=Y o o= PRSPPI 244
WED SEIVICES ettt ettt e e aan 248
== 1= 1 Y 250

T 100 =T YR 252

AddItioONAl RESOUITES ..vuieeiieeiieieii ettt et et e et e e e s e e s e e e e e eae e e eaaeeanaeanns 252

Building Secure ASP.NET Pages and Controls 253

LT I T S04 =T o = S 253

L0 1YL= YT PPN 253

HOW 10 USE ThisS Chaplere e et e e e e e eanen 254

Threats and COUNTEIMEASUIES ...u.uuiiuiiiiiiee e e e e e e ea e eans 254
(0o To L= [0] =T 1 o o [PPN 255
SESSION HiJACKING vuieiiiiii ittt r e e 256
[AENTITY SPOOTING cuiieiiiii e e e 257
Parameter Manipulation ... e 258
=Y Ao T 2 o1V Yo [(o] o] o] = PP 259
INFOrMation DISCIOSUIE ...cunieiiiii e e e e e e e e e e eans 259

(DTS = I Oo] g[S [0 [T = 4o 1< RN 260
Use Server-Side Input Validation ..o e 260
Partition YOUr WED Stuiuieiiiiiiiiie et r e e e e e e e 261
Consider the Identity That Is Used for Resource ACCESS......vvvvuiiiiiiiiiiieiiiiceieeeenne, 262
Protect Credentials and Authentication TiICKEetSovvvieiiiiiiiiiii e 262
L= VLIS 1= o1 1=V 262
Consider Authorization Granularityccveoeiiieiii e e e 263
Place Web Controls and User Controls in Separate AssemblieSccccevvveinienannen.. 263
Place Resource Access Code in a Separate Assemblyccveiiiiiiiiiiiiiiiiicieeene, 263

Y o0 LAY =1 1T =1 1 (o o 263
Constrain, Then SAnitiZE......cieiiiiiii e 264
U] P Tl e o] (=11 (o] 1 T PP PRP 264
SHING FIElaS 1 uitiiii i s 265
(D= (SR =T o PP 267
O =T o =] Lo PP 267
SANITIZING INPUL . et e e e e r e e eans 269
Validating HTIML CONTIOIS ..uuiuiiiie e e e e e e e e e e e e e e e e eaees 269
Validating Input Used for Data ACCESS ...vuiiuiiniiiie i e e e e e e e e e ees 270
Validating Input Used FOr File 1/0 ...t 270

CommOoN Regular EXPreSSIONS ...ttt e e e eaes 271

xviii

Improving Web Application Security: Threats and Countermeasures

CrOSS-SIte SCIPUING ... euieiet et e e e e eas 272
RV = 11T = (= T o P 273
X o0 T L= 0 o 1V 273
Defense in Depth COUNTEIMEASUIESiuiuiiii e eeie e e e e e e e e e eaeenns 274
AUTNENTICATION 1ueiiieie e e e e e e e et e e e e s e e e aen e e enneens 277
FOrmMS AUTNENTICATION ..cuuieiic e e e e e e 277
Partition YOUr WED STcunieiiiieeee et e e e e e e e e eeaas 278
Secure Restricted Pages With SSL.......iiiiiiiiii e 279
(8T U]] I Y014 o 4= 1A o 279
Secure the Authentication COOKIE........iiuiiuiiiiie e 280
Use Absolute URLS for Navigationcceuiiiiiiiiiie e 282
Use Secure Credential Management......c..ovuu i e eaes 283
YU g T = 1 o] o 284
Use URL Authorization for Page and Directory Access CONtrol......coeeveuveeveueennnennns 284
Use File Authorization with Windows Authenticationccoovviiiiiiiiiii e, 284
Use Principal Demands on Classes and MethodSc.veuieiiiiiiiiiiiiineccceeeeceeee, 284
Use Explicit Role Checks for Fine-Grained Authorizationccccceeviiiiiiiiineinennenn. 285
LY oY= Yo F= L 4 PP 286
Using Programmatic IMpersonationoeueiiiiiiiininse e e 286
SENSITIVE DATA euiiieei e 288
Do not Pass Sensitive Data from Page to Page.......covvviiiiiieiiiiiin i 288
Avoid Plaintext Passwords in Configuration FileS.......cccviiiiiiiiiiiiiiic e, 288
Use DPAPI to Avoid Key Managementccuuiiuiiieiiiiiie e ee e ea e 288
Do Not Cache SeNSItIVE Data@.....c.vivuiiiiiiiiiicci e 288
SESSION MANAZEMENT ..ieiiiii it r e e e e s e e e e e e ea e e e e een 289
Require Authentication for Sensitive Pagescvvvuviiiiiiiiiiiiic e, 289
Do Not Rely on Client-Side State Management OptionS.......ccocuvvveiieiiiiiiieiniein e, 289
Do Not Mix Session Tokens and Authentication TOKENScc.cevvviiiiiiiiiiieiieiceee, 290
USE SSL EffECHIVEIY cunienieiie et 290
Secure the SESSION Data.....cuieiiiiiiiii s 290
Parameter Manipulation ... 291
Protect View State With MACS ..o 291
Use Page.ViewStateUserKey to Counter One-Click Attacks........covuvieieiiiniiiiiennennnnns 292
Maintain Sensitive Data on the Server........ci i e 292
Validate INput Parameters.o 293
EXCEPLioN MANaABEMENTeieie e e e e e e e e e e e e e e e ennes 293
Return Generic Error Pages 10 the Cliento 293
Implement Page-Level or Application-Level Error Handlers.......cooevvviiiiiiiiieniinennens 294
PAX0 Lo LA aT=r=T oo B o)== = PP 295
EVENTLOBPEIMISSION ..ttt e e e e e e e e e e n e e e n e raenns 296
S0 0] 4= PP UPRPPRPRRN 296

AJAITIONA] RESOUITES .uiniiiiiii ittt ettt s s tea s ra e tasaasneasrasnraransnennres 297

Building Secure Serviced Components

Contents Xix

LT I T 304 =T 0 = 299
OVBIVIBW . tititii ettt e e et e et e et e et e e et e e e e s e e e e e e e s e e e e e e e e eneaenannaen 299
HOW 10 USE ThisS Chapleruiiiieeiee e et e e e e eean e 300
Threats and COUNTEIMEASUIESiuiiuiiiiiee e et et et e s s e s e e e s es e e e e ennenns 300
N o T A oAV Te [o] o] o] o= PP 301
UNAUTNOIZEA ACCESS cuuiuitiiiiieie ettt et e e e e e e e e e e e n e e e e e nenns 301
Unconstrained DelegatioN........icuiiiiii e e 301
Disclosure of Configuration Data.........cceuuieiiiiiiii e 302
LY o T L= 4o 302
DeSIZN CONSIAEIAtIONS ..ovuieiiiie ettt e e e e e e e e e e e e e eaeeenas 302
Role-Based AUtNOFIZatiONiie e e eaas 302
Sensitive Data ProteClion ... 302

DA Lo L1 R =T o U T (=T g 1= =N 303
Application ACHIVATION TYPE ..vuin i e 303
L= ST T4 o] o = PP 303
CO0E ACCESS SBCUIMTY ceuiuiiniitei et e et e e e e e e e et e et e e e araeaeaeaneaneanennns 303
AUTNENTICATION ettt e e 304
Use (At Least) Call Level Authentication........cccuveuiieiiiiiiiie e e 304
DU 1T = 1 o o 304
Enable ROIE-BASEA SECUILY ..cuuiuieieiiiiiee e e e e e e e e e e e e e e e eneeans 304
Enable Component Level ACCESS ChECKScuiuiiiiieiiiiiiieiie e eeaeens 305
Enforce Component Level ACCESS ChECKScuiuiiiriiiiiii e aeeens 305
Configuration ManagemMeENT.........iiui i e 305
Use Least Privileged RUN-AS ACCOUNTS ...ivuiiuiiiiiiiiiien s e e e e e e e 306
Avoid Storing Secrets in Object Constructor Stringsccouvveviiiiiiiiiiiiee e, 306
Avoid Unconstrained Delegationcoveieiiieii e 306
SENSITIVE DAt ..eiiiieiiiiei e e e et a e, 307
AUITING @NA LOZEING ..vneeeeeeieieee e e e et et et et e e e e e e e e e e e e e e e eneenanneens 308
Audit USEr TranSaCiONS ...cuiiiiiiii ettt e s e e e e e s e eas 308
Building a Secure Serviced COMPONENTiiuiiiiiiiiiiii e eeas 309
ASsemMDIY IMPIEMENTATION. ... e e e 310
Serviced Component Class Implementationccoviiiiiiiiiii e 311
Code Access Security CoNSIAErationSvuuiieiiiiieieii e e e 313
Deployment CoNSIAEratioNS ...c..ieuiiii et e e 314
Firewall RESTIICHIONS 1uuiuieiii i e e e e e 314
S0 0] 4= PP UPR PPN 316
AdditiONAl RESOUICES ..uiiiiiiiiiiei ettt e e s e e e e e e e e a e eanen 317
Building Secure Web Services 319
LT I T S04 =T 0 = 319
OVBIVIBW . titit ettt ettt et e e et e et e et e e et e et e aan 319
HOW 10 USE ThisS Chapleru e et e e e e ean e 320

Improving Web Application Security: Threats and Countermeasures

Threats and COUNTEIMEASUIESiuiiuiiiiiee et e e e s e e e e e ranenns 320
UNAUTNOIZEA ACCESS cuuiuitiiiiiiee ettt e et e e s e s e s e e e ree e rene e nenns 321
Parameter Manipulation ..o e e 322
NN o T A oAV Te [o] o] o] o = RPN 322
Disclosure of Configuration Data.........cceuuieiiiiiiiiiie e 323
MESSAEE REPIAY euienitieiiii e e e e e e e 323

DeSigN CONSIAEIAtIONS .uiuiieiiiee e e e e e e e e s e e en s e ea s e en e enennes 325
Authentication REQUINEMENTSiuie i e e e 325
Privacy and Integrity REQUINEMENTSiuiiiiiiii e e 325
ReSOUIrce ACCESS [AENTITIES . .cuuie i e e e eans 325
CO0E ACCESS SBCUIMTY ceuiuiin ittt i ettt e et e e e e e e e et e et ea et eaeeneaeasaeaneanannennns 326

[T o1 = 1o F= 1€ o] o N 326
Strongly Typed Parameters......ueu it e e e 326
Loosely TYped ParameETtErSeuiuiieiiiii et e e e e e e e e e e e e e e e e eeans 328
DY 5) - P 328
10 I 1] [=Tox 4 oo 331
CrOSS-SIte SCIPUING e uiieieeit ettt e e e e e e e e e e eens 331

AUTNENTICATION Luieiiee it r e e 332
Platform Level AUthentiCatioN..........viuiieiiiii e 332
Message Level AUTNENTICAtION.oiii i e 333
Application Level AUTNENTICATIONcuieieii e ans 335

DU 1T = 1 o o 335
Web Service Endpoint AUTNOIZatioNiuieiie e 336
Web Method AUtNONZATIONiveiie e e aas 336
Programmatic AUTNOFIZatioNc.iueiiiiii e e 336

SENSITIVE DATA euieiiiei e 337
DAY/ =1 Yo o4 o o N 337
ENCrypting Parts Of @ MESSage .. cuu ittt e 338

Parameter Manipulation ... e 339

EXCEPLiION MANABEMENT e e e e e e e e e e e e e ennes 339
(WS- Yo=Y o] = o1 =T o) U 0] o 1< 340
Application Level Error Handling in GIObal.asaX.......ccceoviiviiiiiiiiiiiiieiee e, 341

DAY Lo L4 aT=r=T oo B o)== = PP 341

Proxy CONSIAEIatiONS . ..cei ittt e et s e e e e r e e e e e een 341

Code Access Security CoNSIAErationSivu.iieeiiiiiieii e e 342

Deployment CoNSIAEratioNS ...c..iieiiiiiiieee et e e e 343
INtranet DePIOYMENT ... e et e e e e enas 343
EXtranet DepPlOYMENT ... e e e e e e e e e e e e eans 343
INternet DEPIOYMENT e e e e eans 344

10 0] 4= PP UPRPPPRN 345

AJAITIONA] RESOUITES .uiniiiiiiii ittt et a et eaateasra et s aasneasrasnraransnennres 345

Contents xxi

Building Secure Remoted Components 347
LT I T 304 =T 0 = 347
OVBIVIBW .eitit ittt et e e e et e et e et e e et e e e e s e e e e e e e s e e e e e e e e ee e e enennaen 347
HOW 10 USE ThiS Chapleru i et e e e e e ean e 348
Threats and COUNTEIMEASUIESiu i iiei ettt ettt r e s e e s e e e e e eneenrenns 349

UNAUTNOIZEA ACCESS cuuiuiiiiiiiie ettt e et e e e s e s e e e e s ee e e e e nenns 349
N o T A oAV Te [o] o] o] o= PP 350
Parameter Manipulation ..o e e 351
TS 1= 7= | o o N 351
[DLC Ty g I o T =] (o[- = o) L= 352
Do Not Expose Remoted Objects to the Internet.......ccoviviiiiii i 352
Use the HttpChannel to Take Advantage of ASP.NET SeCUNtyccoceuvevuviiieiiiennnennns 352
Use the TcpChannel Only in Trusted Server SCENArios......c.cveuveeveiiiieiieieeeeeeeee, 352
[T o1 L= 1o F= 1€ o] o P 354
SeraliZation ATLACKS ... ivu it 354
MarshalByRefOhjECt ALACKScuuie it e e e e e e e e e eans 354
AUTNENTICATION L.ttt r e 355
D] N I 01 1 = PP 355
CUSTOM ProCeSS HOSTING ..vuieeiiiiiie ittt e e e e eas 358
DU 1T = 1 o o 359
Use IPSec for Machine Level ACCESS CONIOl......cuuiiuiieniiiiiiiiiei v 359
Enable File Authorization for User AcCess CONtrOl......ccuvviniiiiiiiiiiiieicci e, 359
Authorize Users with Principal-Based Role CheCKScciviiiiiiiiiiiiiiieceeeeea, 360
Consider Limiting REMOLE ACCESS .uuivuiiiniiiiiiii et a e eens 360
SENSITIVE DAt ..eiiiieiiiii e e e aaaaan 361
USING IPSEC .. ittt e ittt ettt et et e e e et e e e e e e et e e e e e e e raaeanas 361
LT F =1 1 PR 361
Using a Custom ENCryption SiNK........oeeeiuiiiiiiiei e 361
DT T E I oY =T Y/ o= N 364
EXCEPLiON MANABEMENT e e e e e e e e e e e e ea e ennes 364
Using @ Custom Channel SiNK.......ieuiiuiieeie e e e 365
DAY Lo L1 aT=r=T oo B o)== = PP 365
Using @ Custom Channel SiNK.......veuiiuiieeie et e e 365
Code Access Security (CAS) CONSIAErationsScuieuiieuieeieeiieiete e e 365
S0 0] 4= PP UPR PPN 365
AdditiONAl RESOUICES ..uiiiiiiiii it e e e e e e e e e e r e eanes 366

Building Secure Data Access 367
LT QT E O = | (= PP 367
L0 1Y =TS 367

HOW 10 USE ThisS Chapter cuu e ittt e et e e e et e e e e a e e eanas 368

Improving Web Application Security: Threats and Countermeasures

Threats and COUNTEIMEASUIESiuiiuiiiiiee et e e e s e e e e e ranenns 368
010]I 0 =T o 1 o o 1S 369
Disclosure of Configuration Data.........ceeuuiiiiiiiiiiie e 370
Disclosure of Sensitive Application Data........cceeeveuiiiiiiiiieeeeeere e 370
Disclosure of Database Schema and Connection Detailscccccvveieiiiiiiiiiiiiiniennns 371
UNAUTNOIZEA ACCESS cuuiuiiiiiiiiie ettt e e s e e e e e s e r e e e e nenns 371
NN o T A oAV Te [o] o] o] o = PP 372

DeSigN CONSIAEIAtIONS .uivnieieiie e e e e e e e e e e e ea e ea s e en e enenns 372
Use WINdows AUTNENTICATIONcuiiiiee e e e eans 373
Use Least Privileged ACCOUNTSuiuuiiiiiie e e e e e e e e e e e 373
USE StOred ProCEAUIES....uieieeie ettt et e e e e e e et e e e e e e e raeeanas 373
Protect Sensitive Data in STOrageuvveiieiiiiii e 374
Use Separate Data ACCeSS ASSEMDIIES ...cvnieniiiiii e eeaas 375

[T oYL= 1o F= 1€ o o N 376

10 I 1 [=Tox 1 oo N 376
Preventing SQL INJECION .. cuuiie e e e e e e e e e e ees 376
(0707 0 1= 1 = [T LYo 101 SR 376
Use Type Safe SQL Parametersot e e eaes 377
Using Parameter BatChing......c..viuiiiiiiicii e 378
USING FIlter ROULINES ..vuiiieiiie ettt et e e e e s e e e e eans 378
USING LIKE ClaUSES c.ueuitiiiiei ettt e e et e et e e e e s e e e s e s e e e s e e e e e e eeneeanas 378

AUTNENTICATION Luieiiee i e e 379
Use WIiNdows AUTheNtiCatioNvvuiiiii e 379
Protect the Credentials for SQL Authenticationc.ooeviiiiiiiiiiiiieeeeeaen 380
Connect Using a Least Privileged ACCOUNT.......ivuiiiiiiiiiiiie et 380

LU 1T = 1o o 380
Restrict Unauthorized Callers.....c.iieiiii e e eans 382
Restrict UNauthorized COUEcuvninieiiii e e e e e e ens 383
Restrict the Application in the Databasecc.vvieiiiiiiiii e 383

Configuration ManagemMeENT.........ouuiiiiiii e 384
Use WINdOW AUtheNTiCAtioN. ... cuiiiiiiie et e e e e e e eenes 384
Secure Your CONNECION StHNES ...vvuiieiiiiiiee et e e e e 384
Secure UDL Files with Restricted ACLScuiiuiiniiiiiiii e 386

Y= LT LAY ST D= | = [PP 386
Encrypt Sensitive Data if You Need t0 Store Itcoeuviiiiiiiiiiiiiee e, 386
Secure Sensitive Data Over the NetWOrk......couovuiiiiiii i 387
Store Password Hashes With Salt.......c..oieiiiiii s 388

EXCEPLiON MANAZEMENT e e e e e e e e e e e e e e ennes 389
Trap and Log ADO.NET EXCEPLIONS ...cuiiuiiiiiii ettt e e e e e e e e 389
Ensure Database Connections Are ClOSEdccuviuiiuiiiiiiiiiieiei e e e eaas 391
Use a Generic Error Page in Your ASP.NET Applications......c.ccceeveiiiiiiiiiiiiiiiieieeeenns 392

Building a Secure Data ACCeSS COMPONENT ... cuuiiiiiiiiiiieeii e e 393

Code Access Security CoONSIAErationSc..iiuiiiiiiee e e 396

Contents xxiii

[D7=T 0] (o) 01=T 0 00 g F=] T [T = 11 Lo 1= 397
Firewall RESTIICHIONS .. e e e e r e e e eas 397
Connection StriNg Man@gEmMENTc.iiuiiiiie e ea e 398
Login Account CoNfigUIatioN........ceieuieieieie et e e 398
(o) =Lo] AU o 11] = PP UP PP 398
Data Privacy and Integrity on the NetWOrKcooiiiiiiiiiiii e 399

1010 =YY 399

PV (o T To) aF= T I C=2=To 10| (o7 == 399

Securing Your Network, Host, and Application 401
Securing Your Network 403

LTI T E= T 04 =T (] RS 403

L0 172 Y-S 403

HOW 10 USE ThisS Chapter cuuuii i ettt e et e et e et e et et e e e e e e e s eaeaneanns 404

Threats and COUNTEIMEASUIESuuiiuiiiieie e e et et et e et e s e e e e e e e e e e e e eneeneenenns 405
INFOrMation GathErNG ... c..ie i e e eaas 405
S 11 =N 406
] 0T Yo 1 =N 406
SESSION HIJACKING vttt ittt s e r e s e e e e eaa e 407
D LCT T E I oY =T Y/ o= 2 407

1] g T Yo (0] o =2 P 408
(0T 1 = 408
T | 409
(o] N 409

ROUTEr CONSIAEIATIONS . .uiiiiiiee ettt e e e e e e e e e e e eeeeeneaenennen 409
PatCches and UpPdates ... e et e e eaas 409
(0] (o Yoo] £ 410
AdMINISTIATIVE ACCESS .eniniiiiiiiiiiii ittt ettt et e e e e e s rararararararareaanenen 412
Y=Y o] PPN 412
PAY0 [[0 aT=r=T o ol o)== = PP PUPRPS 413
INTrUSION DETECTION uiveiii e e e e e e e e e e e eenen 413

Firewall CONSIAEIAtIONS ...vuiuiiiiiii e e e e e e e e s e ea s s e eaenraenennen 413
PatCches and UpPdates cuuuieieiiiiie it eas 413
1= = PPN 414
LOZEINE ANA AUAITING ..eeneeeeieiiee e e e e e e e e e e e s e en e e en e enenns 415
PerimMEter NEtWOIKS ..o i e e e e e e e e e e e e e e e enenns 415

SWItCN CONSIAEIATIONS . ettt e e e e a e e e e e e s s e eaeenenreenanns 416
Patches and UpPdates ..u it eas 416
VAN S . ettt e et e et et e e e ea e et et et e e eeaeen e e e eraaanns 417
INSECUIE DETAUITS....cnieitiiei ettt et e e e e e e ae e eaeeeaaens 417
Y=Y oY PPN 417

xxiv Improving Web Application Security: Threats and Countermeasures

Additional CoNSIAEIatioNScuiiiei i e e e eans 417
Snapshot of @ SECUre NETWOIK ... c.e i e 418
1010 =YY 419
AdItioN@l RESOUITES ...euiiiiiieiii et e e e e e e e eneenns 420
Securing Your Web Server 421
LT I T 304 =T 0 = 421
L= =P 421
HOW 10 USE ThisS Capter cuuiniiiiiei i e e e et e et e et e e e et e e e e e e e s eaneanaanns 422
Threats and COUNTEIMEASUIES .. cuuiie e e e e e et e et e e e e e e e e e e e e ene e e e eaaeanns 422
0 1 1 = N 423

D 7o a1 = oY YT o7 424
UNQUENOIZEA ACCESS ..enieiieiieee ettt ettt et e e e e e e et e e e e e e e e e e e eaannnas 424
Arbitrary Code EXECULIONcuie it ee e e e e e e e e e e aeeaeaeanean 425
Elevation Of PriVIIEEES .. cuuiieiiii i 425
Viruses, Worms, and Trojan HOISEScvuiiuiiniiiii et e e e e e e e 426
Methodology for Securing YOUr WED SEIVENc.uiiuiiiiiiiiiiieee e 426
Configuration CateBOrIES ..uuiiuiiiii et e e e e eas 427
IIS and .NET Framework Installation Considerations.........ccvuuiveeiieiiiiiiin i 430
What DOES IS INSTAIl? ...t eans 430
What Does the .NET FrameworK INStall?. ... oo e 431
Installation RECOMMENAATIONS ...cuuiiuiiieiie e 432
IIS Installation RecoOmMMENAAtiONSvvuiiuiiiiiii e 432
.NET Framework Installation RecommendationsS............ccoeuviiiiiiiiiiiiiinieeieceee e, 432
Including Service Packs with a Base Installation..........coveiviiiiiiiiinccc e 433
Steps for Securing YOUr WEDh SEIVET ..ot 433
Step 1. Patches and Updatescunieiiieiii et e e e e e e e e e 434
Detect and Install Patches and Updatesouvvuieiiieiiiiiiceee e e 434
Update the .NET FrameEWOrK . ..o ettt e e e e e e eas 435
10T o D2 1 1S o o3 2o [0 11/ o TS 435
Install and RUN HISLOCKAOWNvuiiiiiii e ee e e e e e e e e e eneeans 435
Install and Configure URLSCANcuuiiiuiiiieiieeeeeee ettt eas 437
(T o TS TR 1o VT =N 438
Disable UNNECESSArY SEIVICES ...cuuiiuiiuiieeteetie et et st et e e e e e e e e eeans 439
Disable FTR SMTR and NNTP Unless You Require ThemM......cccveviiiiiiiiiiiiieiieiceieee, 439
Disable the ASP.NET State Service Unless You Require Itccovvveiniiiiiiiiiniinennnen. 440
STEP 4. PrOtOCOIS . it 440
Disable or SECUre WEDDAVcuiiuiiii it e e eaas 440
Harden the TCP/IP STACK ... et 440

Disable NEetBIOS @Nnd SIMIBi.......cuiiiiiiiiiii ittt e e e e e e e e a s e e s ararenenes 441

Contents xxv

IS (] TR o o7 1 [| = 442
Delete or Disable UnNUSEd ACCOUNTS......iuiuiiiieiiieieieeeeee e e et e e e e e e e e e eens 442
Disable the GUEST ACCOUNT ...ueieiiieiie e e e e e e e e e e e e eens 443
Rename the AdmiNiStrator ACCOUNT.......c.uiurieieiieeeee e e 443
Disable the TUSR ACCOUNT.....iu i e e e e e e e s e e enns 443
Create a Custom Anonymous Web ACCOUNTccuiniiiiiiii e e 443
Enforce Strong PassWord POlICIESuuuiruiiiiiieieec et e e eas 444
ReESTIICT REMOTE LOBONS ..uiieiiieiiie ettt e e e e e e e e e enns 444
Disable Null Sessions (ANONYMOUS LOZONS) v.uvvuuiiuieeienienieeeeeeeeeeeeeneeneeneeeneeenns 445

Step B. FileS and DireClOriES. . uuiuiiiii e e e e e e e e e e e e e aeaeaneen 446
Restrict the EVEryoNe GrOUP ..ucuiuiieiiie e ee e e e e e e e e e e e e e e e e en e e eneenns 446
Restrict Access to the IS ANoONymMoOuUS ACCOUNTc.euiiiiiiii e ee e e e e 446
Secure or Remove Tools, Utilities and SDKSveuiieiiiiiiieeiiceeee e e 447
REMOVE SAMPIE FIlES . uniiiiiii i e e e e e eeans 447
Additional CoNSIAEIatiONS ...c..iiee i e e e e e e e e eans 447

(=T o A Y =TT N 448
Remove UNNECESSary SNArescouicuiiiiiiiiiieeee e e e e e e e e e e eans 448
Restrict Access to ReqUIred SNareS......cuiiuiiuiiiiiii e e ee e e e eans 448
Additional CoNSIAEratioONSiieiiiiiiiii e e e eaas 448

(=Y S TR 20 o ¥ 449
Restrict Internet-Facing Ports t0 TCP 80 and 443ovuiiiiiieiiieeie e e 449
Encrypt or Restrict Intranet Trafficoouveeieiii e 449

S P 9. RO S Y ittt 449
Restrict Remote Administration of the RegiStry......covviiiiiiiiiii e 450
Secure the SAM (Stand-alone Servers ONIY)ceuieiiiiiiiiiii e 450

Step 10. AUditing @Nd LOBEING ..evuveeieiiiiieiie ettt e e e s e s e s e e e e e e e s e e ea e 451
Log All Failed LOZON AtLEMPTS ..vuieiiiii ettt e e e e e 451
Log All Failed Actions Across the File SysStem ... 451
Relocate and Secure the IS LOZ FIleS ..uiiuiiiiiiiiiiei e 452
Archive Log Files for Offline ANalYSiS.......ueuiiuiieiieiii e 452
Audit Access 1o the Metabase.bin File ... 452
Additional ConsSIderationscuuiiiiiiiiiiie i 453

Step 11. Sites and Virtual Dir€CtONES ..uuivuieieiiiiiii i 453
Move Your Web site to @ Non-System VOIUMEoveiiiiiiiiiiiie e 453
Disable the Parent Paths Setting.......c.oviuiiiiiiiiiii e 453
Remove Potentially Dangerous Virtual Dir€CtOriescuvvuiieiiniiiiiieeeeeeeeee e, 454
REMOVE OF SECUIE RDS ... e e e e e e e e en e eans 454
Set WED PeImMiSSIONS ..vuiiiiiii i e e e e e e e e eeans 455
Remove or Secure FrontPage Server EXTENSIONS ... cvuiiiiiiiiiiieici e 456

=T o I S Tt 1 o1 A, = o] o V(= N 456
Map IS File EXTENSIONS ..cuiiiiiiii ettt e e e e e e e e e n e eneeans 457
Map .NET Framework File EXtENSIONS......ciuiiiiiiiiiiiie e 458

=T oI R T 1S A o I (T N 459

REMOVE UNUSEA ISAP] FIlTBIS «.ueniniiiiiieiei ettt e e e e e eenes 459

XXvi

Improving Web Application Security: Threats and Countermeasures

StEP 14. IS METADASE ...t ans 460
Restrict Access to the Metabase Using NTFS Permissionscoveeveveiiieiniiennennenns 460
Restrict Banner Information Returned by ISo 460

Step 15. Server CertifiCates .o e 461

Step 16. MaChin€.CONTIZ . cuuiieii i e e e e e e e 462
Map Protected Resources to HttpForbiddenHandlerccooeniiiiiiiiiiiiiieeeens 462
Verify That Tracing 1S DiSabled.......cccuiiiiieiii e e 463
Verify That Debug Compiles Are Disabled..........cocuiviiiiiiiiiiiiiec e e 463
Verify That ASP.NET Errors Are Not Returned to Clients......ccccovevviiiiiiiiiiiiieeiee e, 464
Verify Session State SettiNgS ..cuviui i 464

SteP 17. COAE ACCESS SECUNMY vurnirnieeiiie et et e et e et e et e e e et e e s e e e e e eaaeaneanaanaen 464
Remove All Permissions for the Local Intranet Zone.........cooeoveviiiiiiiiiiieeiiecicceeeeas 465
Remove All Permissions for the Internet Zoneccoovviiiiiiiiiiiii e, 465

SNapshot Of @ SECUIE WED SEIVENcuiieie i eae e 466

1= Y= =T o] U TS 469
Audit Group MeEMDEISNID .uuiei e e e e e et e e et e e e e e aeanaan 469
MONITOr AUGIT LOZS ceuitniitieei ettt et e et e e e e s e e e e a e e s e e e enans 469
Stay Current With Service Packs and PatChes.......cccoviiviiiiiiiiiiicc s 470
Perform Security ASSESSMENTS......iiiiiii e 470
Use Security NOtification SEIrVICESuivieiiiiieiee e e e 470

RemMOte ADMINISTIAtION ...cu.ieee e e e e e e e e e e e ennes 471
SECUNNG TEIMINGL SEIVICES 1uitniitiiiii ettt et r e s e r e e e e e e e e eanes 472

Simplifying and Automating SECUNLYvvuiieiieiieii e eaa s 473

T 100 =T YN 474

AdItioN@l RESOUICTES ...cueiiei ettt e e e e e e ennenns 474

Securing Your Application Server 475

LT I T =304 =T 0 = S 475

L0 Y= YT PPN 475

HOW 10 USE ThisS Chapler....u e e e e e e eane 476

Threats and COUNTEIMEASUIESivuiiiiiiiiei e r e e e e e e e n e e eareans 477
=Y o T 2 o1V Yo [(o] o] o] = QPP 477
UNAUTNOIZEA ACCESS cuuiuiitiiiiiiiii ittt ettt e e e s e e e e e e e e e e e ean e neans 478
Viruses, Worms, and Trojan HOISES ...cuiiiuieii e et e e e e eas 479

Y =Y 1 g oo (o] Lo =V PP 480

Communication Channel CoNSIderatioNSvvviiiiiiiiiiiiie e 480
N (=T ST IR 1= Y7 [0 1= P 480
BN 0= o = PP 481
LT TS V] o] = PP 481
1] IS Y= N 481

Firewall CONSIAEIatIONS ..cuuiuiiiiiieiiie e r e e e e e e e e e e e aaranns 482
N (=T o 1STS TR L= V7 [0 482
BN =T o = P 484
LT oIS V7 o] = PP 485

1] IS V= S 485

Contents xxvii

.NET Remoting Security CONSIAErationSccuviuiiiiiiiiieicieee e e e e 486
Hosting in a Windows Service (TCP Channel).... ..o e e eaeeans 486
Hosting in IS (HTTP Channel) ..oun e e e e eaas 486

Enterprise Services (COM+) Security Considerationscceeeviieiiiiiiiiii e 487
Secure the Component Services INfrastruCture.........ovviveiiiiiiiiiiieerc e 487
Secure Enterprise Services ApplicatioNSeuieiie i 493

1010 =YY 499

AdItioN@l RESOUICTES ...iuiiiiiieie et e s e e e e e e e e e ennenns 499

Securing Your Database Server 501

LT I 01T O 0 =T (] PP 501

L0 1YL= 1= PPN 501

HOW 10 USE ThisS Chapler cuu ettt e et e e e e e e e e e e e a e 502

Threats and COUNTEIMEASUIESuuiiuiiiiiie et e e s e e ea e eans 502
10 I 1] [=Tox 4 oo PR 503
=Y 0o T 2 o1V Yo [(o] o] o] = QPR 504
UNAULNONZEA SEIVEN ACCESS .ovuiuiriiiiiiiiie ettt e e e e e eans 504
PaSSWOIA CraCKiNguuiuiiiiiiii e e eans 505

Methodology fOr SECUNNE YOUN SEIVETiu ittt e s e e s e e e e eanas 506
Configuration Cat@BONES . uuiiuiiuiiiiiiie e e e e 506

SQL Server Installation ConsiderationS... ..o e eas 509
What Does SQL Server INSTall? ... 509

SQL Server Installation RecommendationS.........ouviiiiiii i 509
Before RUNNING SQL SEIrvVer SETUD ..ovuiviiii et eaas 510
INSTAIIING SQL SOIVEI ...iuiitiiiiiee e e e e e e 510

Steps for Securing Your Database Server......iv i 511

Step 1. Patches and Updates ...t 511
Detect Missing Service Packs and Updatesc.oeuvieiiiiiiiiiiiiiiicecnc e 511
PatChiNg IMSDE ... e i e et et e e et e et e et e e a e e e e e e e eaneennnes 512

(= 2 1= V] o 512
Disable Unused SQL SEIrver SEIVICES ...uiuiuiiiie ittt e e e e ens 513
Disable the Microsoft DTC (if NOt requIred).....c.ceenieiiiinii e 513

S (=Y G TR (o (o Yo7 = 513
Restrict SQL Server 10 TCP/IP ... et e e eaaans 514
Harden the TCP/IP StaCKccucuii i e e e e aeens 514
Additional CoNSIAEratioNsSiiuiiiiiiiiii e 514

I (=Y 4 S Yo oo 1 | | = R 515
Secure the SQL Server Service ACCOUNT......cuie i e e e 515
Delete or Disable UnUSEd ACCOUNTS.....uiuiuiiiiiiieieiieeeeee e e e e e e e e e e e e eans 516
Disable the Windows GUEST ACCOUNT.....iuuiuieiiiiiieiieie e e e e e e e e e e e e ans 516
Rename the AdmINistrator ACCOUNT.......c.uiuiiuiiiiiee e ans 516
Enforce Strong PassWOrd POLICYcuiuiuiiiiiiei et e e e e 516
ReSTIICT REMOTE LOBONS ..viieiiiiii ittt e e e e e e e e ea e eans 517
Disable Null Sessions (ANONYMOUS LOZONS) ..uvuivuiiniiiiiiiiiieieeeeee e e e e eeeans 517

Additional CoNSIAEratioNSiuieiiiiii e aes 518

Xxviii

Improving Web Application Security: Threats and Countermeasures

(o I T LTS T g o B D =Yoo ¢ == R 519
Verify Permissions on SQL Server Install Directoriescocviveiiiiiiiiiiiiieeieceeens 519
Verify Everyone Group Does Not Have Permissions for SQL Server Files.................. 520
SECUIE SETUP LOZ FilES . ittt e e e 520
Secure or Remove Tools, Utilities, and SDKScuoiiiiiiiiiiiiiieiee e 520
Additional CoNSIAEratioNSicuiieieiiieir e e e ea e eas 520

R (T IS Y = 1= = R 521
ReMOVE UNNECESSArY SNAIEScuiuiiiii ettt e e e e e e e e ens 521
Restrict Access to Required Shar€sS.......covuiiiiiiiiiici e e eas 521
Additional CoNSIAEratioNScuiieieiiiiir e e e e eas 521

1 (=T o A o T €N 522
Restrict Access t0 the SQL SEIVEr POrt.....cuieuieiiiiieii e eas 522
Configure Named Instances to Listen on the Same Port........ccccoevviiiiiiiiiiiiiiiinennnen. 522
Configure the Firewall to Support DTC Traffic (if necessary)cceeeveeiivieiiiinvennnennnen. 523
Additional CoNSIAEratioNSiieeiiiiiie e e e e e e e eeans 523

L= T R T =T 1) S 523
Verify Permissions for the SQL Server Registry Keysccouvviiviiiiiiiiiiiiiiieiiceecceeeeenn 524
Secure the SAM (Stand-alone Servers ONIY)ceieiiiiiiiiii e 524

ST o I I AU o [1dTaT= =T o ol =4 =11 o V= PN 525
Log All Failed Windows LOZON ATEEMPLS ...evuienieieieiiee e e e e e e eaas 525
Log All Failed Actions Across the File SysStemc.oieviiiiiiiiiiii e 525
Enable SQL Server LOZIiN AUITINGuuuui et e e e eaeeas 526
Additional CoNSIAEIatioONS ...c.uiieieiiiii e e e eaas 526

SteP 10. SQL SEIVEr SECUIMTY...uuiiii ittt e e e e e e e enne 527
Set SQL Server Authentication to Windows ONlYeeviiiiiiiiiiiiici e 527
Set SQL Server Audit Level 10 Failure or Allc.veiiniiiiiiiieeee e e 528
Run SQL Server Using a Least Privileged ACCOUNT.......cuviiiiiiiiiiiei e e 528

Step 11. SQL Server Logins, Users, and ROIEScccviiiiiiiiiiiieiceieceeeeeee e 529
Use a Strong sa (System Administrator) PAssword........cc.oveeiviiiiiiiiniiieeiieeeeeieenns 530
Remove the SQL Guest USEr ACCOUNTiuiiiiiiiei e e e e e e e 530
Remove the BUILTIN\Administrators Server LOZiN.......cvieiiiiiiiiiiiiieiieeee e 530
Do Not Grant Permissions for the Public ROI€..........ccoiiiiiiiiii e 531
Additional ConsSIderationsiuuiiiiiiiii i 531

Step 12. SQL Server Database ODJECTS ...uuiuiuiiiiiiiciiec e e e e 532
Remove the Sample Databasesc.ceuiiuiiiiiiiiiie e e e eaes 532
SeCUre StOred PrOCEAUIESuiuiieiiiiiiieiee ettt e e et e et e et e et e eae e e e e eaeaeaneanns 532
Secure Extended Stored ProCEAUIESvuuiiiiiiiiii i eaas 532
Restrict cmdExec Access to the sysadmin ROl€ ..o 532

Snapshot of a Secure Database SEIVENvcuiii i 533

Additional ConSIAerationsiuuiiiiiiii e 536

=) Y= T=T o U PPN 536
Perform Regular BACKUPSvuuiieiiiiiie ettt ettt e e e e e e e 537
Audit Group MeEmMBEISNID v e e e e e e e aaaan 537
MONITOT AUAIT LOBS .. ettt ettt e e et et e e e e e e e e e e e e e e e e eens 537

Stay Current with Service Packs and PatChesccooiiiiiiiiiiii e 537

Contents Xxxix

Staying Secure (continued)

Perform Security ASSESSMENTS. ... e e e a e 538
Use Security NOtification SEIVICESuiuieieii e e e e e 538
RemMOte ADMINISTIAtION c..cunie e e e e e e e e e e r e enes 539
Securing TerMiNal SEIVICES ...uuiiii ittt e e e e e e e e enaas 539
1010 =7 540
AdItioN@l RESOUICTES ...iuiiiiiieie ittt e e e e e e e e e e ennenns 541
Securing Your ASP.NET Application and Web Services 543
LTI 4T E= T 04 =T (T RS 543
L= =P 543
HOW 10 USE ThisS Chapter cuuieii i it ii e e et e et e et e et e e e e e e e e s e e eaneanns 544
Y =Td aToTo (o] Lo = VU UPRUPRUPRPRE 544
What YOU MUST KNOW ...ttt et e et et e e e e e e ea e enns 545
ASP.NET ProceSS MOUEI ..cuuiiuiieiiiiiee sttt et et a e s e e e e e e e e e eas 545
ASP.NET ACCOUNT ..ttt ettt ettt e e e e e e e et et e e e e s e e e e e e ean e e e e e e e e eeans 545
Aspnet_setreg.exe and Process, Session, and ldentity......c.ccoeevvviiiiiiiiiinieineicieeeeen, 546
Impersonation is Not the Defaull........c..vieiiiiiiiiii e 546
HttpForbiddenHandler, Urlscan, and the 404.dll.........couieiiiiiiiiiiiieeieeeeeeeeeeens 547

D o oIS T= = £ PP 547
Machine.Config and Web.Config EXpPlaiN€dcouiiiiiiiiiiiiiii e 548
Hierarchical Policy EValUGLIONc.oeiiei e e e 550
(o e2= 11 0] o b PP RUPRPR PP 551
Machine.Config and Web.Config GUIAEIINESiiuiieiiiiiiei i 553
DO = T o I =T 0 g1 E=T] o] o 554
TrUST LEVEIS IN ASP.NET ...ttt et ettt e e e e e e e a e ea e e eaeeeneaeenennen 555
US> oo, 556
Process Identity fOr ASP.NETt ettt e e e e e e e e e e e e e e eans 556
S (e ToT =TT 1Y [0 Yo 1Y DN 556
LT o= E=To T = A o] o PPN 558
D0 1= 0 €8P 558

PN W £ 1T o= Lo o S 560
<AUTNENTICATION™ ..eiiiii e 560
Forms Authentication GUIAEIINESinieiiiiiie e e e ens 560

F AW 1o 2= 1 ¥ Lo S 563
[E R 11 g Lo T <= 14 o o PN 563
L0 I W 1 T 1= ¥ o o N 564
YT T oY 0] TS) 7= L (= T PP 565
ST T (0] NS =1 (= >N 565
Securing a SQL Server Session State StOrevvvvviiiiiiiiiiiin e 565
Securing the Out-of-Process State ServiCeoooviiiiiiiiiiiii e 568
VAo TS c= L (= PR 569

B 072 TS TS PR 569

XXX

Improving Web Application Security: Threats and Countermeasures

= o 1T TSI A= 570
Use Unique Encryption Keys with Multiple Applicationsccccveevieiiiiiiiiiieeeeene, 570
St ValidatioN="SHA L ... ittt a 570
Generate Keys Manually FOr Web Farms......c.ce it eas 571

DEIOUEEING ... ettt et e e e e e e a e aaans 571
(070 1] o1 = 1€ Lo R 571

L= T = PP 571
=107 PP OPPRUPRPR 572

EXCEPLION MaANABEMENT . .viieiiiee et e e e e e e e e ea e e e s e e e e ennes 572
CCUSTOMIE IO S > ettt ettt e e e e e et e e e e e e e e e e eaeeennennns 572

=T 0100 1] = 573

LU= o TS 1T V= 573
Disable Web Services if They Are Not Requiredcccoeuviniiiiiiiiiii e 573
Disable UNUSEd ProtOCOIS. ... cui it e e e e e eans 574
Disable the Automatic Generation Of WSDL.......ccuviuuiiiiiiieiiie e e 574

FOrDIAOEN RESOUICES. . cuiii ettt e e e e e e e e e e enen 575
Map Protected Resources to HttpForbiddenHandlercccoeeniiiiiiiiiiiiiiiieieeeens 575

2 T DT =To3 o YN 576
SeCUre the Bin Dir€CIOIY .. cu e i it e e e et e e e e e e ae e e e aeaeanennas 576

T o X = PR 576

FilE A S S ittt ittt et e et e e e a e e e e e e e e e e ea e aaanannas 577

DX O = T o I =T a1 EoT] o g 577

== 1S 1 PR 579

D7 Y= o o] 579
Configuring Data Access for Your ASP.NET Applicationcceevvveviiiiniinnieiniiieneenn, 579

L8] OS] = (T PR 581
Accessing Files 0N UNC SharesS......ucuiiiiiiiiiiiieei et ea et e e e e e e eans 581
Hosting Applications 0N UNC Sharesccuviuiiuiiiiiiiie e e e e 581

COM/DCOM RESOUITES ..evuietieeu et et ete et s et e et st e e e e e s e e e eaa s et e ea e e e e eeaseenseanaennaeas 583

Denial of Service ConSIiderationS.........ccuviuiiiiiiii e e e e 583
SN P RUNTIME S .ottt et et e e e e e e ea e en e eneenenns 583

WeD Farm CoNSIEIatioNScuiuiiiii et e e s e e een e eneanenes 584
YT TS T 0] TS) = L (= T PP 584
Encryption and VerifiCation...........oiiiiiiii e 584
D] Y 584

Snapshot of a Secure ASP.NET Applicationcceiiiiiiiiiiiii e 585

10 0] 4= PR UPRPPPRRN 588

AdAItIONAl RESOUICES ...niiiiiiiiiiieie ittt ettt ettt et e e e s e e s rarararararararererenenen 588

Hosting Multiple Web Applications 589

LT I a1 ES T O 0 =T (] R 589

L0 1YY PP 589

ASP.NET Architecture on Windows 2000cuieieiiiiiiiiiiiieeeeeeeeaeaeararasererereenes 591

Contents Xxxi

ASP.NET Architecture on Windows Server 2003oiuiiiiiiiiiiiin e e eans 592
Configuring ACLS for NEtWOIrK SEIVICEiuiieiiiiiie et 593
Isolating Applications DY IAENTITY .u.euieeiei e e ea e 594
Anonymous Account ImpPersonNationcceeveoieiiiiiiii e 595
Fixed ldentity IMmpersonationcc.vieiiiiiiii e e 597
Isolating Applications with Application POOISccuviiiiiiiiiic e 599
Isolating Applications with Code ACCESS SECUNTY ..cuuiuuiiiiiiiiieeieee e e 600
FOrms AUthentiCatioN [SSUEBScuuie it e e e e e e e e e e eenas 601
UNC Share HOSTING ...cvuieieeiie et ettt e e e e e e e e e e e ee e e e e e aeanas 601
T 100 F= Y 602
Assessing Your Security 603
Code Review 605
LTI 4T E= T 04 =T (] RS 605
(0= = PPN 605
O o T 606
Performing TEXt SEArCHEScvuuiieiiii e e e eaaes 606
Search for Hard-Coded StrNES ..c.uivuiiiiiiiiiiieie e en e e 606
3 PP 607
CroSS-Site SCIIPLING (XSS) e uiuuiiuiiiiite ittt r e e e e e e e e e e e e eaaeans 608
Identify Code That OUtPULS INPULceiinii e e 609
Identify Potentially Dangerous HTML Tags and AttributesS.......ccovveiiiiiiiiiiiiiiciiccieeans 610
Identify Code That Handles URLScuiuiiuiiiii e eee e e e e e e e e e eaas 611
Check That Qutput IS ENCOTEMcnieii e 612
Check for Correct Character ENCOTING......cuuiiuniieiiiiieieeeie e e e e e 612
Check the validateRequest Attributeoe i 612
Check the HttpOnly Cookie OplioNnc.veiiiiiiii e 613
Check the <frame> Security AtrDULEovuiii e 613
Check the Use of the innerText and innerHTML Properties......cccovvviiiiiiiiiiiiiiiennenne, 613
oY g= TN [o]0 Ty g F=1 1 o o P 613
10] I 1Yo 4 T o I PPN 614
2 L0 £ @AY= T a1 (o P 615
Y =T e = =L To [0o o L= TP 616
IS YOUr Class DESIZN SECUIE?iuuiiiiiii ettt ettt e e e e eans 617
(Do I (o U O g=T= | =T I g1 (== o [617
DO YOU USE Serialization?cuiieiiii it e e e e e eaas 618
(Do I (o TW =TI (=Y 1 L= 1 4 1 619
(Do B (oTW I o F= T o | FoT = oY o1 (o] g = 619
DO YOU Use CryptOgraphy?ttt e e e e e e e e e 620
Do I (o TU ST (o] (RS Y= T o] (= £ 621

DO YOU USE DEIEEATES? . en ettt e e e e e e e e eas 622

xxxii Improving Web Application Security: Threats and Countermeasures

(0700 [T AT o ST ST 1= o] U [¢ 1 /2 622
Do You Support Partial-Trust CallerS? ... e e e e e 622
Do You Restrict Access to Public Types and Members?ccovevieeiiiiiiiiieiieeeceeceeene, 623
Do You Use Declarative Security Attributes?.....oeeeiniii e 624
(Do I (o U 0= 1| N1 =T o o PP 624
Do You Use Permission Demands When You Should?c.couveiiiiiiiniiiiiniiicineeee, 625
DO YOU USe LiNK DEM@ANUS? . .uuieniiiiiieieeiee e e e e e s e e e e e ee e e e e s e e nenns 625
Do You Use Potentially Dangerous PermiSSiONS?cuveiieieiiviiiiieneneeeeeeeeeeeeeeeen 627
Do You Compile With the /unsafe OptioN?couiiuiiiiiiiie e e 627

(8 g g = T F= Y=o [0o o [628

ASP.NET Pages and CONIOISuvuiieieiiiiee ettt e e et e et e e s e e e e e e e a e e eennas 630
Do You Disable Detailed Error MESSAZES? ...uivuiiuiiiieieeiiieei e e ee e e e e 630
[DTo T (o U D ET= 1 o] (=T = Yo = 630
Do You Validate Form Field INPUL?ouinii e e e 631
Are You Vulnerable t0 XSS AttaCKS 2 ... i ittt e e e e e e e eaas 632
Do You Validate Query String and Cookie INPUL?c.oeveiiiiiiiiiii e, 632
DO YOU SECUIE VIEW SEate?...iuiiiiiii ittt e e e e eans 633
Are Your Global.asax Event Handlers SECUIE?c.vviiiiiiiiiiiiiiiiiicee e 633
Do You Provide Adequate AUTNOFZAtiON?cvuiuieiiiiii e 634

L2 TS 1T V=P 634
Do You Expose Restricted Operations or Data?cccevviiiiiiiiiiiiiiiieceieeeeaeeeaeens 635
HOW DO YOU AUTNOKIZE CallerS 2. . eu ittt a e eans 635
Do You Constrain Privileged OperationS?.......icuiieiiiiiiiiieiei e e e 635
Do You Use Custom AUthentiCatioN?......c.. i e 635
D0 YOU Validate All INPUL? ...ueeieieii et e e e e e e e e e e e anens 635
Do You Validate SOAP HEAUEIS? ...vuiiiiiiiii it e et e e e e a e e e eans 635

Y=Y e1=To B 00T 0 o oTo] aT=T 0 ¥ 636
Do You Use Assembly Level Metadata?ccouvvviiiiiiiiiiiiiiece e 636
DO You Prevent ANONYMOUS ACCESS? ..vuuiiuiiiuieiiiiaeieee e et ee e e e e e e e e e e eaeeaeeanas 636
Do You Use a Restricted Impersonation LEVEI?........c.veuviiiiiiiiiieiceeeeeeeeeee e, 636
D0 You Use ROIE-BASEUA SECUITY?....uiiiiieeii ittt eas 637
Do You Use Object CoNStruCtor StriNGS? ...cuu e 638
Do You Audit in the MiIddIe Tier c.eueniiiiiii e e e e e e eenes 638

REMIOTING et e e e e e e e e e n e e n e e e e ra 638
Do You Pass Objects as Parameters? ... eae 639
Do You Use Custom Authentication and Principal ObjectS?ccocvviiiiiiiiiiiiiiiiiiiennns 639
How Do You Configure Proxy CredentialS?c.viveiiiiiiiiiiie e 639

(D= = I Voot YT 0o Lo [T PN 640
Do You Prevent SQL INJECTIONT ...cuniiieiii e 640
Do You Use Windows AuthentiCation?cuveuiieiiiiiiiiiieccc et e e e 640
Do You Secure Database Connection STriNGS?......ouuiiiiiiiiiieiiii e 640
How Do You Restrict Unauthorized COde?ivuiiniiiiiiiiii i 641
How Do You Secure Sensitive Data in the Database?cc.cooevviiiiiiiiiiiiii i, 641
Do You Handle ADO .NET EXCEPLIONS? ..cuiuiiiiiiiii ittt e e e e e 641

Do You Close Database CONNECTIONS? ...uiuiuieieieiiiiiieeeei e e e e e e 642

Contents xxxiii

1010 =7 642
PV (o T uTo] qF= T I =20 10| (o] = 642
Deployment Review 643
LT I T 304 =T 0 = 643
L 1Y R 643
Web Server ConfigUrationiie e et e e e e e e e e e e e eaaas 644
Patches and UpAateseuiuieiiiii e e e e et e et e e e e e e e e e eaeanas 645
1= o = 645

g (0 oo 0] 1= 646
Yoo T) = 647
FIles @Nd Dir€CTONES ...vuuiuiiiii i et e e e e e e e e e e e e e e en e e en e eneenenns 648

I T £ 649
0T 649
=T =11 1 PP 651
DAY o T qT=a=T aTo I oY= =] o V= P 651
(| O%eT g T={U 1= 1 4o o [P 652
1S 0 Tod 0o [0V o 652
]IS Yo T o I 652
Sites and Virtual DIir€CLOMES .uuuiiie it e e eeans 653
A I 1 (Y 655
LI Y=Y = o T= 1= 656
SErVEr CertifICatES uiii i 656
= Tod a1 = O o] o= P 657
D1 =10 >R 657

S 10 0T T 1 1T 4> PN 657
(o101 00 011 F= 1 X0 P 657

B 072 TS TS 658
Lo U5 (0] 0 0] g 0] = 658
= 101 =10 o= 0] o PPN 658
D0 1= 0 €8P 660
0= 11 11 410 1= |1 o o D= 660
<MACNINEKEY> . ..ttt e e e eans 661

B 111 1) PPN 661
BT T ToT (0] 1S 7= (< 662

S 1000 F= T 0 | L= = PP 662

S (0 ToT =TT 1Y [0 LY D PPN 663
LT TR Y= Vo] Y PP 663
Y (=T g o G IYS IS =T V] o] N 664
Yo 070 1 1] =S 665

R ETSTr= gL B DT =] (o) g == PPN 665

BN W [[T o= Lo o S 666

FAN W [[2= 1€ Lo o 1S 667

Remote Serviced COMPONENTScuuieiieiiiie e e e e e e e e e eneeans 668

xxxiv Improving Web Application Security: Threats and Countermeasures

(T 001U 17PN 668
POrt CONSIAEIATIONS ..uvuieiiiieii it e e e e e e eans 668
Hosting in ASP.NET with the HttpChannelooiiiiiiiii e 669
Hosting in a Custom Process with the TcpChanneloouveeiiiiiiiii e 670

Database Server CoNfigUrationccuieuiiiii e eas 670
Patches and UpPdates ...uueuie i e e e e e eaas 671
1= Yo7 S PPN 671
g (010 o7 0] 1= T RPN 671
DYoo o 10 | £ PP 672
11T r= T q o I DT =To1 (o = T 673
] = 1= N 673
0 = N 674
=T =1 1 P 674
DAY Lo [T q T == T aTo I oY= = | o V= S 675
SO SEIVEr SECUIMTY 1euitntieiti et ie e e e et et e et e et e e et e e e e e e eaeaeaaeaneaneanennns 675
SQL Server Logins, Users, and ROIES........ccueeuiiiiiiiieeeieee et e e 676
SQL Server Database OJECTS ...uiiuiiiiiiiiei e 677

NETWOIrK CONfIBUIATION L..ieiiie e e e eanas 677
o T (T PP 678
T =217 | R 679
S 111 (o] o N 679

T 100 =T YN 680

Related Security Resources 681

Related Microsoft patterns & practices GUIdANCec.veeiiiiiiiiiii e 681

Security-Related WED SiteS ...uuiiiiiiii i 681
Microsoft Security-Related Web SIteS ...ouuvviuiiiiiiii e 681
Third-Party, Security-Related Web Sitescoiviiiiiiiiiiiii e 682

MiICrOSOft SECUNTY SEIVICES .uivniiiiiiiiiiiii et r e e e e 682

Partners and ServiCe ProVIAEISiuuiiiiiiiiiiei e e 682

ComMMUNITIES @NA NEWSEIOUDS «uuvuiuiiuiiieiiereeeree e es e es s ee e eae e eaeea e e ennens 683
NEWSEIOUD HOME PaZESiuuiiiiiiiiiiiiii i e e e e e e e e e e a e ea e enneans 683

Patches and UpPdates c.u et 683
SBIVICE PACKS ettt ettt 683

Alerts and NOTTICATION ... e e e e 684
Microsoft Security Notification SErviCes ... 684
Third Party Security Notification SErviCes ..o, 684

AdItiONAl RESOUICES ...iuiiiiiiiiii i e e e e e e r e e eareans 684
Checklists and Assessment GUIAEINES ...u.vuiiuiiuiiiiiiiiere e 684
(0701001 00 o o I 0] ¢ 1=T = T PN 685
RETEIENCE HUD .. e e e e e eans 685
Security KNOWIEdEEe IN PraCliCe.....iuiiiiiiiiiiii e e e eaas 685
RV T=T =T o 11 U Lo PPN 685

World Wide Web Security FAQou i e e e e e e e 685

Contents Xxxxv

Index of Checklists 687
L0 Y= YT PPN 687
DeSigNING CheCKIIST... .. i e e e e e e ennas 687
BUIlAING CheCKIISTS ... it e e e e e e e eeaeeaas 687
SECUNNG CNECKIISTS. .. enieee ettt e e e e e e e e e e e 688
ASSESSING CECKIIST .. e et e e e e e e e e e e e e ennas 688

Architecture and Design Review 689
HOW 10 Use This CheCKIiSt ...uiuiiiiiiiiii ittt a e r e e e e e e 689
Deployment and Infrastructure Considerationsccuoveuiiiiiiiiiei e 689
Application Architecture and Design ConsiderationS......c..cveiviiiiiiiiiiiii i eaeeans 690

Lo o LU= o F= 14 o] o PR 690
AUTNENTICATION 11uieii i e e e e e e aan 690
AUTNOTIZATION ettt e e e e e aan 691
Configuration ManagemENT.......icuiiiiii i e e e e e e e e eanas 692
SENSITIVE DAt .. iuiiiieiiii e 692
SeSSION MaANGZEMENT ..uiiiiiiii e e e e eans 692
L0780 100 == T o] 0|V PPN 693
Parameter Manipulation ... e 693
EXCEPioN ManagemENTiu i e e e e e e 693
DAY Lo LA aT=r=T a ol oY= =] o = PPN 694

Securing ASP.NET 695
HOW 10 US€E This CheCKIiSt ..uuiviiiiiiiiieiii et a e e e e e e 695
(DTS = oI Oo] g (=Y [0 [T = 4o 1< RPN 695
Application Categories CoNSIAeratioNSvi i it 696

INPUL Validation.. ... e e e e e a e e aaas 696
AUTNENTICATION 11ttt e e e e e e e e e e e e e e e e anean 696
DAY 014 o) 2= | Ao PPN 697
Configuration ManagemMENT.......ivuii i e e e e e e e eaneaneanas 697
SENSITIVE DAt .. ieiieieiii e 698
SESSION MaANGEEMENT .ouiiiiiiiei e e e e e e e eans 698
Parameter Manipulation ... e 698
e Cet=T o U o oI FoT T T =TT o 1T o | PR 699
DAY Lo [0 aT=ar=T o ol o= =] = PPN 699
Configuration File SetlNGSuiiiiiiiiii e eas 699
Web Farm ConsSiderations ... e e 702
HOoStINg MUItiple APPIICAtIONS c..iuiiiii e e e e eans 703
ACLS @Nd PeIMISSIONS . iuiititiitit et ee e et e e e e e e e e e e e e eaa e e ea e s ea e e aaneaneen 703

Application Bin Dir€CTONY....cu i e e e e e aaans 704

XXXVi

Improving Web Application Security: Threats and Countermeasures

Securing Web Services 705
HOW 10 USE ThisS CheCKIIST ..uuiviieiiiiiieiee ettt e e e e e e e e e eenas 705
DeSigN CONSIAEIAtIONS .uiviieieiie e e e e e e e e e e ea e e ea s e eneenenns 705
Development CONSIAEIratioNSc.ceiieieie e e e e e e e e e e e e e eaees 705

LY o0 LAY =1 1T =1 1 o S 705
AUTNENTICATION eueiiie e e e e e e e e e e eeneaeaeaeneaneen 706
YU 1T = 1 o) o 706
SENSITIVE DaAta .euieiei i 706
Parameter Manipulationcceoiiiiiiiii s 706
EXCEPLION MANABEMENT ...euieiei e e e e e e e e e e enns 707
DAY Lo [T q Y= T aTo B oY= = | o V=S 707
ProxXy CoNSIAeratioNS......uuiii i e 707
Administration CoONSIAErationsveeiiuiiiieie e e e eeans 707

Securing Enterprise Services 709
How to Use This CheCKISTiuiiiiiei e e 709
(DY o] o TS 6 1= o] 4 709

AUTNENTICATION L.ttt e 709
DU 1T = 1o o 709
Configuration ManagemMeENT........ciiuiiiiii e 710
SENSITIVE DAtA .euiiiii i 710
DX To [T aT=R= T aTo I oY= =] o = 710
[D1=T0)[0)Y 00 1=T 01 OFo T g = [0 [T = 4 o 1= 710
LT 0T E=To T 1 = o] o P 711
AdMINistrator ChECKIST .. .uie i e e eans 711

Securing Remoting 713
HOW 10 USE This CheCKIISt ...uiviiiiiiieiee et e et e e e e e e e e eanas 713
DeSIZN CONSIAEIAtIONS ..cvuieieiie ettt et e e e e e e e e eanas 713
LY o0 LAY = 1T =11 o] SN 713
PN W £ 1T o= Lo o N 714
FAN W 1o 2= 1 ¥ o S 714
Configuration ManagemMeENT.........iiu i 714
Y= LT LAY ST D= | = [P PP 715
EXCEPLioN MaANaZEMENT et e e e e e e e e e e e e e eanes 715

AUITING @NA LOZEING ..vneeeeieieiee et ettt e et e e et e e e e e e e e e e e e e e eneeenneens 715

Contents xxxvii

Securing Data Access 717
HOW 10 USE ThisS CheCKIIST ... e e eea e 717
10] I 0 =Yoo o TN 04 o =3 2= 717
F XU =T 0 o= T o TN 717
AUTNOTIZATION .. eeee e 718
Configuration ManagemMeENT.........iiu i e e e 718
L= Y] L XAV | - TS 718
EXCEPLION MaANAZEMENT . cuiieiiiei et e e e e e e e e e en s e e e e en e e ennes 719
[DI=T0) (010 1=T 01 00T g 1= [0 [T = o o 1= 719

Securing Your Network 721
HOow 10 USE This CheCKIISt . .uieniiiiiieiieiee et e e e e e e e e e e eanas 721
(o TN L (=T g 070 g F=] [o =T =Y o] 1= PR 721
Firewall CoNSIAEratioNSiuieiiiiii i e et e et e et e e e et e e e e ea e s eaaaneanns 722
A (o] 00T g F=] o [T = o 1= S 722

Securing Your Web Server 723
HOW 10 USE This CheCKIISt ..uuirniiiiieiieie e et e e e e e e e e e e e eanas 723

PatChes And UpPAates cuuuiniiiiieiiiiiii et ettt e e e e e a e e e e eneeneans 723
1S 0 Tod 0o [0V o 723
ST =Y o = 723
(0] (o Yoo] £ 724
F Yo 070 1 1] = PPN 724
R ETSRr= T g Lo B T =T] (o) g == PPN 725
Y 1= 1= N 725
0 R 725
T 1 U PP 725
DAY Lo [0 aT==T o ol o)== = PP RPUPRPS 726
Sites and Virtual DIr€CIONIES ..uvnitieiiie ettt e e e e e e aeenns 726
RS Tod] oA\ F= T o 011 7= 726
ST A I T =Y 727
SRV [=] =] oY= FT Y PP 727
YRV Q61) 107> (T3PS 727
MaCHINE.CONTIG ..ttt et et e e e e e e e eanas 727
COAE ACCESS SECUITY . vvuteeiet ettt e e e e e e e e e e e e e e eanaeas 727
OTher ChECK POINTS .uuiuieiiii ettt e e et e e e e e e e e e e enenenenns 728

(Lo Y= T I 10 o 1 £ 728

xxxviii Improving Web Application Security: Threats and Countermeasures

Securing Your Database Server 729
HOW 10 USE This CheCKIiST ...t e e 729
Installation Considerations for Production Servers.......cccvviviiiiiiii e eeeeeeeeeeeeaeeaas 729
Patches and UpPdates ...uueeie e e e 729
1= Y7 o7 >R 730
0 (0o 1= 730
Yoo 0 U | 730
=TS = T o T I I 1= o o = 731
S T £ N 731
0T (N 731
=T =15 1 731
DAY To [T T =3=T oo I oY= = | o V= S 732
SO SEIVEr SECUIMTY 1enitntiiiiee et e ettt e e et e et e et e et e e e e e e e eaneaeaneaneaneanaaneen 732
SQL Server Logins, Users, and ROIES.......ccuuiiiiiiiiiiieeiee et e e e e e 732
SQL Server Database OJECTS ...uiuuiiiii i 733
Additional ConSIAerationsSiiuiiiiiiie e e 733
1=) Y= T=T o] U TS 733

Security Review for Managed Code 735
HOW 10 USE This CheCKIISt ...uiiiiiiiiiiieie et et e e e e e e e e e eanas 735
General Code ReVIEW GUIEIINESuiiuiiiiiii it ea e 735
Managed Code ReVIEW GUIAEINESvuiiuiiiiiie it 735

ASSEMDIY-LEVEI CNECKS ..ueviiiiiiiee e e e e e e e et e e et e e e e e eaneas 735
ClasS-LEVEI ChEBCKS ...vniniiiieiieeee ettt ettt e e e e e e e e aeeneneneas 736
L0101 (0T =1=T o] VPP 736
Y= To] (=] ¥ N 737
EXCEPLioN MANaAZEMENTeiee e e e e e e e e e e e eans 737
DBl BT, . et e e e e e e eans 737
Y= (=112 4 o TN 737
B AL CS1= T L1 = PP 738
L= =703 1 o] o [PR 738
UNMaNagEd COUE ACCESS ..euuiiuniiiiiiieie et e et et et et et e et s e s e s e e e e e e e e e eanns 738
Resource AcCCESS CONSIAEIAtIONS ..uuuiuieiiiiiie it et e e e e e e e e e e e eneenennen 739
1T 7 739
Y=Y o L o= PP 739
Y1 L PP 739
ENVIroNMENT Variablesu et a e e 740

Code Access Security CoNSIderationSvvuiiiiiiiieei e 740

Contents

Index 743

Implement Patch Management 745

Yo] 15T o T
T 100 F= T YR
What YOU MUST KNOW ...ttt et e e e e e e e e e e eanenns
The Patch Management PrOCESSvuiuiiiiiiiieeceee e e e e e e e e e e e eanees
The Role of MBSA in Patch Managementcouoviiiiiiiiiiiece e
Backups and Patch Managemento.onieiiiiii e e
2= (0 I (o TU I ==Y~ o
TOOIS YOU WIll NEEA .. et e e e e
L0 0] 1= 01 £
D= (=T o] = OO UP PP
MBSA OULPUL EXPIAINEA ... e e e e e e e e e e e e e e e e eeans
F TS | o= PP
A CGUITINE et ettt ettt e et e et e e et s e e e s e e ea s e s ea e e ea s e e ea s e ea s e en e e en e nnrenns
=251 1= PP
Methods for Testing Security PatChescuuiiviiiiiiiiiic e
Confirming the Installation of @ PatChcooiiiiiiiii e,
Uninstalling @ Security PatCh........oouiiiiii e
(D T=T 0] (0] 1oV = PPN
Using Software Update ServiCes (SUS) .. e e eas
Using Systems Management Server (SMS) ... i e eaas
Y =Y 0 =T o1 = PPN
Performing Security ASSESSMENTSiuuiieiiiiiii et ea e
Using Security Notification SErviCescuuiiiiiiiiiiiii s
Additional ConSIAerationscuuiiiiiii e
AdditiONAl RESOUICES ..uiiiiiiiiie ittt e e e e e e e e r e eanen

Harden the TCP/IP Stack 755

Yo] 15T [0 PPN
S0 0] 4= PP UPR PPN
What YOU IMUST IKNOW ..eniiiiiiiiiiiii it e et ettt e e e e e e e e e e s saraeara e e e rarenenenen
L0701 (=1 0| = PPN
Protect AainSt SYN AtLACKS ...uiuuiiiiieiii ettt e e e eaa s

Enable SYN Attack Prot@CHiONiuieii et e e

Set SYN Protection ThreShOIASeuieiiiiiiii e e eeaas

Set Additional Prot@CTIONS. e eeaas
Protect Against ICMP ATtACKS ... e e
Protect Aainst SNIMP AtLACKS.iuiiieee et e e eaas

xI

Improving Web Application Security: Threats and Countermeasures

AFD.SYS PrOtECTIONS euuiuiiiiie ettt e e e e e e e s e ea e e e n e enenns 760
JaXe [o [1aTo) g b= I ad o) C=To] Ao] o 1= T PR 761
Protect Screened NetWork DetailSvuiiiiiiiiiiiie e 761
Avoid Accepting Fragmented PacKetSc.vvuiiniiiiiiiiei e e e 761
Do Not Forward Packets Destined for Multiple HOStS.......cccviiiiiiiiiiiiccececeee, 762
Only Firewalls Forward Packets Between NetWOrks.......cccovuveiiiiieiiiiiiii e 762
Mask Network TOpOoIOgY DetailS.....ouuiuiieieiiieeee e e e e e 762
1 7= S 763
AdItioN@l RESOUICTES ...iuiiiiiieie it e e e e e e e e eaeenns 763
Secure Your Developer Workstation 765
A o] o] 1= =00 o T 765
T 10 F= T YR 765
2= {0 I (o TU I ==Y = o 765
Steps to Secure Your Developer Workstation.........cccuveuveuiiiiiiiici e 766
Run Using a Least-Privileged ACCOUNTcuiiuiiiiiiiie e ea e 766
Running Privileged COMMAaNAScuuiiuiiiiie e e e e e e e e e eanas 767
MOrE INFOrMATION «.iveie et e e 768

L= Lo g TE=T o LU 1o 0 F=) (= 768
USING WINAOWS UPAAte ...cuieiiiiiii ettt e e e e e e eans 768
USING IMBSA .ottt et e e et e et e e s e e e e e e e e e e a e e e e eanas 768
Using AUTOMALIC UPAAES ..ouuiieiiiiiiieie et aas 769
ST 0 1= 1 I S PPN 770
Install and RUN [ISLOCKAOWNiiuiiiiie ettt e e e e e e e e e e e e eans 770
COoNTIBUIE URLSCAN ..uuiiiiiiiiiii e et e e e e e e ennes 771
Secure SQL Server and MSDE ... 772
Apply Patches for Each Instance of SQL Server and MSDEccooeiviiiiiiiiiinnennen. 773
Analyze SQL Server and MSDE Security Configuration..........ccoeuvveiiiiiiiiiniiiiiiieeeenn, 773
Evaluate Your Configuration CategOriesSuuuu i iiiiiiiie e 774
=) ST =T o (3PN 775
Use IPSec for Filtering Ports and Authentication 777
Yo] 15T [0 PPN 777
10 0] 4= PR UPRPPPRRN 777
100) (=] L= 777
What YOU MUST KNOW ..eiiiiiii e ettt e et e e e e e e e e e aees 778
Identify Your Protocol and Port REQUIrEMENTS ...cvueiveiiiiiiiee e 778
IPSec Does Not Secure All COMMUNICAtIONiuuieiiiiiiieiiiieeeeee e e 778
TSI 1 EoR= T o B =T o 778
Filters, Filter ACtions, @and RUIESc.ouiuiii e e 778
Restricting Web Server CommuniCationcuuiiuiiiiiiiiii e 779
Summary of What YOU JUST Didcuniiniiiei ettt e e 782

Restricting Database Server CommuUNICAtIONuviuvieiiiiiee e 783

Contents xli

Restricting Server-to-Server CommuNICatioNvuuieieii e e e 784
USING IPSEC TOOIS ..euitiiiiii ettt e e e e e e e e e e s e e ea s e e s ene e e e ennen 785
N0 L= T = SO UP PP 785

| Y=o o0 = = TS 785
AdItioN@l RESOUICTES ...vuiiiiiieii it e e e e e e e en e enns 786
Use the Microsoft Baseline Security Analyzer 787
A o] o] 1= =00 o T 787
T 100 F= T YR 787
L0 0] g1 1= 01 £ 788
2727 (0 (I (o TU I ==Y~ 788
What YOU MUSE KNOW ...uieiiiiie ettt e e et e e e e e e e e e ee e e e eaeeanas 789
Scanning for Security Updates and PatChescocuiviiiiiiiii e 789
Using the Graphical INTerfaCeouuiiiieii e 789
Using the Command Lin€ (MDSACII.EXE) evuuiuuiirniieiiiieiieii et e e eas 790
ANAIYZING the OULPUL «.ceeie e e e e e e e e eans 790
Scanning Multiple Systems for Updates and PatChes........ccoovviiiiiiiiiiiiiiiin e 790
SQL Server and MSDE SPECITICS ..uuiuiuiiiiiiiiiiiieieie et e e ene e eneaeenaaens 791
Scanning for Secure ConfigUration..........oveuiiiuiiiii i 791
Performing the SCaN ... e 791
ANGIYZING the SCAN ..vuiiii et e e e e ea e eans 792
Correcting ISSUES FOUNGiiuiiiieii it e e e e ans 792
Additional INfOrMAatioNc..cee i 792
False Positives From Security Update CheCKSc.viuiiiiiuiiiiiiii e eeaas 792
Requirements for Performing REMOte SCaNScvuvviiiiiiiiiiii e 792
PASSWOIA SCANS ...euiiiiiiiiiiiei et e et e e e et e e e e e e e e e eans 793
Differences Between Mbsa.exe and MbSacli.eXecccveuveuiiiiiiiiiiieieeeeeeee e, 793
AdditiONAl RESOUICES ..uiiieiiiiee et et e e et e e e e e e e e e a e e e eaeaees 793
Use lISLockdown.exe 795
Yo] 15T [0 PPN 795
S0 0] 4= PP UPRPPRPRRN 795
What Does HISLOCKAOWN DO?cuiiiiiiiieiii ettt e e e e e e e e e e e eans 795
INSTAlING IISLOCKAOWN ..ceiieee ettt et e e s e e e e e e e e e e eanas 796
RUNNING HSLOCKAOWN ...ttt e e e e e e eans 797
0= = PP 798
UNdOINg [ISLOCKAOWN ChangES. . cuuiuiiiiieie ettt et e e et e e e e e eanas 798
Unattended EXECUTION ..cuuiiii it et e e e e e e e e e r e e en 798

[1 =Y | 799

xlii Improving Web Application Security: Threats and Countermeasures

Use URLScan

Yo] 15T [0 TN
10 10 =7/
L0701 (=] 0 L= S PPN
INSTAIING URLSCAN ..ctiiiiiieeeieee et e e e e e e e e e enns
[0 = = PP
REMOVING URLSCAN .. ceuieiieiiee ettt e e e e e e e e e e e e e e e e e aeas
CoNFIUINNG URLSCAN .. ceuiieieiie ettt et e e e e e s e e e e e e e e eaeeanas
Throttling Request Sizes with URLSCaAN.......c.oiiuiiiiiiiiii e
Debugging VS .NET with URLScan Installed.........cc.ccooveiiiniiiiiiiieiie e,
Masking Content Headers (Banners)cuueeeeeiiieiiiieiee e
1 =
B (=T (=] T N

Create a Custom Encryption Permission

FAY 0 011 o N
R T0 01010 F= YR
27 (0 (I (o TU I ==Y = o PN
LU 1=V o HES T (= o 1
Step 1. Create the EncryptionPermission Class.......cocvveiviiiiiiiiiiiieiieieeeennen,
Step 2. Create the EncryptionPermissionAttribute Classccceevvveieeiennennnnn.
Step 3. Install the Permission Assembly in the GAC........cc.cooviiiiiiiiiiiiienennen,
Step 4. Update the DPAPI Managed Wrapper COdeouveviiiiiinieiniennnennnens
Step 5. Call DPAPI from a Medium Trust Web Applicationcccovveeennannnn.

Use Code Access Security Policy to Constrain an Assembly

Yo] 15T [0 T PN
S0 0] 4= T PP
27 (o (I (o U ==Y = o PPN
SUMMAIY Of S EPS 1ttt e e e e eas
Step 1. Create an Assembly That Performs File 1/Oooviiiiiiiiiiiiiiciceeens
Step 2. Create a Web AppliCationeuieiiiiii e
Step 3. Test File I/0 with No Code Access Security Constraints........cccceveuvennnns
Step 4. Configure Code Access Security Policy to Constrain File 1/0
Step 5. Test File I/0 With Code Access Security Constraintscc.covevveiveienenns

Additional Resources

Forewords

Foreword by Mark Curphey

When the public talks about the Internet, in most cases they are actually talking about
the Web. The reality of the Web today never seizes to amaze me, and the tremendous
potential for what we can do on the Web is awe-inspiring. But, at the same time, one
of the greatest fears for many who want to embrace the Web—the one thing that is
often responsible for holding back the rate of change—is the security of Web
technology. With the constant barrage of high profile news stories about hackers
exposing credit card databases here and finding cunning ways into secret systems
there, it’s hardly surprising that in a recent survey almost all users who chose not to
use Internet banking cited security as the reason. Putting your business online is no
longer optional today, but is an essential part of every business strategy. For this
reason alone, it is crucial that users have the confidence to embrace the new era.

As with any new technology, there is a delay from the time it is introduced to the
market to the time it is really understood by the industry. The breakneck speed at
which Web technologies were adopted has widened that window. The security
industry as a whole has not kept pace with these changes and has not developed

the necessary skills and thought processes to tackle the problem. To fully understand
Web security, you must be a developer, a security person, and a process manager.
While many security professionals can examine and evaluate the security of a
Windows configuration, far fewer have access to the workings of an Internet bank

or an online book store, or can fully understand the level of security that an online
business requires.

Until a few years ago, the platform choices for building secure Web applications
were somewhat limited. Secure Web application development was the exclusive
playground of the highly experienced and highly skilled developer (and they were
more than happy to let you know that). The .NET Framework and ASP.NET in
particular are an exciting and extremely important evolution in the Web technology
world and are of particular interest to the security community. With this flexible
and extensible security model and a wealth of security features, almost anything is
possible in less time and with less effort than on many other platforms. The .NET
Framework and ASP.NET are an excellent choice for building highly secure,
feature-rich Web sites.

xliv Improving Web Application Security: Threats and Countermeasures

With that array of feature choices comes a corresponding array of decisions, and
with each and every decision in the process of designing, developing, deploying,
and maintaining a site can have significant security impact and implications.

Improving Web Applications Security: Threats and Countermeasures provides an excellent
and comprehensive approach to building highly secure and feature-rich applications
using the NET Framework. It accurately sets the context—that security
considerations and issues must be addressed with application design, development,
deployment, and maintenance in view, not during any one of these phases in
isolation. It cleverly walks you through a process, prescribing actions and making
suggestions along the way. By following the guide from start to finish you will learn
how to design a secure application by understanding what’s important to you, who
will attack you, and what they will likely look for, and build countermeasures to
protect yourself. The guide provides frameworks, checklists, and expert tips for
threat modeling, design and architecture reviews, and implantation reviews to help
you avoid common mistakes and be secure from the start. It then delves into the
NET security technology in painstaking detail, leading you through decisions you
will need to make, examining security components and things you should be aware
of, and focusing on issues that you cannot ignore.

This is the most comprehensive and well-written guide to building secure Web
applications that I have seen, and is a must read for anyone building a secure Web
site or considering using ASPNET to provide security for their online business
presence.

Mark Curphey

Mark Curphey has a Masters degree in Information Security and runs the Open Web
Application Security Project. He moderates the sister security mailing list to Bugtraq
called webappsec that specializes in Web application security. He is a former Director
of Information Security for Charles Schwab, consulting manager for Internet Security
Systems, and veteran of more banks and consulting clients than he cares to
remember. He now works for a company called Watchfire. He is also a former

Java UNIX bigot now turned C#, ASPNET fan.

Forewords Xxlv

Foreword by Joel Scambray

I have been privileged to contribute to Improving Web Application Security: Threats
and Countermeasures, and its companion volume, Building Secure ASP.NET Web
Applications. As someone who encounters many such threats and relies on many
of these countermeasures every day at Microsoft’s largest Internet-facing online
properties, I can say that this guide is a necessary component of any Web-facing
business strategy. I'm quite excited to see this knowledge shared widely with
Microsoft’s customers, and I look forward to applying it in my daily work.

There is an increasing amount of information being published about Internet security,
and keeping up with it is a challenge. One of the first questions I ask when a new
work like this gets published is: “Does the quality of the information justify my
time to read it?” In the case of Improving Web Application Security: Threats and
Countermeasures, I can answer an unqualified yes.].D. Meier and team have
assembled a comprehensive reference on Microsoft Web application security, and
put it in a modular framework that makes it readily accessible to Web application
architects, developers, testers, technical managers, operations engineers, and yes,
even security professionals. The bulk of information contained in this work can
be intimidating, but it is well-organized around key milestones in the product
lifecycle—design, development, testing, deployment, and maintenance. It also
adheres to a security principles-based approach, so that each section is consistent
with common security themes.

Perhaps my favorite aspect of this guide is the thorough testing that went into each
page. During several discussions with the guide’s development team, I always came
away impressed with their willingness to actually deploy the technologies discussed
herein to ensure that the theory portrayed aligned with practical reality. They also
freely sought out expertise internal and external to Microsoft to keep the contents
useful and practical.

Some other key features that I found very useful include the concise, well-organized,
and comprehensive threat modeling chapter, the abundant tips and guidelines on
NET Framework security (especially code access security), and the hands-on
checklists for each topic discussed.

Improving Web Application Security: Threats and Countermeasures will get any
organization out ahead of the Internet security curve by showing them how to
bake security into applications, rather than bolting it on as an afterthought. I highly
recommend this guide to those organizations who have developed or deployed
Internet-facing applications and to those organizations who are considering such
an endeavor.

Joel Scambray
Senior Director of Security, MSN
Co-Author, Hacking Exposed Fourth Edition, Windows, and Web Applications

xlvi Improving Web Application Security: Threats and Countermeasures

Foreword by Erik Olson

For many years, application security has been a craft learned by apprenticeship.
Unfortunately, the stakes are high and the lessons hard. Most agree that a better
approach is needed: we must understand threats, use these hard lessons to develop
sound practices, and use solid research practices to provide layers of defense.

Web applications are the portals to many corporate secrets. Whether they sit on

the edge of the lawless Internet frontier or safeguard the corporate payroll, these
applications are a popular target for all sorts of mischief. Web application developers
cannot afford to be uncertain about the risks to their applications or the remedies that
mitigate these risks. The potential for damage and the variety of threats is staggering,
both from within and without. However, while many threats exist, the remedies can
be crystallized into a tractable set of practices and procedures that can mitigate
known threats and help to guard against the next unknown threat.

The .NET Framework and the Common Language Runtime were designed and built
with these threats in mind. They provide a powerful platform for writing secure
applications and a rich set of tools for validating and securing application assets.
Note, however, that even powerful tools must be guided by careful hands.

This guide presents a clear and structured approach to dealing with Web application
security. In it, you will find the building blocks that enable you to build and deploy
secure Web applications using ASP.NET and the .NET Framework.

The guide begins with a vocabulary for understanding the jargon-rich language of
security spoken by programmers and security professionals. It includes a catalog of
threats faced by Web applications and a model for identifying threats relevant to a
given scenario. A formal model is described for identifying, classifying, and
understanding threats so that sound designs and solid business decisions can be
made.

The text provides a set of guidelines and recommended design and programming
practices. These guidelines are the collective wisdom that comes from a deep analysis
of both mistakes that have been made and mistakes that have been successfully
avoided.

The tools of the craft provided by ASPNET and the .NET Framework are introduced,
with detailed guidance on how to use them. Proven patterns and practices for writing
secure code, using data, and building Web applications and services are all
documented.

Sometimes the desired solution is not the easiest path. To make it faster and easier to
end up in the right place, the authors have carefully condensed relevant sample code
from real-world applications into building blocks.

Forewords

Finally, techniques for assessing application security are provided. The guide
contains a set of detailed checklists that can be used as guidelines for new
applications or tools to evaluate existing projects.

Whether you're just starting on your apprenticeship in Web application security
or have already mastered many of the techniques, you'll find this guide to be an
indispensable aid that will help you build more secure Web applications.

Erik Olson
Program Manager, ASPNET Product Team
Microsoft Corp.

xlvii

Introduction

This guide gives you a solid foundation for designing, building, and configuring
secure ASPNET Web applications. Whether you have existing applications or are
building new ones, you can apply the guidance to help you make sure that your
Web applications are hack-resilient.

The information in this guide is based on proven practices for improving your
Web application’s security. The guidance is task-based and presented in parts that
correspond to product life cycles, tasks, and roles.

® Part I, “Introduction to Threats and Countermeasures,” identifies and illustrates
the various threats facing the network, host, and application layers. The process of
threat modeling helps you to identify those threats that can harm your application.
By understanding these threats, you can identify and prioritize effective
countermeasures.

® PartII, “Designing Secure Web Applications,” gives you the guidance you
require to design secure Web applications. Even if you have deployed your
application, we recommend that you examine and evaluate the concepts,
principles, and techniques outlined in this part.

e Part III, “Building Secure Web Applications,” allows you to apply the secure
design practices introduced in Part II to create secure implementations. You will
learn defensive coding techniques that make your code and application resilient
to attack.

e Part IV, “Securing Your Network, Host, and Application,” describes how you
will apply security configuration settings to secure these three interrelated levels.
Instead of applying security randomly, you will learn the rationale behind the
security recommendations.

® Part V, “Assessing Your Security,” provides the tools you require to evaluate the
success of your security efforts. Starting with the application, you'll take an inside-
out approach to evaluating your code and design. You'll follow this with an
outside-in view of the security risks that challenge your network, host and
application.

Why We Wrote This Guide

Traditionally, security has been considered a network issue, where the firewall is the
primary defense (the fortress model) or something that system administrators handle
by locking down the host computers. Application architects and developers have
traditionally treated security as an afterthought or as a feature to be considered as
time permits—usually after performance considerations are addressed.

I Improving Web Application Security: Threats and Countermeasures

The problem with the firewall, or fortress model, is that attacks can pass through
network defenses directly to the application. A typical firewall helps to restrict traffic
to HTTP, but the HTTP traffic can contain commands that exploit application
vulnerabilities. Relying entirely on locking down your hosts is another unsuccessful
approach. While several threats can be effectively countered at the host level,
application attacks represent a serious and increasing security issue.

Another area where security problems occur is deployment. A familiar scenario

is when an application fails when it is deployed in a locked-down production
environment, which forces the administrator to loosen security settings. This often
leads to new security vulnerabilities. In addition, a lack of security policy or
application requirements that are inconsistent with policy can compromise security.
One of the goals of this guide is to help bridge this gap between development and
operations.

Random security is not enough. To make your application hack-resilient, you need

a holistic and systematic approach to securing your network, host, and application.
The responsibility spans phases and roles across the product life cycle. Security is not
a destination; it is a journey. This guide will help you on your way.

What Is a Hack-Resilient Application?

This guide helps you build hack-resilient applications. A hack-resilient application is
one that reduces the likelihood of a successful attack and mitigates the extent of
damage if an attack occurs. A hack-resilient application resides on a secure host
(server) in a secure network and is developed using secure design and development
guidelines.

In 2002, eWeek sponsored its fourth Open Hack challenge, which proved that
hack-resilient applications can be built using .NET technologies on servers running
the Microsoft” Windows" 2000 operating system. The Open Hack team built an
ASPNET Web application using Microsoft Windows 2000 Advanced Server,
Internet Information Services (IIS) 5.0, Microsoft SQL Server™ 2000, and the

NET Framework. It successfully withstood more than 82,500 attempted attacks
and emerged from the competition unscathed.

This guide shares the methodology and experience used to secure Web applications
including the Open Hack application. In addition, the guide includes proven
practices that are used to secure networks and Web servers around the world.
These methodologies and best practices are condensed and offered here as practical
guidance.

Scope of This Guide

Web application security must be addressed across the tiers and at multiple layers.
A weakness in any tier or layer makes your application vulnerable to attack.

Securing the Network, Host, and Application

Introduction i

Figure 1 shows the scope of the guide and the three-layered approach that it uses:
securing the network, securing the host, and securing the application. It also shows
the process called threat modeling, which provides a structure and rationale for the
security process and allows you to evaluate security threats and identify appropriate
countermeasures. If you do not know your threats, how can you secure your system?

Securing the Application

Input validation
Authentication
Authorization
Configuration Management
Sensitive Data

Session Management

Cryptography

Parameter Manipulation
Exception Management

Auditing and Logging

Web Application Database
Server Server Server
T Apps T Apps Database
E, > E, > >
ic ic
Host Host Host
T T
Securing the Securing the Host
N;;mgrrk Eat(;:htes and Accounts Ports
Firewall Szrvé?ceess Files and Directories Registry
Auditi d Loggi
Switch Protocols SIEES P ReR
Threats and Countermeasures
Figure 1

The scope of Improving Web Application Security: Threats and Countermeasures

lii Improving Web Application Security: Threats and Countermeasures

The guide addresses security across the three physical tiers shown in Figure 1.

It covers the Web server, remote application server, and database server. At each tier,
security is addressed at the network layer, host layer, and application layer. Figure 1
also shows the configuration categories that the guide uses to organize the various
security configuration settings that apply to the host and network, and the
application vulnerability categories used to structure application security
considerations.

Technologies in Scope

While much of the information in this guide is technology agnostic, the guide
focuses on Web applications built with the .NET Framework and deployed on the
Windows 2000 Server family of operating systems. The guide also pays special
attention to .NET Framework code access security, particularly in relation to the use
of code access security with ASP.NET. Where appropriate, new features provided by
Windows Server 2003 are highlighted. Table 1 shows the products and technologies
that this guidance is based on.

Table 1 Primary Technologies Addressed by This Guide
Area Product/Technology
Platforms .NET Framework 1.1

Windows 2000 Server family

Windows Server 2003 security features are also highlighted.

Web Server 11S 5.0 (included with Windows 2000 Server)

Application Server Windows 2000 Server with .NET Framework 1.1

Database Server SQL Server 2000

Middleware Technologies ASP.NET, Enterprise Services, XML Web Services, .NET Remoting
Data Access ADO.NET

Who Should Read This Guide

This guide is for anyone concerned with planning, building, deploying, or operating
Web applications. The guide contains essential information for designers, developers,
system administrators, and security analysts.

Designers will learn how to avoid costly security mistakes and how to make
appropriate design choices early in the product development life cycle. Developers
will learn how to implement defensive coding techniques and build secure code.
System administrators will learn how to methodically secure servers and networks,
and security analysts will learn how to perform security assessments.

Introduction Hiii

How to Use This Guide

Each chapter in the guide is modular. The guidance is task-based, and is presented

in parts which correspond to the various stages of the product development life cycle
and to the people and roles involved during the life cycle including architects,
developers, system administrators, and security analysts.

Applying the Guidance to Your Role

Each person, regardless of role, who works on the design, development, deployment,
or maintenance of Web applications and their underlying infrastructure should read
Part I of this guide. Part I, “Introduction to Threats and Countermeasures,” highlights
and explains the primary threats to Web applications at the network, host, and
application layers. It also shows you how to create threat models to help you identify
and prioritize those threats that are most relevant to your particular application.

A solid understanding of threats and associated countermeasures is essential for
anyone who is interested in securing Web applications.

If you are responsible for or are involved in the design of a new or existing Web
application, you should read Part II, “Designing Secure Web Applications.” Part II
helps you identify potential vulnerabilities in your application design.

If you are a developer, you should read Part III, “Building Secure Web Applications.”
The information in this part helps you to develop secure code and components,
including Web pages and controls, Web services, remoting components, and data
access code. As a developer, you should also read Part IV, “Securing Your Network,
Host, and Application” to gain a better understanding of the type of secure
environment that your code is likely to be deployed in. If you understand more about
your target environment, the risk of issues and security vulnerabilities appearing at
deployment time is reduced significantly.

If you are a system administrator, you should read Part IV, “Securing Your Network,
Host, and Application.” The information in this part helps you create a secure
network and server infrastructure—one that is tuned to support .NET Web
applications and Web services.

Anyone who is responsible for reviewing product security should read Part V,
“Assessing Your Security”. This helps you identify vulnerabilities caused by insecure
coding techniques or deployment configurations.

liv Improving Web Application Security: Threats and Countermeasures

Applying the Guidance to Your Product Life Cycle

Different parts of the guide apply to the different phases of the product development
life cycle. The sequence of chapters in the guide mirrors the typical phases of the life
cycle. Figure 2 shows how the parts and chapters correspond to the phases of a classic
product development life cycle.

Architecture and
Design Review

Code Review

Part V, Assessing
Your Security

Deployment
Review

Figure 2

Requirements
Gathering

v

Design

Part Il, Designing Secure
Web Applications

Y

Development

Part lll, Building Secure
Web Applications

Y

Testing

I Threat Modeling and

v

Deployment

Part IV, Securing

v

Your Network, Host

Maintenance

and Application

Improving Web Application Security: Threats and Countermeasures as it relates to product lifecycle

Introduction Iv

Microsoft Solutions Framework

If you use and are more familiar with the Microsoft Solutions Framework (MSEF),
Figure 3 shows a similar life cycle mapping, this time in relation to the MSF Process
Model.

Deployment
Review

Part IV, Securing Your
Network, Host and
Application

Deploying | Envisioning

Part IV, Assessing
Your Security Stabilizing

Threat Modeling
and

Part Il, Designing
Secure Web
Applications

Planning

Developing
Architecture and
Design Review

Code Review
Part lll, Building Secure
Web Applications

Figure 3

Improving Web Application Security: Threats and Countermeasures as it relates to MSF

Organization of This Guide

You can read this guide from end to end, or you can read the chapters you need for
your job. For a quick overview of the guide, refer to the “Fast Track” section.

Solutions at a Glance

The “Solutions at a Glance” section provides a problem index for the guide,
highlighting key areas of concern and where to go for more detail.

Fast Track

The “Fast Track” section in the front of the guide helps you implement the
recommendations and guidance quickly and easily.

Ivi Improving Web Application Security: Threats and Countermeasures

Parts

This guide is divided into five parts:

® Dart I, Introduction to Threats and Countermeasures
Part II, Designing Secure Web Applications

Part III, Building Secure Web Applications

Part IV, Securing Your Network, Host, and Application

Part V, Assessing Your Security

Part |, Introduction to Threats and Countermeasures

This part identifies and illustrates the various threats facing the network, host, and
application layers. By using the threat modeling process, you can identify the threats
that are relevant to your application. This sets the stage for identifying effective
countermeasures. This part includes:

e Chapter 1, “Web Application Security Fundamentals”
® Chapter 2, “Threats and Countermeasures”
e Chapter 3, “Threat Modeling”

Part I, Designing Secure Web Applications

This part provides the guidance you need to design your Web applications securely.
Even if you have an existing application, you should review this section and then
revisit the concepts, principles, and techniques that you used during your application
design. This part includes:

® Chapter 4, “Design Guidelines for Secure Web Applications”
® Chapter 5, “Architecture and Design Review for Security”

Part lil, Building Secure Web Applications

This part helps you to apply the secure design practices and principles covered in
the previous part to create a solid and secure implementation. You'll learn defensive
coding techniques that make your code and application resilient to attack. Chapter 6
presents an overview of the NET Framework security landscape so that you are
aware of the numerous defensive options and tools that are at your disposal. Part III
includes:

Chapter 6, “.NET Security Fundamentals”

Chapter 7, “Building Secure Assemblies”

Chapter 8, “Code Access Security in Practice”

Chapter 9, “Using Code Access Security with ASPNET”

Chapter 10, “Building Secure ASP.NET Pages and Controls”

Chapter 11, “Building Secure Serviced Components”

Introduction Ivii

e Chapter 12, “Building Secure Web Services”
® Chapter 13, “Building Secure Remoted Components”
e Chapter 14, “Building Secure Data Access”

Part IV, Securing Your Network, Host, and Application

This part shows you how to apply security configuration settings to secure the
interrelated network, host, and application levels. Rather than applying security
randomly, you'll learn the reasons for the security recommendations. Part IV
includes:

Chapter 15, “Securing Your Network”

Chapter 16, “Securing Your Web Server”

Chapter 17, “Securing Your Application Server”

Chapter 18, “Securing Your Database Server”

Chapter 19, “Securing Your ASPNET Application and Web Services”
Chapter 20, “Hosting Multiple Web Applications”

Part V, Assessing Your Security

This part provides you with the tools you need to evaluate the success of your
security efforts. It shows you how to evaluate your code and design and also how
to review your deployed application, to identify potential vulnerabilities.

e Chapter 21, “Code Review”
e Chapter 22, “Deployment Review”

Checklists

This section contains printable, task-based checklists, which are quick reference
sheets to help you turn information into action. This section includes the following
checklists:

Checklist: Architecture and Design Review
Checklist: Securing ASP.NET

Checklist: Securing Web Services
Checklist: Securing Enterprise Services
Checklist: Securing Remoting

Checklist: Securing Data Access

Checklist: Securing Your Network
Checklist: Securing Your Web Server
Checklist: Securing Your Database Server

Checklist: Security Review for Managed Code

Iviii Improving Web Application Security: Threats and Countermeasures

“How To” Articles

This section contains “How To” articles, which provide step-by-step procedures for
key tasks. This section includes the following articles:

e How To: Implement Patch Management

How To: Harden the TCP/IP Stack

How To: Secure Your Developer Workstation

How To: Use IPSec for Filtering Ports and Authentication
How To: Use the Microsoft Baseline Security Analyzer
How To: Use IISLockdown.exe

How To: Use URLScan

How To: Create a Custom Encryption Permission

How To: Use Code Access Security Policy to Constrain an Assembly

Approach Used in This Guide

If your goal is a hack-resilient application, how do you get there? The approach used
in this guide is as follows:

® Secure your network, host, and application
® Focus on threats
e Follow a principle-based approach

Secure Your Network, Host, and Application

Security must be addressed at three levels: network, host, and application. A
weakness at any layer can be exploited by an attacker. This guide takes a holistic
approach to application security and applies it at all three levels. The holistic
approach to security is shown in Figure 4.

Introduction lix

Secure the Network

Secure the Host

Secure the Application

Presentation Business Data Access
Logic Logic Logic

Runtime Services and Components

Platform Services and Components

Operating System

Figure 4
A holistic approach to security

Figure 4 shows the multiple layers covered by the guide, including the network,
host, and application. The host layer covers the operating system, platform services
and components, and run-time services and components. Platform services and
components include SQL Server and Enterprise Services. Run-time services and
components include ASPNET and .NET code access security among others.

Focus on Threats

Your application’s security measures can become useless, or even counter productive,
if those measures are applied without knowing the threats that the security measures
are designed to mitigate.

Threats can be external, such as attacker on the Internet, or internal, for example, a
disgruntled employee or administrator. This guide helps you identify threats in two
ways:
® [t enumerates the top threats that affect Web applications at the network, host, and
application levels.
® [t helps you to identify which threats are relevant to your application through
a process called threat modeling.

Ix Improving Web Application Security: Threats and Countermeasures

Follow a Principle-Based Approach

Recommendations used throughout this guide are based on security principles that
have proven themselves over time. The analysis and consideration of threats prior
to product implementation or deployment lends itself to a principle-based approach
where core principles can be applied, regardless of implementation technology or
application scenario.

Positioning of This Guide

This is Volume II in a series dedicated to helping customers plan, build, deploy, and
operate secure Web applications: Volume I, Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication, and Volume II, Improving Web
Application Security: Threats and Countermeasures.

Volume |, Building Secure ASP.NET Applications

Building Secure ASP.NET Applications helps you to build a robust authentication and
authorization mechanism for your application. It focuses on identity management
through the tiers of a distributed Web application. By developing a solid
authentication and authorization strategy early in the design, you can eliminate a
high percentage of application security issues. The primary audience for Volume I
is architects and lead developers.

Figure 5 shows the scope of Volume I. The guide addresses authentication,
authorization, and secure communication across the tiers of a distributed Web
application. The technologies that are covered are the same as the current guide and
include Windows 2000 Server, IIS, ASP.NET Web applications and Web services,
Enterprise Services, NET Remoting, SQL Server, and ADO.NET.

b

Introduction Ixi

Database
Server

Clients

A
_5 Web Server /
3 s
c
3
1S
£ ASP.NET
(@]
()
5 A
[S]
[
»
e
g v \ v
s s s
§ ASP.NET Enterprise ASP.NET
5 Services
= Web (COM+) .NET
3 . .
< Services Remoting
o
S A A A
[
Q
s |/
5
<

SQL Server

Figure 5

Scope of Volume I, Building Secure ASP.NET Applications

Volume Il, Improving Web Application Security

This guide helps you build and maintain hack-resilient applications. It takes a
broader look at security across the tiers, focusing on threats and countermeasures at
the network, host, and application levels. The intended audience is broader and the
guidance can be applied throughout the product life cycle.

For additional related work, see the “Resources” chapter provided at the end of the

guide.

Ixii Improving Web Application Security: Threats and Countermeasures

Feedback and Support

We have made every effort to ensure the accuracy of this guide and its companion
content.

Feedback on the Guide

If you have comments on this guide, send e-mail to secguide@microsoft.com. We are
particularly interested in feedback regarding the following:

® Technical issues specific to recommendations
® Usefulness and usability issues
e Writing and editing issues

Technical Support

Technical support for the Microsoft products and technologies referenced in

this guide is provided by Microsoft Product Support Services (PSS). For product
support information, please visit the Microsoft Product Support Web site at
http://support.microsoft.com.

Community and Newsgroup Support
MSDN Newsgroups: http://msdn.microsoft.com/newsgroups/default.asp

Table 2 Newsgroups

Newsgroup Address

.NET Framework Security microsoft.public.dotnet.security

ASP.NET Security microsoft.public.dotnet.framework.aspnet.security
Enterprise Services microsoft.public.dotnet.framework_component_services
Web Services microsoft.public.dotnet.framework.aspnet.webservices
Remoting microsoft.public.dotnet.framework.remoting

ADO.NET microsoft.public.dotnet.framework.adonet

SQL Server Security microsoft.public.sqglserver.security

MBSA microsoft.public.security.baseline_analyzer

Virus microsoft.public.security.virus

IIS Security microsoft.public.inetserver.iis.security

http://support.microsoft.com/
http://msdn.microsoft.com/newsgroups/default.asp

Introduction Ixiii

The Team Who Brought You This Guide

This guide was produced by the following .NET development specialists:

J.D. Meier, Microsoft, Program Manager, Prescriptive Architecture
Guidance (PAG)

Alex Mackman, Content Master Ltd, Founding member and Principal
Technologist

Srinath Vasireddy, Microsoft, Developer Support Engineer, PSS
Michael Dunner, Microsoft, Developer Support Engineer, PSS
Ray Escamilla, Microsoft, Developer Support Engineer, PSS
Anandha Murukan, Satyam Computer Services

Contributors and Reviewers

Many thanks to the following contributors and reviewers:

Thanks to external reviewers: Mark Curphey, Open Web Application Security
Project and Watchfire; Andy Eunson (extensive review); Anil John (code access
security and hosting scenarios); Paul Hudson and Stuart Bonell, Attenda Ltd.
(extensive review of the Securing series); Scott Stanfield and James Walters,
Vertigo Software; Lloyd Andrew Hubbard; Matthew Levine; Lakshmi Narasimhan
Vyasarajan, Satyam Computer Services; Nick Smith, Senior Security Architect,
American Airlines (extensive review of the Securing series); Ron Nelson; Senthil
Rajan Alaguvel, Infosys Technologies Limited; Roger Abell, Engineering Technical
Services, Arizona State University; and Doug Thews.

Microsoft Product Group: Michael Howard (Threat Modeling, Code Review, and
Deployment Review); Matt Lyons (demystifying code access security); Caesar
Samsi; Erik Olson (extensive validation and recommendations on ASP.NET);
Andres De Vivanco (securing SQL Server); Riyaz Pishori (Enterprise Services);
Alan Shi; Carlos Garcia Jurado Suarez; Raja Krishnaswamy, CLR Development
Lead; Christopher Brown; Dennis Angeline; Ivan Medvedev (code access security);
Jeffrey Cooperstein (Threat Modeling); Frank Swiderski; Manish Prabhu (.NET
Remoting); Michael Edwards, MSDE; Pranish Kumar, (VC++ PM); Richard
Waymire (SQL Security); Sebastian Lange; Greg Singleton; Thomas Deml (IIS Lead
PM); Wade Hilmo (IIS); Steven Pratschner; Willis Johnson (SQL Server); and Girish
Chander (SQL Server).

Ixiv Improving Web Application Security: Threats and Countermeasures

® Microsoft Consulting Services and Product Support Services (PSS): Ilia Fortunov
(Senior Architect) for providing continuous and diligent feedback; Aaron Margosis
(extensive review, script injection, and SQL Injection); Jacquelyn Schmidt; Kenny
Jones; Wade Mascia (Web Services and Enterprise services); Aaron Barth; Jackie
Richards; Aaron Turner; Andy Erlandson (Director of PSS Security); Jayaprakasam
Siddian Thirunavukkarasu (SQL Server security); Jeremy Bostron; Jerry Bryant;
Mike Leuzinger; Robert Hensing (reviewing the Securing series); Gene Ferioli;
David Lawler; Jon Wall (threat modeling); Martin Born; Michael Thomassy;
Michael Royster; Phil McMillan; and Steven Ramirez.

® Thanks to Joel Scambray; Rich Benack; Alisson Sol; Tavi Siochi (IT Audit); Don
Willits (raising the quality bar); Jay Nanduri (Microsoft.com) for reviewing and
sharing real world experience; Devendra Tiwari and Peter Dampier, for extensive
review and sharing best IT practices; Denny Dayton; Carlos Lyons; Eric Rachner;
Justin Clarke; Shawn Welch (IT Audit); Rick DeJarnette; Kent Sharkey (Hosting
scenarios); Andy Oakley; Vijay Rajagopalan (Dev Lead MS Operations); Gordon
Ritchie, Content Master Ltd; Chase Carpenter (Threat Modeling); Matt Powell
(for Web Services security); Joel Yoker; Juhan Lee [MSN Operations]; Lori Woehler;
Mike Sherrill; Mike Kass; Nilesh Bhide; Rebecca Hulse; Rob Oikawa (Architect);
Scott Greene; Shawn Nandji; Steve Riley; Mark Mortimore; Matt Priestley; and
David Ross.

® Thanks to our editors: Sharon Smith; Kathleen Hartman (S&T OnSite); Tina
Burden (Entirenet); Cindy Riskin (S&T OnSite); and Pat Collins (Entirenet) for
helping to ensure a quality experience for the reader.

® Finally, thanks to Naveen Yajaman; Philip Teale; Scott Densmore; Ron Jacobs;
Jason Hogg; Per Vonge Nielsen; Andrew Mason; Edward Jezierski; Michael Kropp;
Sandy Khaund; Shaun Hayes; Mohammad Al-Sabt; Edward Lafferty; Ken
Perilman; and Sanjeev Garg (Satyam Computer Services).

Tell Us About Your Success

If this guide helps you, we would like to know. Tell us by writing a short summary
of the problems you faced and how this guide helped you out. Submit your
summary to:

MyStory@Microsoft.com.

Summary

In this introduction, you were shown the structure of the guide and the basic
approach used by the guide to secure Web applications. You were also shown how

to apply the guidance to your role or to specific phases of your product development
life cycle.

Solutions at a Glance

This document roadmap summarizes the solutions presented in Improving Web
Application Security: Threats and Countermeasures. It provides links to the appropriate
material in the guide so that you can easily locate the information you need and find
solutions to specific problems.

Architecture and Design Solutions

For architects, the guide provides the following solutions to help you design secure
Web applications:

® How to identify and evaluate threats

Use threat modeling to systematically identify threats rather than applying
security in a haphazard manner. Next, rate the threats based on the risk of an
attack or occurrence of a security compromise and the potential damage that could
result. This allows you to tackle threats in the appropriate order.

For more information about creating a threat model and evaluating threat risks,
see Chapter 3, “Threat Modeling.”

® How to create secure designs

Use tried and tested design principles. Focus on the critical areas where the correct
approach is essential and where mistakes are often made. This guide refers to
these as application vulnerability categories. They include input validation,
authentication, authorization, configuration management, sensitive data
protection, session management, cryptography, parameter manipulation,
exception management, and auditing and logging considerations. Pay serious
attention to deployment issues including topologies, network infrastructure,
security policies, and procedures.

For more information, see Chapter 4, “Design Guidelines for Secure Web
Applications.”

® How to perform an architecture and design review

Review your application’s design in relation to the target deployment
environment and associated security policies. Consider the restrictions imposed
by the underlying infrastructure layer security, including perimeter networks,
firewalls, remote application servers, and so on. Use application vulnerability
categories to help partition your application, and analyze the approach taken for
each area.

For more information, see Chapter 5, “Architecture and Design Review for
Security.”

Ixvi Improving Web Application Security: Threats and Countermeasures

Development Solutions

For developers, this guide provides the following solutions:
® What is .NET Framework security?

The .NET Framework provides user and code security models that allow you to
restrict what users can do and what code can do. To program role-based security
and code access security, use types from the System.Security namespace. The
NET Framework also provides the System.Security.Cryptography namespace,
which exposes symmetric and asymmetric encryption and decryption, hashing,
random number generation, support for digital signatures, and more.

To understand the .NET Framework security landscape, see Chapter 6, “.NET
Security Overview.”

® How to write secure managed code

Use strong names to digitally sign your assemblies and to make them
tamperproof. At the same time you need to be aware of strong name issues when
you use strong name assemblies with ASP.NET. Reduce your assembly attack
profile by adhering to solid object oriented design principles, and then use code
access security to further restrict which code can call your code. Use structured
exception handling to prevent sensitive information from propagating beyond
your current trust boundary and to develop more robust code. Avoid
canonicalization issues, particularly with input file names and URLs.

For information about how to improve the security of your managed code, see
Chapter 7, “Building Secure Assemblies.” For more information about how to
use code access security effectively to further improve security, see Chapter 8,
“Code Access Security in Practice.” For information about performing managed
code reviews, see Chapter 21, “Code Review.”

® How to handle exceptions securely

Do not reveal internal system or application details, such as stack traces,
SQL statement fragments, and so on. Ensure that this type of information is not
allowed to propagate to the end user or beyond your current trust boundary.

Fail securely in the event of an exception, and make sure your application denies
access and is not left in an insecure state. Do not log sensitive or private data such
as passwords, which could be compromised. When you log or report exceptions,
if user input is included in exception messages, validate it or sanitize it. For
example, if you return an HTML error message, you should encode the output

to avoid script injection.

For more information, see the “Exception Management” sections in Chapter 7,
“Building Secure Assemblies,” and in Chapter 10, “Building Secure ASPNET
Pages and Controls.”

Solutions at a Glance Ixvii

e How to perform security reviews of managed code

Use analysis tools such as FxCop to analyze binary assemblies and to ensure
that they conform to the NET Framework design guidelines. Fix any security
vulnerabilities identified by your analysis tools. Use a text search facility to scan
your source code base for hard-coded secrets such as passwords. Then, review
specific elements of your application including Web pages and controls, data
access code, Web services, serviced components, and so on. Pay particular
attention to SQL injection and cross-site scripting vulnerabilities.

Also review the use of sensitive code access security techniques such as link
demands and asserts. For more information, see Chapter 21, “Code Review.”

® How to secure a developer workstation

You can apply a methodology when securing your workstation. Secure your
accounts, protocols, ports, services, shares, files and directories, and registry.
Most importantly, keep your workstation current with the latest patches and
updates. If you run Internet Information Services (IIS) on Microsoft Windows" XP
or Windows 2000, then run IISLockdown. IISLockdown applies secures IIS
configurations and installs the URLScan Internet Security Application
Programming Interface (ISAPI) filter, which detects and rejects potentially
malicious HTTP requests. You may need to modify the default URLScan
configuration, for example, so you can debug Web applications during
development and testing.

For more information, see “How To: Secure Your Developer Workstation,” in the
“How To” section of this guide.

® How to use code access security with ASP.NET

With.NET Framework version 1.1, you can set ASPNET trust levels either in
Machine.config or Web.config. These trust levels use code access security to
restrict the resources that ASP.NET applications can access, such as the file system,
registry, network, databases, and so on. In addition, they provide application
isolation.

For more information about using code access security from ASP.NET, developing
partial trust Web applications, and sandboxing privileged code, see Chapter 9,
“Using Code Access Security with ASPNET.”

For more information about code access security fundamentals, see Chapter 8,
“Code Access Security in Practice.”

For more information about the code access security issues that you need to
consider when developing managed code, see the “Code Access Security
Considerations” sections in Chapter 11, “Building Secure Serviced Components,”
Chapter 12, “Building Secure Web Services,” “Building Secure Remoted
Components,” and Chapter 14, “Building Secure Data Access.”

Ixviii Improving Web Application Security: Threats and Countermeasures

® How to write least privileged code

You can restrict what code can do regardless of the account used to run the code.
You can use code access security to constrain the resources and operations that
your code is allowed to access, either by configuring policy or how you write your
code. If your code does not need to access a resource or perform a sensitive
operation such as calling unmanaged code, you can use declarative security
attributes to ensure that your code cannot be granted this permission by an
administrator.

For more information, see Chapter 8, “Code Access Security in Practice.”
® How to constrain file I/O

You can use code access security to constrain an assembly’s ability to access areas
of the file system and perform file I/O. For example, you can constrain a Web
application so that it can only perform file I/O beneath its virtual directory
hierarchy. You can also constrain file I/O to specific directories. You can do this
programmatically or by configuring code access security policy.

For more information, see “File I/O” in Chapter 8, “Code Access Security in
Practice” and “Medium Trust” in Chapter 9, “Using Code Access Security with
ASPNET.” For more information about configuring code access security policy,
see “How To: Use Code Access Security Policy to Constrain an Assembly” in the
“How To” section of this guide.

® How to prevent SQL injection

Use parameterized stored procedures for data access. The use of parameters
ensures that input values are checked for type and length. Parameters are also
treated as safe literal values and not executable code within the database. If you
cannot use stored procedures, use SQL statements with parameters. Do not build
SQL statements by concatenating input values with SQL commands. Also, ensure
that your application uses a least privileged database login to constrain its
capabilities in the database.

For more information about SQL injection and for further countermeasures, see
“SQL Injection” in Chapter 14, “Building Secure Data Access.”

® How to prevent cross-site scripting

Validate input for type, length, format, and range, and encode output. Encode
output if it includes input, including Web input. For example, encode form fields,
query string parameters, cookies and so on, and encode input read from a
database (especially a shared database) where you cannot assume the data is safe.
For free format input fields that you need to return to the client as HTML, encode
the output and then selectively remove the encoding on permitted elements such
as the or <i> tags for formatting.

For more information, see “Cross-Site Scripting” in Chapter 10, “Building
ASP.NET Pages and Controls.”

Solutions at a Glance Ixix

e How to manage secrets
Look for alternate approaches to avoid storing secrets in the first place. If you
must store them, do not store them in clear text in source code or in configuration
files. Encrypt secrets with the Data Protection Application Programming Interface
(DPAPI) to avoid key management issues.

For more information, see “Sensitive Data” in Chapter 10, “Building Secure
ASP.NET Pages and Controls,” “Cryptography” in Chapter 7, “Building Secure
Assemblies,” and “Aspnet_setreg.exe and Process, Session, and Identity” in
Chapter 19, “ Securing Your ASP.NET Application and Web Services.”

e How to call unmanaged code securely
Pay particular attention to the parameters passed to and from unmanaged APIs,
and guard against potential buffer overflows. Validate the lengths of input and
output string parameters, check array bounds, and be particularly careful with file
path lengths. Use custom permission demands to protect access to unmanaged
resources before asserting the unmanaged code permission. Use caution if you use
SuppressUnmanagedCodeSecurityAttribute to improve performance.

For more information, see the “Unmanaged Code” sections in Chapter 7,
“Building Secure Assemblies,” and Chapter 8, “Code Access Security in Practice.”

® How to perform secure input validation
Constrain, reject, and sanitize your input because it is much easier to validate data
for known valid types, patterns, and ranges than it is to validate data by looking
for known bad characters. Validate data for type, length, format, and range. For
string input, use regular expressions. To perform type checks, use the NET
Framework type system. On occasion, you may need to sanitize input. An
example is encoding data to make it safe.

For input validation design strategies, see “Input Validation” in Chapter 4,
“Design Guidelines for Secure Web Applications.” For implementation details,
see the “Input Validation” sections in Chapter 10, “Building Secure ASPNET
Pages and Controls,” Chapter 12, “Building Secure Web Services,” Chapter 13,
“Building Secure Remoted Components,” and Chapter 14, “Building Secure
Data Access.”

® How to secure Forms authentication
Partition your Web site to separate publicly accessible pages available to
anonymous users and restricted pages which require authenticated access.
Use Secure Sockets Layer (SSL) to protect the forms authentication credentials
and the forms authentication cookie. Limit session lifetime and ensure that the
authentication cookie is passed over HTTPS only. Encrypt the authentication
cookie, do not persist it on the client computer, and do not use it for
personalization purposes; use a separate cookie for personalization.

For more information, see the “Authentication” sections in Chapter 19, “Securing

Your ASP.NET Application and Web Services,” and Chapter 10, “Building Secure
ASP.NET Pages and Controls.”

Ixx Improving Web Application Security: Threats and Countermeasures

Administration Solutions

For administrators, this guide provides the following solutions:
e How to implement patch management

Use the Microsoft Baseline Security Analyzer (MBSA) to detect the patches and
updates that may be missing from your current installation. Run this on a regular
basis, and keep your servers current with the latest patches and updates. Back
up servers prior to applying patches, and test patches on test servers prior to
installing them on a production server. Also, use the security notification services
provided by Microsoft, and subscribe to receive security bulletins via e-mail.

For more information, see “How To: Implement Patch Management” in the
“How To” section of this guide.

o How to make the settings in Machine.config and Web.config more secure

Do not store passwords or sensitive data in plaintext. For example, use the
Aspnet_setreg.exe utility to encrypt the values for <processModel>, <identity>,
and <sessionState>. Do not reveal exception details to the client. For example do
not use mode="Off"” for <customErrors> in ASPNET because it causes detailed
error pages that contain system-level information to be returned to the client.
Restrict who has access to configuration files and settings. Lock configuration
settings if necessary, using the <location> tag and the allowOverride element.

For more information on improving the security of Machine.config and
Web.config for your scenario, see Chapter 19, “Securing Your ASP.NET
Application and Web Services.” For more information on the <location> tag,
see “Machine.Config and Web.Config” explained in Chapter 19, “Securing
Your ASP.NET Application and Web Services.” For more information on
Aspnet_setreg.exe, see “Aspnet_setreg.exe and Process, Session, and Identity”
in Chapter 19, “Securing Your ASP.NET Application and Web Services.”

® How to secure a Web server running the .NET Framework

Apply a methodology to systematically configure the security of your Web server.
Secure your accounts, protocols, ports, services, shares, files and directories, and
registry. You can use IISLockdown to help automate some of the security
configuration. Use a hardened Machine.config configuration to apply stringent
security to all NET Framework applications installed on the server. Most
importantly, keep your server current with the latest patches and updates.

For more information, see Chapter 16, “Securing Your Web Server.”

Solutions at a Glance Ixxi

® How to secure a database server

Apply a common methodology to evaluate accounts, protocols, ports, services,
shares, files and directories, and the registry. Also evaluate SQL Server™ security
settings such as the authentication mode and auditing configuration. Evaluate
your authorization approach and use of SQL Server logins, users, and roles. Make
sure you have the latest service pack and regular monitor for operating system
and SQL Server patches and updates.

For more information, see Chapter 18, “Securing Your Database Server.”
® How to secure an application server

Evaluate accounts, protocols, ports, services, shares, files and directories, and the
registry. Use Internet Protocol Security (IPSec) or SSL to secure the communication
channel between the Web server and the application server, and between the
application server and the database server. Review the security of your Enterprise
Services applications, Web services, and remoting applications. Restrict the range
of ports with which clients can connect to the application server, and consider
using IPSec restrictions to limit the range of clients.

For more information, see Chapter 17, “Securing Your Application Server.”
o How to host multiple ASP.NET applications securely

Use separate identities to allow you to configure access control lists (ACLs)

on secure resources to control which applications have access to them. On the
Microsoft Windows Server 2003 operating system, use separate process identities
with IIS 6 application pools. On Windows 2000 Server, use multiple anonymous
Internet user accounts and enable impersonation. With the NET Framework
version 1.1 on both platforms, you can use partial trust levels and use code access
security to provide further application isolation. For example, you can use these
methods to prevent applications from accessing each other’s virtual directories
and critical system resources.

For more information, see Chapter 20, “Hosting Multiple ASPNET Applications.”
® How to secure Web services

In cross-platform scenarios and where you do not control both endpoints, use the
Web Services Enhancements 1.0 for Microsoft NET (WSE) to implement message
level security solutions that conform to the emerging WS-Security standard. Pass
authentication tokens in Simple Object Access Protocol (SOAP) headers. Use XML
encryption to ensure that sensitive data remains private. Use digital signatures for
message integrity. Within the enterprise where you control both endpoints, you
can use the authentication, authorization, and secure communication features
provided by the operating system and IIS.

For more information, see Chapter 17, “Securing Your Application Server,”
Chapter 19, “Securing Your ASPNET Application and Web Services.” For
information about developing secure Web services, see Chapter 12, “Building
Secure Web Services.”

Ixxii Improving Web Application Security: Threats and Countermeasures

® How to secure Enterprise Services

Configure server applications to run using least privileged accounts. Enable
COM+ role-based security, and enforce component-level access checks. At the
minimum, use call-level authentication to prevent anonymous access. To secure
the traffic passed to remote serviced components, use IPSec encrypted channels or
use remote procedure call (RPC) encryption. Restrict the range of ports that
Distributed COM (DCOM) dynamically allocates or use static endpoint mapping
to limit the port range to specific ports. Regularly monitor for Quick Fix Engineer
(QFE) updates to the COM+ runtime.

For more information, see Chapter 17, “Securing Your Application Server.”
® How to secure Microsoft NET Remoting

Disable remoting on Internet-facing Web servers by mapping .rem and

.soap extensions to the ASPNET HttpForbiddenHandler HTTP module in
Machine.config. Host in ASPNET and use the HttpChannel type name to benefit
from ASP.NET and IIS authentication and authorization services. If you need to
use the TcpChannel type name, host your remote components in a Windows
service and use IPSec to restrict which clients can connect to your server. Use this
approach only in a trusted server situation, where the remoting client (for example
a Web application) authenticates and authorizes the original callers.

For more information, see Chapter 17, “Securing Your Application Server.”
® How to secure session state

You need to protect session state while in transit across the network and while in
the state store. If you use a remote state store, secure the communication channel
to the state store using SSL or IPSec. Also encrypt the connection string in
Machine.config. If you use a SQL Server state store, use Windows authentication
when you connect to the state store, and limit the application login in the
database. If you use the ASP.NET state service, use a least privileged account to
run the service, and consider changing the default port that the service listens to.
If you do not need the state service, disable it.

For more information, see “Session State” in Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

e How to manage application configuration securely

Remote administration should be limited or avoided. Strong authentication
should be required for administrative interfaces. Restrict access to configuration
stores through ACLs and permissions. Make sure you have the granularity of
authorization required to support separation of duties.

For general considerations for secure configuration management, see Chapter 4,
“Design Guidelines for Secure Web Applications.” To verify the secure defaults

and ensure that you apply secure machine-wide settings and secure application
specific settings, see Chapter 19, “Securing Your ASPNET Application and Web
Services.”

Solutions at a Glance Ixxiii

® How to secure against denial of service attacks

Make sure the TCP/IP stack configuration on your server is hardened to protect
against attacks such as SYN floods. Configure ASP.NET to limit the size of
accepted POST requests and to place limits on request execution times.

For more information about hardening TCP/IP, see “How To: Harden the TCP/IP
Stack” in the “How To” section of this guide. For more information about

ASP.NET settings used to help prevent denial of service, see Chapter 19, “Securing
Your ASP.NET Application and Web Services.”

® How to constrain file I/O

You can configure code access security policy to ensure that individual assemblies
or entire Web applications are limited in their ability to access the file system. For
example, by configuring a Web application to run at the Medium trust level, you
prevent the application from being able to access files outside of its virtual
directory hierarchy.

Also, by granting a restricted file I/O permission to a particular assembly you can
control precisely which files it is able to access and how it should be able to access
them.

For more information, see Chapter 9, “Using Code Access Security with ASPNET”
and “How To: Use Code Access Security Policy to Constrain an Assembly” in the
“How To” section of this guide.

e How to perform remote administration

Terminal Services provides a proprietary protocol (RDP.) This supports
authentication and can provide encryption. If you need a file transfer facility,

you can install the File Copy utility from the Windows 2000 Server resource kit.
The use of IIS Web administration is not recommended and this option is removed
if you run IISLockdown. You should consider providing an encrypted channel of
communication and using IPSec to limit the computers that can be used to
remotely administer your server. You should also limit the number of
administration accounts.

For more information, see the “Remote Administration” sections in Chapter 16,
“Securing Your Web Server” and Chapter 18, “Securing Your Database Server.”

Fast Track— How To Implement
the Guidance

Goal and Scope

This guide helps you to design, build, and configure hack-resilient Web applications.
These applications reduce the likelihood of successful attacks and mitigate the extent
of damage should an attack occur. Figure 1 shows the scope of the guide and its

three-layered approach: securing the network, securing the host, and securing the
application.

Securing the Application
Input validation
Authentication
Authorization

Configuration Management
Sensitive Data

Session Management
Cryptography
Parameter Manipulation
Exception Management
Auditing and Logging

The scope of the guide

Web Application Database
Server Server Server
ic i
Host Host Host
. - n [
Securing the Securing the Host
NReJV\tlgrrk LIjat(;:htes and Accounts Ports
FireL\JNaII Sgrvai\ceess Files and Directories Registry
Auditing and Loggin
Switch Protocols SIETES teting e
Threats and Countermeasures
Figure 1

Ixxvi Improving Web Application Security: Threats and Countermeasures

The guide addresses security across the three physical tiers shown in Figure 1.

It covers the Web server, remote application server, and database server. At each tier,
security is addressed at the network layer, host layer, and application layer. Figure 1
also shows the configuration categories that the guide uses to organize the various
security configuration settings that apply to the host and network, and the
application vulnerability categories, which are used to structure application security
considerations.

The Holistic Approach

Web application security must be addressed across application tiers and at multiple
layers. An attacker can exploit weaknesses at any layer. For this reason, the guide
takes a holistic approach to application security and applies it at all three layers.
This holistic approach to security is shown in Figure 2.

Secure the Network

Secure the Host

Secure the Application

Presentation Business Data Access
Logic Logic Logic

Runtime Services and Components

Platform Services and Components

Operating System

Figure 2
A holistic approach to security

Fast Track — How To Implement the Guidance Ixxvii

Figure 2 shows the multiple layers covered by the guide, including the network,
host, and application. The host layer covers the operating system, platform services
and components, and run-time services and components. Platform services and
components include Microsoft” SQL Server™ 2000 and Enterprise Services. Run-time
services and components include ASPNET and .NET code access security among
others.

Securing Your Network

The three core elements of a secure network are the router, firewall, and switch. The
guide covers all three elements. Table 1 provides a brief description of each element.

Table 1 Network Security Elements
Element Description

Router Routers are your outermost network ring. They direct packets to the ports and
protocols that you have prepared your applications to work with. Insecure TCP/IP
protocols are blocked at this ring.

Firewall The firewall blocks those protocols and ports that the application does not use.
Additionally, firewalls enforce secure network traffic by providing application-
specific filtering to block malicious communications.

Switch Switches are used to separate network segments. They are frequently overlooked
or over trusted.

Securing Your Host

The host includes the operating system and .NET Framework, together with
associated services and components. Whether the host is a Web server running IIS,
an application server running Enterprise Services, or a database server running SQL
Server, the guide adheres to a general security methodology that is common across
the various server roles and types.

The guide organizes the precautions you must take and the settings you must
configure into categories. By using these configuration categories, you can
systematically walk through the securing process from top to bottom or pick
a particular category and complete specific steps.

Ixxviii Improving Web Application Security: Threats and Countermeasures

Figure 3 shows the configuration categories used throughout Part IV of this guide,
“Securing Your Network, Host, and Application.”

c Auditing and
5 Shares Logging
& g
. Files and =
) «
B Services Directories 2
o)
g 2
(@) Accounts Registry ©
3
i=
ic)
©
- o
S
3 Protocols Ports
Z
I
Figure 3

Host security categories

Securing Your Application

The guide defines a set of application vulnerability categories to help you design
and build secure Web applications and evaluate the security of existing applications.
These are common categories that span multiple technologies and components in a
layered architecture. These categories are the focus for discussion through the
designing, building, and security assessment chapters in this guide.

Table 2 Application Vulnerability Categories

Category
Input Validation

Authentication

Authorization

Configuration
Management

Description

How do you know that the input your application receives is valid and
safe? Input validation refers to how your application filters, scrubs, or
rejects input before additional processing.

Who are you? Authentication is the process that an entity uses to
identify another entity, typically through credentials such as a user name
and password.

What can you do? Authorization is the process that an application uses
to control access to resources and operations.

Who does your application run as? Which databases does it connect to?
How is your application administered? How are these settings secured?
Configuration management refers to how your application handles these
operational issues.

Fast Track — How To Implement the Guidance Ixxix

Table 2 Application Vulnerability Categories /continued)

Category
Sensitive Data

Session Management

Cryptography

Parameter Manipulation

Exception Management

Auditing and Logging

Identify Threats

Description

Sensitive data is information that must be protected either in memory,
over the wire, or in persistent stores. Your application must have a
process for handling sensitive data.

A session refers to a series of related interactions between a user and
your Web application. Session management refers to how your
application handles and protects these interactions.

How are you protecting secret information (confidentiality)? How are you
tamperproofing your data or libraries (integrity)? How are you providing
seeds for random values that must be cryptographically strong?
Cryptography refers to how your application enforces confidentiality and
integrity.

Form fields, query string arguments, and cookie values are frequently
used as parameters for your application. Parameter manipulation refers
to both how your application safeguards tampering of these values and
how your application processes input parameters.

When a method call in your application fails, what does your application
do? How much does it reveal about the failure condition? Do you return
friendly error information to end users? Do you pass valuable exception
information back to the caller? Does your application fail gracefully?

Who did what and when? Auditing and logging refer to how your
application records security-related events.

You need to know your threats before you can successfully apply security measures.
Threats can be external, such as from an attacker on the Internet, or internal— for
example, from a disgruntled employee or administrator. This guide helps you to
identify threats in two ways:

® [t lists the top threats that affect Web applications at the network, host, and

application layers.

® [t presents a threat modeling process to help you identify which threats are
relevant to your application.

Ixxx Improving Web Application Security: Threats and Countermeasures

An outline of the threat modeling process covered in the guide is shown in Figure 4.

Threat Modeling Process

1. Identify Assets

2. Create an Architecture Overview

4. Identify the Threats

5. Document the Threats

3. Decompose the Application I
6. Rate the Threats I

Figure 4
The Threat Modeling Process

The steps shown in Figure 4 are described below:

1. Identify assets.

2.

Identify the assets of value that your systems must protect.
Create an architecture overview.

Use simple diagrams and tables to document the architecture of your application,
including subsystems, trust boundaries, and data flow.

. Decompose the application.

Decompose the architecture of your application, including the underlying network
and host infrastructure design, to create a security profile for the application. The
aim of the security profile is to uncover vulnerabilities in the design,
implementation, or deployment configuration of your application.

. Identify the threats.

Keeping an attacker’s goals in mind, and with knowledge of your application’s
architecture and potential vulnerabilities, you identify the threats that could
impact the application.

. Document the threats.

Document each threat using a common threat template that defines a core set of
attributes that you should capture for each threat.

6. Rate the threats.

Fast Track — How To Implement the Guidance Ixxxi

Rate the threats to prioritize and address the most significant threats first. These
threats are the ones that present the biggest risk. The rating process weighs the
probability of the threat against the damage that could result should an attack
occur. It might turn out that certain threats do not warrant any action when you
compare the risk posed by the threat with the resulting mitigation costs.

Applying the Guidance to Your Product Life Cycle

Different parts of the guide apply to the different phases of the product development
life cycle. The sequence of chapters in the guide mirrors the typical phases of the life
cycle. The chapter-to-role relationship is shown in Figure 5.

Architecture and
Design Review

Code Review

Part V, Assessing
Your Security

Deployment
Review

Figure 5

Requirements
Gathering

v

Design

Part Il, Designing Secure
Web Applications

Y

Development

Part lll, Building Secure
Web Applications

v

Testing

I Threat Modeling and

v

Deployment

Part IV, Securing

v

Your Network, Host

Maintenance

and Application

Relationship of chapter to product life cycle

Note Threat modeling and security assessment (specifically the code review and deployment review
chapters) apply when you build new Web applications or when you review existing applications.

Ixxxii Improving Web Application Security: Threats and Countermeasures

Implementing the Guidance

The guidance throughout the guide is task-based and modular, and each chapter
relates to the various stages of the product development life cycle and the various
roles involved. These roles include architects, developers, system administrators,
and security professionals. You can pick specific chapters to perform a particular
task or use a series of chapters for a phase of the product development life cycle.

The checklist shown in Table 3 highlights the areas covered by this guide that are
required to secure your network, host, and application.

Table 3 Security Checklist

Check
O

O

O

O O o O

Description

Educate your teams about the threats that affect the network, host, and application
layers. Identify common vulnerabilities and attacks, and learn countermeasures. For more
information, see Chapter 2, “Threats and Countermeasures.”

Create threat models for your Web applications. For more information, see Chapter 3,
“Threat Modeling.”

Review and implement your company’s security policies. If you do not have security
policies in place, create them. For more information about creating security policies, see
“Security Policy Issues” at the SANS Info Sec Reading Room at http://www.sans.org
/rr/catindex.php?cat_id=50.

Review your network security. For more information, see Chapter 15, “Securing Your
Network.”

Patch and update your servers. Review your server security settings and compare them
with the snapshot of a secure server. For more information, see “Snapshot of a Secure
Web Server” in Chapter 16, “Securing Your Web Server.”

Educate your architects and developers about Web application security design guidelines
and principles. For more information, see Chapter 4, “Design Guidelines for Secure Web
Applications.”

Educate your architects and developers about writing secure managed code. For more
information, see Chapter 7, “Building Secure Assemblies” and Chapter 8, “Code Access
Security in Practice.”

Secure your developer workstations. For more information, see “How To: Secure Your
Developer Workstation” in the “How To” section of this guide.

Review the designs of new Web applications and of existing applications. For more
information, see Chapter 5, “Architecture and Design Review for Security.”

Educate developers about how to perform code reviews. Perform code reviews for
applications in development. For more information, see Chapter 21, “Code Review.”

Perform deployment reviews of your applications to identify potential security
vulnerabilities. For more information, see Chapter 22, “Deployment Review.”

http://www.sans.org/rr/catindex.php?cat_id=50
http://www.sans.org/rr/catindex.php?cat_id=50

Fast Track — How To Implement the Guidance Ixxxiii

Who Does What?

Designing and building secure applications is a collaborative effort involving
multiple roles. This guide is structured to address each role and the relevant security
factors to be considered by each role. The categorization and the issues addressed are
outlined below.

RACI Chart

RACI stands for:

Responsible (the role responsible for performing the task)
Accountable (the role with overall responsibility for the task)
Consulted (people who provide input to help perform the task)

Keep Informed (people with a vested interest who should be kept informed)

You can use a RACI chart at the beginning of your project to identify the key security
related tasks together with the roles that should execute each task.

Table 4 illustrates a simple RACI chart for this guide. (The heading row lists the roles;
the first column lists tasks, and the remaining columns delineate levels of
accountability for each task according to role.)

Table 4 RACI Chart

System Security
Tasks Architect Administrator Developer Tester Professional
Security Policies R | A
Threat Modeling A I | R
Security Design A I Cc
Principles
Security Architecture A C
Architecture and R A
Design Review
Code Development A R
Technology Specific
Threats
Code Review R I A
Security Testing C I A C
Network Security C A
Host Security C A | R
Application Security C | A R
Deployment Review C R | A

Ixxxiv Improving Web Application Security: Threats and Countermeasures

Summary

This fast track has highlighted the basic approach taken by the guide to help you
design and develop hack-resilient Web applications, and to evaluate the security of

existing applications. It has also shown you how to apply the guidance depending on
your specific role in the project life cycle.

Introduction to Threats and
Countermeasures

In This Part:

o Web Application Security Fundamentals
® Threats and Countermeasures
® Threat Modeling

Web Application Security
Fundamentals

When you hear talk about Web application security, there is a tendency to
immediately think about attackers defacing Web sites, stealing credit card numbers,
and bombarding Web sites with denial of service attacks. You might also think about
viruses, Trojan horses, and worms. These are the types of problems that receive the
most press because they represent some of the most significant threats faced by
today’s Web applications.

These are only some of the problems. Other significant problems are frequently
overlooked. Internal threats posed by rogue administrators, disgruntled employees,
and the casual user who mistakenly stumbles across sensitive data pose significant
risk. The biggest problem of all may be ignorance.

The solution to Web application security is more than technology. It is an ongoing
process involving people and practices.

We Are Secure — We Have a Firewall

This is a common misconception; it depends on the threat. For example, a firewall
may not detect malicious input sent to your Web application. Also, consider the
scenario where a rogue administrator has direct access to your application.

Do firewalls have their place? Of course they do. Firewalls are great at blocking ports.
Some firewall applications examine communications and can provide very advanced
protection. Firewalls are an integral part of your security, but they are not a complete

solution by themselves.

The same holds true for Secure Sockets Layer (SSL). SSL is great at encrypting traffic
over the network. However, it does not validate your application’s input or protect
you from a poorly configured server.

4

Part I: Introduction to Threats and Countermeasures

What Do We Mean By Security?

Security is fundamentally about protecting assets. Assets may be tangible items, such
as a Web page or your customer database—or they may be less tangible, such as
your company’s reputation.

Security is a path, not a destination. As you analyze your infrastructure and
applications, you identify potential threats and understand that each threat presents a
degree of risk. Security is about risk management and implementing effective
countermeasures.

The Foundations of Security

Security relies on the following elements:
® Authentication

Authentication addresses the question: who are you? It is the process of uniquely
identifying the clients of your applications and services. These might be end users,
other services, processes, or computers. In security parlance, authenticated clients
are referred to as principals.

Authorization

Authorization addresses the question: what can you do? It is the process that
governs the resources and operations that the authenticated client is permitted to
access. Resources include files, databases, tables, rows, and so on, together with
system-level resources such as registry keys and configuration data. Operations
include performing transactions such as purchasing a product, transferring money
from one account to another, or increasing a customer’s credit rating.

Auditing

Effective auditing and logging is the key to non-repudiation. Non-repudiation
guarantees that a user cannot deny performing an operation or initiating a
transaction. For example, in an e-commerce system, non-repudiation mechanisms
are required to make sure that a consumer cannot deny ordering 100 copies of a
particular book.

Confidentiality

Confidentiality, also referred to as privacy, is the process of making sure that data
remains private and confidential, and that it cannot be viewed by unauthorized
users or eavesdroppers who monitor the flow of traffic across a network.
Encryption is frequently used to enforce confidentiality. Access control lists (ACLs)
are another means of enforcing confidentiality.

Chapter 1: Web Application Security Fundamentals 5

® Integrity
Integrity is the guarantee that data is protected from accidental or deliberate
(malicious) modification. Like privacy, integrity is a key concern, particularly for

data passed across networks. Integrity for data in transit is typically provided by
using hashing techniques and message authentication codes.

® Availability

From a security perspective, availability means that systems remain available for
legitimate users. The goal for many attackers with denial of service attacks is to
crash an application or to make sure that it is sufficiently overwhelmed so that
other users cannot access the application.

Threats, Vulnerabilities, and Attacks Defined

A threat is any potential occurrence, malicious or otherwise, that could harm an asset.
In other words, a threat is any bad thing that can happen to your assets.

A vulnerability is a weakness that makes a threat possible. This may be because of
poor design, configuration mistakes, or inappropriate and insecure coding
techniques. Weak input validation is an example of an application layer vulnerability,
which can result in input attacks.

An attack is an action that exploits a vulnerability or enacts a threat. Examples of
attacks include sending malicious input to an application or flooding a network in an
attempt to deny service.

To summarize, a threat is a potential event that can adversely affect an asset, whereas
a successful attack exploits vulnerabilities in your system.

How Do You Build a Secure Web Application?

It is not possible to design and build a secure Web application until you know your
threats. An increasingly important discipline and one that is recommended to form
part of your application’s design phase is threat modeling. The purpose of threat
modeling is to analyze your application’s architecture and design and identify
potentially vulnerable areas that may allow a user, perhaps mistakenly, or an attacker
with malicious intent, to compromise your system’s security.

After you know your threats, design with security in mind by applying timeworn
and proven security principles. As developers, you must follow secure coding
techniques to develop secure, robust, and hack-resilient solutions. The design and
development of application layer software must be supported by a secure network,
host, and application configuration on the servers where the application software is
to be deployed.

6 Part I: Introduction to Threats and Countermeasures

Secure Your Network, Host, and Application

“A vulnerability in a network will allow a malicious user to exploit a host or an application.
A vulnerability in a host will allow a malicious user to exploit a network or an application.
A vulnerability in an application will allow a malicious user to exploit a network or a host.”

— Carlos Lyons, Corporate Security, Microsoft

To build secure Web applications, a holistic approach to application security is

required and security must be applied at all three layers. This approach is shown in
Figure 1.1.

Secure the Network

Secure the Host

Secure the Application

Presentation Business Data Access
Logic Logic Logic

Runtime Services and Components

Platform Services and Components

Operating System

Figure 1.1
A holistic approach to security

Chapter 1: Web Application Security Fundamentals 7

Securing Your Network

A secure Web application relies upon a secure network infrastructure. The network
infrastructure consists of routers, firewalls, and switches. The role of the secure
network is not only to protect itself from TCP /IP-based attacks, but also to
implement countermeasures such as secure administrative interfaces and strong
passwords. The secure network is also responsible for ensuring the integrity of the
traffic that it is forwarding. If you know at the network layer about ports, protocols,
or communication that may be harmful, counter those potential threats at that layer.

Network Component Categories

This guide divides network security into separate component categories as shown in
Table 1.1.

Table 1.1: Network Component Categories
Component Description

Router Routers are your outermost network ring. They channel packets to ports and protocols
that your application needs. Common TCP/IP vulnerabilities are blocked at this ring.

Firewall The firewall blocks those protocols and ports that the application does not use.
Additionally, firewalls enforce secure network traffic by providing application-specific
filtering to block malicious communications.

Switch Switches are used to separate network segments. They are frequently overlooked or
overtrusted.

Securing Your Host

When you secure a host, whether it is your Web server, application server, or
database server, this guide breaks down the various secure configuration settings into
separate categories. With this approach, you can focus on a specific category and
review security, or apply security settings that relate to that specific category. When
you install new software on your servers with this approach, you can evaluate the
impact on your security settings. For example, you may address the following
questions: Does the software create new accounts? Does the software add any default
services? Who are the services running as? Are any new script mappings created?

8

Part I: Introduction to Threats and Countermeasures

Host Configuration Categories

Figure 1.2 shows the various categories used in Part IV of this guide, “Securing Your
Network, Host, and Application.”

= Shares Audltlng and

o Logging

& 2

. Files and w

o ©

£ Services Directories Et

o)

g 2

(@) Accounts Registry «
3
=
Lo
©

< o

o

2 Protocols Ports

(0]

b4

Figure 1.2

Host security categories

With the framework that these categories provide, you can systematically evaluate or
secure your server’s configuration instead of applying security settings on an ad-hoc
basis. The rationale for these particular categories is shown in Table 1.2.

Table 1.2: Rationale for Host Configuration Categories

Category
Patches and Updates

Services

Protocols

Accounts

Description

Many top security risks exist because of vulnerabilities that are widely
published and well known. When new vulnerabilities are discovered, exploit
code is frequently posted on Internet bulletin boards within hours of the
first successful attack. Patching and updating your server’s software is the
first step toward securing the server. If you do not patch and update your
server, you are providing more potential opportunities for attackers and
malicious code.

The service set is determined by the server role and the applications it
hosts. By disabling unnecessary and unused services, you quickly and
easily reduce the attack surface area.

To reduce the attack surface area and the avenues open to attackers,
disable any unnecessary or unused network protocols.

The number of accounts accessible from a server should be restricted to
the necessary set of service and user accounts. Additionally, you should
enforce appropriate account policies, such as mandating strong passwords.

Chapter 1: Web Application Security Fundamentals 9

Table 1.2: Rationale for Host Configuration Categories /continued)
Category Description

Files and Directories Files and directories should be secured with restricted NTFS permissions
that allow access only to the necessary Microsoft Windows service and
user accounts.

Shares All unnecessary file shares, including the default administration shares if
they are not required, should be removed. Secure the remaining shares
with restricted NTFS permissions.

Ports Services running on a server listen on specific ports to serve incoming
requests. Open ports on a server must be known and audited regularly to
make sure that an insecure service is not listening and available for
communication. In the worst-case scenario, a listening port is detected that
was not opened by an administrator.

Auditing and Logging Auditing is a vital aid in identifying intruders or attacks in progress. Logging
proves particularly useful as forensic information when determining how an
intrusion or attack was performed.

Registry Many security related settings are maintained in the registry. Secure the
registry itself by applying restricted Windows ACLs and blocking remote
registry administration.

Securing Your Application

If you were to review and analyze the top security issues across many Web
applications, you would see a pattern of problems. By organizing these problems into
categories, you can systematically tackle them. These problem areas are your
application’s vulnerability categories.

Application Vulnerability Categories

What better way to measure the security of a system than to evaluate its potential
weak points? To measure the security resilience of your application, you can evaluate
the application vulnerability categories. When you do this, you can create application
security profiles, and then use these profiles to determine the security strength of an
application.

These categories are used as a framework throughout this guide. Because the
categories represent the areas where security mistakes are most frequently made,
they are used to illustrate guidance for application developers and architects. The
categories are also used as a framework when evaluating the security of a Web
application. With these categories, you can focus consistently on the key design and
implementation choices that most affect your application’s security. Application
vulnerability categories are described in Table 1.3.

10

Part I: Introduction to Threats and Countermeasures

Table 1.3: Application Vulnerability Categories

Category
Input Validation

Authentication

Authorization

Configuration

Management

Sensitive Data

Session Management

Cryptography

Parameter Manipulation

Exception Management

Auditing and Logging

Description

How do you know that the input that your application receives is valid and
safe? Input validation refers to how your application filters, scrubs, or
rejects input before additional processing.

“Who are you?” Authentication is the process where an entity proves the
identity of another entity, typically through credentials, such as a user
name and password.

“What can you do?” Authorization is how your application provides access
controls for resources and operations.

Who does your application run as? Which databases does it connect to?
How is your application administered? How are these settings secured?
Configuration management refers to how your application handles these
operational issues.

Sensitive data refers to how your application handles any data that must
be protected either in memory, over the wire, or in persistent stores.

A session refers to a series of related interactions between a user and
your Web application. Session management refers to how your application
handles and protects these interactions.

How are you keeping secrets, secret (confidentiality)? How are you
tamperproofing your data or libraries (integrity)? How are you providing
seeds for random values that must be cryptographically strong?
Cryptography refers to how your application enforces confidentiality and
integrity.

Form fields, query string arguments, and cookie values are frequently
used as parameters for your application. Parameter manipulation refers
to both how your application safeguards tampering of these values and
how your application processes input parameters.

When a method call in your application fails, what does your application
do? How much do you reveal? Do you return friendly error information to
end users? Do you pass valuable exception information back to the
caller? Does your application fail gracefully?

Who did what and when? Auditing and logging refer to how your
application records security-related events.

Security Principles

Chapter 1: Web Application Security Fundamentals 11

Recommendations used throughout this guide are based on security principles that
have proven themselves over time. Security, like many aspects of software
engineering, lends itself to a principle-based approach, where core principles can be
applied regardless of implementation technology or application scenario. The major
security principles used throughout this guide are summarized in Table 1.4.

Table 1.4: Summary of Core Security Principles

Principle
Compartmentalize

Use least privilege

Apply defense in depth

Do not trust user input

Check at the gate

Fail securely

Secure the weakest
link

Create secure defaults

Reduce your attack
surface

Concepts

Reduce the surface area of attack. Ask yourself how you will contain a
problem. If an attacker takes over your application, what resources can he
or she access? Can an attacker access network resources? How are you
restricting potential damage? Firewalls, least privileged accounts, and least
privileged code are examples of compartmentalizing.

By running processes using accounts with minimal privileges and access
rights, you significantly reduce the capabilities of an attacker if the attacker
manages to compromise security and run code.

Use multiple gatekeepers to keep attackers at bay. Defense in depth
means you do not rely on a single layer of security, or you consider that one
of your layers may be bypassed or compromised.

Your application’s user input is the attacker’s primary weapon when
targeting your application. Assume all input is malicious until proven
otherwise, and apply a defense in depth strategy to input validation, taking
particular precautions to make sure that input is validated whenever a trust
boundary in your application is crossed.

Authenticate and authorize callers early—at the first gate.

If an application fails, do not leave sensitive data accessible. Return
friendly errors to end users that do not expose internal system details. Do
not include details that may help an attacker exploit vulnerabilities in your
application.

Is there a vulnerability at the network layer that an attacker can exploit?
What about the host? Is your application secure? Any weak link in the chain
is an opportunity for breached security.

Is the default account set up with least privilege? Is the default account
disabled by default and then explicitly enabled when required? Does the
configuration use a password in plaintext? When an error occurs, does
sensitive information leak back to the client to be used potentially against
the system?

If you do not use it, remove it or disable it. Reduce the surface area of
attack by disabling or removing unused services, protocols, and
functionality. Does your server need all those services and ports? Does
your application need all those features?

12 Part I: Introduction to Threats and Countermeasures

Summary

An ever-increasing number of attacks target your application. They pass straight
through your environment’s front door using HTTP. The conventional fortress model
and the reliance on firewall and host defenses are not sufficient when used in
isolation. Securing your application involves applying security at three layers: the
network layer, host layer, and the application layer. A secure network and host
platform infrastructure is a must. Additionally, your applications must be designed
and built using secure design and development guidelines following timeworn
security principles.

Additional Resources

For more information, see the following resources:

® For more information on the Open Hack Web application, see the MSDN article,
“Open Hack: Building and Configuring More Secure Web Sites,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/Jopenhack.asp.

® This is Volume Il in a series dedicated to helping customers improve Web
application security. For more information on designing and implementing
authentication, authorization, and secure communication across the tiers of a
distributed Web application, see “Microsoft patterns & practices Volume I, Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Threats and Countermeasures

In This Chapter

® An explanation of attacker methodology

® Descriptions of common attacks

® How to categorize threats

® How to identify and counter threats at the network, host, and application levels

Overview

When you incorporate security features into your application’s design,
implementation, and deployment, it helps to have a good understanding of how
attackers think. By thinking like attackers and being aware of their likely tactics, you
can be more effective when applying countermeasures. This chapter describes the
classic attacker methodology and profiles the anatomy of a typical attack.

This chapter analyzes Web application security from the perspectives of threats,
countermeasures, vulnerabilities, and attacks. The following set of core terms are
defined to avoid confusion and to ensure they are used in the correct context.

® Asset. A resource of value such as the data in a database or on the file system, or a
system resource

Threat. A potential occurrence—malicious or otherwise—that may harm an asset
Vulnerability. A weakness that makes a threat possible
Attack (or exploit). An action taken to harm an asset

Countermeasure. A safeguard that addresses a threat and mitigates risk

14 Part I: Introduction to Threats and Countermeasures

This chapter also identifies a set of common network, host, and application level
threats, and the recommended countermeasures to address each one. The chapter
does not contain an exhaustive list of threats, but it does highlight many top threats.
With this information and knowledge of how an attacker works, you will be able to
identify additional threats. You need to know the threats that are most likely to
impact your system to be able to build effective threat models. These threat models
are the subject of Chapter 3, “Threat Modeling.”

How to Use This Chapter

The following are recommendations on how to use this chapter:

® Become familiar with specific threats that affect the network host and
application. The threats are unique for the various parts of your system, although
the attacker’s goals may be the same.

® Use the threats to identify risk. Then create a plan to counter those threats.

® Apply countermeasures to address vulnerabilities. Countermeasures are
summarized in this chapter. Use Part III, “Building Secure Web Applications,” and
Part IV, “Securing Your Network, Host, and Application,” of this guide for
countermeasure implementation details.

® When you design, build, and secure new systems, keep the threats in this
chapter in mind. The threats exist regardless of the platform or technologies that
you use.

Anatomy of an Attack

By understanding the basic approach used by attackers to target your Web
application, you will be better equipped to take defensive measures because you will
know what you are up against. The basic steps in attacker methodology are
summarized below and illustrated in Figure 2.1:

Survey and assess
Exploit and penetrate
Escalate privileges
Maintain access

Deny service

Chapter 2: Threats and Countermeasures 15

s

Survey and |> Exploit and > Escalate Privileges I

Assess Penetrate

Maintain Access I Deny Service I

Figure 2.1
Basic steps for attacking methodology

Survey and Assess

Surveying and assessing the potential target are done in tandem. The first step an
attacker usually takes is to survey the potential target to identify and assess its
characteristics. These characteristics may include its supported services and protocols
together with potential vulnerabilities and entry points. The attacker uses the
information gathered in the survey and assess phase to plan an initial attack.

For example, an attacker can detect a cross-site scripting (XSS) vulnerability by
testing to see if any controls in a Web page echo back output.

Exploit and Penetrate

Having surveyed a potential target, the next step is to exploit and penetrate. If the
network and host are fully secured, your application (the front gate) becomes the next
channel for attack.

For an attacker, the easiest way into an application is through the same entrance that
legitimate users use—for example, through the application’s logon page or a page
that does not require authentication.

Escalate Privileges

After attackers manage to compromise an application or network, perhaps by
injecting code into an application or creating an authenticated session with the
Microsoft® Windows® 2000 operating system, they immediately attempt to escalate
privileges. Specifically, they look for administration privileges provided by accounts
that are members of the Administrators group. They also seek out the high level of
privileges offered by the local system account.

16 Part I: Introduction to Threats and Countermeasures

Using least privileged service accounts throughout your application is a primary
defense against privilege escalation attacks. Also, many network level privilege
escalation attacks require an interactive logon session.

Maintain Access

Having gained access to a system, an attacker takes steps to make future access easier
and to cover his or her tracks. Common approaches for making future access easier
include planting back-door programs or using an existing account that lacks strong
protection. Covering tracks typically involves clearing logs and hiding tools. As such,
audit logs are a primary target for the attacker.

Log files should be secured, and they should be analyzed on a regular basis. Log file
analysis can often uncover the early signs of an attempted break-in before damage is
done.

Deny Service

Attackers who cannot gain access often mount a denial of service attack to prevent
others from using the application. For other attackers, the denial of service option is
their goal from the outset. An example is the SYN flood attack, where the attacker
uses a program to send a flood of TCP SYN requests to fill the pending connection
queue on the server. This prevents other users from establishing network
connections.

Understanding Threat Categories

While there are many variations of specific attacks and attack techniques, it is useful
to think about threats in terms of what the attacker is trying to achieve. This changes
your focus from the identification of every specific attack—which is really just a
means to an end —to focusing on the end results of possible attacks.

STRIDE

Threats faced by the application can be categorized based on the goals and purposes
of the attacks. A working knowledge of these categories of threats can help you
organize a security strategy so that you have planned responses to threats. STRIDE is
the acronym used at Microsoft to categorize different threat types. STRIDE stands for:

® Spoofing. Spoofing is attempting to gain access to a system by using a false
identity. This can be accomplished using stolen user credentials or a false IP
address. After the attacker successfully gains access as a legitimate user or host,
elevation of privileges or abuse using authorization can begin.

® Tampering. Tumpering is the unauthorized modification of data, for example as it
flows over a network between two computers.

Chapter 2: Threats and Countermeasures 17

® Repudiation. Repudiation is the ability of users (legitimate or otherwise) to deny
that they performed specific actions or transactions. Without adequate auditing,
repudiation attacks are difficult to prove.

® Information disclosure. Information disclosure is the unwanted exposure of private
data. For example, a user views the contents of a table or file he or she is not
authorized to open, or monitors data passed in plaintext over a network. Some
examples of information disclosure vulnerabilities include the use of hidden form
fields, comments embedded in Web pages that contain database connection strings
and connection details, and weak exception handling that can lead to internal
system level details being revealed to the client. Any of this information can be
very useful to the attacker.

® Denial of service. Denial of service is the process of making a system or application
unavailable. For example, a denial of service attack might be accomplished by
bombarding a server with requests to consume all available system resources or
by passing it malformed input data that can crash an application process.

e Elevation of privilege. Elevation of privilege occurs when a user with limited
privileges assumes the identity of a privileged user to gain privileged access to an
application. For example, an attacker with limited privileges might elevate his or
her privilege level to compromise and take control of a highly privileged and
trusted process or account.

STRIDE Threats and Countermeasures

Each threat category described by STRIDE has a corresponding set of countermeasure
techniques that should be used to reduce risk. These are summarized in Table 2.1. The
appropriate countermeasure depends upon the specific attack. More threats, attacks,
and countermeasures that apply at the network, host, and application levels are
presented later in this chapter.

Table 2.1 STRIDE Threats and Countermeasures

Threat Countermeasures

Spoofing user identity Use strong authentication.
Do not store secrets (for example, passwords) in plaintext.
Do not pass credentials in plaintext over the wire.

Protect authentication cookies with Secure Sockets Layer (SSL).

Tampering with data Use data hashing and signing.
Use digital signatures.
Use strong authorization.
Use tamper-resistant protocols across communication links.
Secure communication links with protocols that provide message
integrity.

(continued)

18

Part I: Introduction to Threats and Countermeasures

Table 2.1 STRIDE Threats and Countermeasures (continued)
Threat Countermeasures
Repudiation Create secure audit trails.

Use digital signatures.
Information disclosure Use strong authorization.
Use strong encryption.

Secure communication links with protocols that provide message
confidentiality.

Do not store secrets (for example, passwords) in plaintext.
Denial of service Use resource and bandwidth throttling techniques.

Validate and filter input.

Elevation of privilege Follow the principle of least privilege and use least privileged service
accounts to run processes and access resources.

Network Threats and Countermeasures

The primary components that make up your network infrastructure are routers,
firewalls, and switches. They act as the gatekeepers guarding your servers and
applications from attacks and intrusions. An attacker may exploit poorly configured
network devices. Common vulnerabilities include weak default installation settings,
wide open access controls, and devices lacking the latest security patches. Top
network level threats include:

Information gathering

Sniffing

Spoofing

Session hijacking

Denial of service

Information Gathering

Network devices can be discovered and profiled in much the same way as other
types of systems. Attackers usually start with port scanning. After they identify open
ports, they use banner grabbing and enumeration to detect device types and to
determine operating system and application versions. Armed with this information,
an attacker can attack known vulnerabilities that may not be updated with security
patches.

Chapter 2: Threats and Countermeasures 19

Countermeasures to prevent information gathering include:
e Configure routers to restrict their responses to footprinting requests.
e Configure operating systems that host network software (for example, software

tirewalls) to prevent footprinting by disabling unused protocols and unnecessary
ports.

Sniffing

Sniffing or eavesdropping is the act of monitoring traffic on the network for data such
as plaintext passwords or configuration information. With a simple packet sniffer, an
attacker can easily read all plaintext traffic. Also, attackers can crack packets
encrypted by lightweight hashing algorithms and can decipher the payload that you
considered to be safe. The sniffing of packets requires a packet sniffer in the path of
the server/client communication.

Countermeasures to help prevent sniffing include:

® Use strong physical security and proper segmenting of the network. This is the
tirst step in preventing traffic from being collected locally.

® Encrypt communication fully, including authentication credentials. This prevents
sniffed packets from being usable to an attacker. SSL and IPSec (Internet Protocol
Security) are examples of encryption solutions.

Spoofing

Spoofing is a means to hide one’s true identity on the network. To create a spoofed
identity, an attacker uses a fake source address that does not represent the actual
address of the packet. Spoofing may be used to hide the original source of an attack
or to work around network access control lists (ACLs) that are in place to limit host
access based on source address rules.

Although carefully crafted spoofed packets may never be tracked to the original
sender, a combination of filtering rules prevents spoofed packets from originating
from your network, allowing you to block obviously spoofed packets.

Countermeasures to prevent spoofing include:

e Filter incoming packets that appear to come from an internal IP address at your
perimeter.

e Filter outgoing packets that appear to originate from an invalid local IP address.

Session Hijacking

Also known as man in the middle attacks, session hijacking deceives a server or a
client into accepting the upstream host as the actual legitimate host. Instead the
upstream host is an attacker’s host that is manipulating the network so the attacker’s
host appears to be the desired destination.

20

Part I: Introduction to Threats and Countermeasures

Countermeasures to help prevent session hijacking include:
® Use encrypted session negotiation.
® Use encrypted communication channels.

® Stay informed of platform patches to fix TCP/IP vulnerabilities, such as
predictable packet sequences.

Denial of Service

Denial of service denies legitimate users access to a server or services. The SYN flood
attack is a common example of a network level denial of service attack. It is easy to
launch and difficult to track. The aim of the attack is to send more requests to a server
than it can handle. The attack exploits a potential vulnerability in the TCP/IP
connection establishment mechanism and floods the server’s pending connection
queue.

Countermeasures to prevent denial of service include:
® Apply the latest service packs.

® Harden the TCP/IP stack by applying the appropriate registry settings to increase
the size of the TCP connection queue, decrease the connection establishment
period, and employ dynamic backlog mechanisms to ensure that the connection
queue is never exhausted.

® Use a network Intrusion Detection System (IDS) because these can automatically
detect and respond to SYN attacks.

Host Threats and Countermeasures

Host threats are directed at the system software upon which your applications are
built. This includes Windows 2000, Internet Information Services (IIS), the .NET
Framework, and SQL Server 2000, depending upon the specific server role. Top host
level threats include:

Viruses, Trojan horses, and worms
Footprinting

Profiling

Password cracking

Denial of service

Arbitrary code execution

Unauthorized access

Chapter 2: Threats and Countermeasures 21

Viruses, Trojan Horses, and Worms

A virus is a program that is designed to perform malicious acts and cause disruption
to your operating system or applications. A Trojan horse resembles a virus except that
the malicious code is contained inside what appears to be a harmless data file or
executable program. A worm is similar to a Trojan horse except that it self-replicates
from one server to another. Worms are difficult to detect because they do not
regularly create files that can be seen. They are often noticed only when they begin to
consume system resources because the system slows down or the execution of other
programs halt. The Code Red Worm is one of the most notorious to afflict IIS; it relied
upon a buffer overflow vulnerability in a particular ISAPI filter.

Although these three threats are actually attacks, together they pose a significant
threat to Web applications, the hosts these applications live on, and the network used
to deliver these applications. The success of these attacks on any system is possible
through many vulnerabilities such as weak defaults, software bugs, user error, and
inherent vulnerabilities in Internet protocols.

Countermeasures that you can use against viruses, Trojan horses, and worms include:
® Stay current with the latest operating system service packs and software patches.
® Block all unnecessary ports at the firewall and host.

® Disable unused functionality including protocols and services.

°

Harden weak, default configuration settings.

Footprinting

Examples of footprinting are port scans, ping sweeps, and NetBIOS enumeration that
can be used by attackers to glean valuable system-level information to help prepare
for more significant attacks. The type of information potentially revealed by
footprinting includes account details, operating system and other software versions,
server names, and database schema details.

Countermeasures to help prevent footprinting include:

Disable unnecessary protocols.

Lock down ports with the appropriate firewall configuration.

Use TCP/IP and IPSec filters for defense in depth.

Configure IIS to prevent information disclosure through banner grabbing.

Use an IDS that can be configured to pick up footprinting patterns and reject
suspicious traffic.

22 Part I: Introduction to Threats and Countermeasures

Password Cracking

If the attacker cannot establish an anonymous connection with the server, he or she
will try to establish an authenticated connection. For this, the attacker must know a
valid username and password combination. If you use default account names, you
are giving the attacker a head start. Then the attacker only has to crack the account’s
password. The use of blank or weak passwords makes the attacker’s job even easier.

Countermeasures to help prevent password cracking include:

Use strong passwords for all account types.

Apply lockout policies to end-user accounts to limit the number of retry attempts
that can be used to guess the password.

Do not use default account names, and rename standard accounts such as the
administrator’s account and the anonymous Internet user account used by many
Web applications.

Audit failed logins for patterns of password hacking attempts.

Denial of Service

Denial of service can be attained by many methods aimed at several targets within
your infrastructure. At the host, an attacker can disrupt service by brute force against
your application, or an attacker may know of a vulnerability that exists in the service
your application is hosted in or in the operating system that runs your server.

Countermeasures to help prevent denial of service include:

Configure your applications, services, and operating system with denial of service
in mind.

Stay current with patches and security updates.

Harden the TCP/IP stack against denial of service.

Make sure your account lockout policies cannot be exploited to lock out well
known service accounts.

Make sure your application is capable of handling high volumes of traffic and that
thresholds are in place to handle abnormally high loads.

Review your application’s failover functionality.
Use an IDS that can detect potential denial of service attacks.

Chapter 2: Threats and Countermeasures 23

Arbitrary Code Execution

If an attacker can execute malicious code on your server, the attacker can either
compromise server resources or mount further attacks against downstream systems.
The risks posed by arbitrary code execution increase if the server process under
which the attacker’s code runs is over-privileged. Common vulnerabilities include
weak IID configuration and unpatched servers that allow path traversal and buffer
overflow attacks, both of which can lead to arbitrary code execution.
Countermeasures to help prevent arbitrary code execution include:

e Configure IIS to reject URLs with “../” to prevent path traversal.

® Lock down system commands and utilities with restricted ACLs.

e Stay current with patches and updates to ensure that newly discovered buffer
overflows are speedily patched.

Unauthorized Access

Inadequate access controls could allow an unauthorized user to access restricted
information or perform restricted operations. Common vulnerabilities include weak
IIS Web access controls, including Web permissions and weak NTES permissions.
Countermeasures to help prevent unauthorized access include:

® Configure secure Web permissions.

® Lock down files and folders with restricted NTFS permissions.

® Use .NET Framework access control mechanisms within your ASPNET
applications, including URL authorization and principal permission demands.

Application Threats and Countermeasures

A good way to analyze application-level threats is to organize them by application
vulnerability category. The various categories used in the subsequent sections of this
chapter and throughout the guide, together with the main threats to your application,
are summarized in Table 2.2.

24 Part I: Introduction to Threats and Countermeasures

Table 2.2 Threats by Application Vulnerability Category

Category
Input validation

Authentication

Authorization

Configuration management

Sensitive data

Session management

Cryptography
Parameter manipulation

Exception management

Auditing and logging

Input Validation

Threats

Buffer overflow; cross-site scripting; SQL injection;
canonicalization

Network eavesdropping; brute force attacks;
dictionary attacks; cookie replay; credential theft

Elevation of privilege; disclosure of confidential data; data
tampering; luring attacks

Unauthorized access to administration interfaces; unauthorized
access to configuration stores; retrieval of clear text
configuration data; lack of individual accountability; over-
privileged process and service accounts

Access sensitive data in storage; network eavesdropping; data
tampering

Session hijacking; session replay; man in the middle

Poor key generation or key management; weak or custom
encryption

Query string manipulation; form field manipulation; cookie
manipulation; HTTP header manipulation

Information disclosure; denial of service

User denies performing an operation; attacker exploits an
application without trace; attacker covers his or her tracks

Input validation is a security issue if an attacker discovers that your application
makes unfounded assumptions about the type, length, format, or range of input data.
The attacker can then supply carefully crafted input that compromises your

application.

When network and host level entry points are fully secured; the public interfaces
exposed by your application become the only source of attack. The input to your
application is a means to both test your system and a way to execute code on an
attacker’s behalf. Does your application blindly trust input? If it does, your
application may be susceptible to the following:

® Buffer overflows

® Cross-site scripting
® SQL injection
°

Canonicalization

Chapter 2: Threats and Countermeasures 25

The following section examines these vulnerabilities in detail, including what makes
these vulnerabilities possible.

Buffer Overflows

Buffer overflow vulnerabilities can lead to denial of service attacks or code injection.
A denial of service attack causes a process crash;. code injection alters the program
execution address to run an attacker’s injected code. The following code fragment
illustrates a common example of a buffer overflow vulnerability.

void SomeFunction(char *pszInput)

{
char szBuffer[10];
// Input 1is copied straight into the buffer when no type checking is performed
strcpy(szBuffer, pszInput);

}

Managed .NET code is not susceptible to this problem because array bounds are
automatically checked whenever an array is accessed. This makes the threat of buffer
overflow attacks on managed code much less of an issue. It is still a concern,
however, especially where managed code calls unmanaged APIs or COM objects.

Countermeasures to help prevent buffer overflows include:

® Perform thorough input validation. This is the first line of defense against buffer
overflows. Although a bug may exist in your application that permits expected
input to reach beyond the bounds of a container, unexpected input will be the
primary cause of this vulnerability. Constrain input by validating it for type,
length, format and range.

® When possible, limit your application’s use of unmanaged code, and thoroughly
inspect the unmanaged APIs to ensure that input is properly validated.

® Inspect the managed code that calls the unmanaged API to ensure that only
appropriate values can be passed as parameters to the unmanaged APIL.

® Use the /GS flag to compile code developed with the Microsoft Visual C++*
development system. The /GS flag causes the compiler to inject security checks
into the compiled code. This is not a fail-proof solution or a replacement for your
specific validation code; it does, however, protect your code from commonly
known buffer overflow attacks. For more information, see the .NET Framework
Product documentation http://msdn.microsoft.com/library/default.asp?url=
Nibrary/en-us/vccore/html/vclrfGSBufferSecurity.asp and Microsoft Knowledge Base
article 325483 “WebCast: Compiler Security Checks: The -GS compiler switch.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vclrfGSBufferSecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vclrfGSBufferSecurity.asp

26

Part I: Introduction to Threats and Countermeasures

Example of Code Injection Through Buffer Overflows

An attacker can exploit a buffer overflow vulnerability to inject code. With this attack,
a malicious user exploits an unchecked buffer in a processby supplying a carefully
constructed input value that overwrites the program’s stack and alters a function’s
return address. This causes execution to jump to the attacker’s injected code.

The attacker’s code usually ends up running under the process security context. This
emphasizes the importance of using least privileged process accounts. If the current
thread is impersonating, the attacker’s code ends up running under the security
context defined by the thread impersonation token. The first thing an attacker usually
does is call the RevertToSelf API to revert to the process level security context that
the attacker hopes has higher privileges.

Make sure you validate input for type and length, especially before you call
unmanaged code because unmanaged code is particularly susceptible to buffer
overflows.

Cross-Site Scripting

An XSS attack can cause arbitrary code to run in a user’s browser while the browser
is connected to a trusted Web site. The attack targets your application’s users and not
the application itself, but it uses your application as the vehicle for the attack.

Because the script code is downloaded by the browser from a trusted site, the
browser has no way of knowing that the code is not legitimate. Internet Explorer
security zones provide no defense. Since the attacker’s code has access to the cookies
associated with the trusted site and are stored on the user’s local computer, a user’s
authentication cookies are typically the target of attack.

Example of Cross-Site Scripting

To initiate the attack, the attacker must convince the user to click on a carefully
crafted hyperlink, for example, by embedding a link in an email sent to the user or by
adding a malicious link to a newsgroup posting. The link points to a vulnerable page
in your application that echoes the unvalidated input back to the browser in the
HTML output stream. For example, consider the following two links.

Here is a legitimate link:

www . yourwebapplication.com/logon.aspx?username=bob

Here is a malicious link:

www . yourwebapplication.com/logon.aspx?username=<script>alert('hacker
code')</script>

Chapter 2: Threats and Countermeasures 27

If the Web application takes the query string, fails to properly validate it, and then
returns it to the browser, the script code executes in the browser. The preceding
example displays a harmless pop-up message. With the appropriate script, the
attacker can easily extract the user’s authentication cookie, post it to his site, and
subsequently make a request to the target Web site as the authenticated user.

Countermeasures to prevent XSS include:

® Perform thorough input validation. Your applications must ensure that input from
query strings, form fields, and cookies are valid for the application. Consider all
user input as possibly malicious, and filter or sanitize for the context of the
downstream code. Validate all input for known valid values and then reject all
other input. Use regular expressions to validate input data received via HTML
form fields, cookies, and query strings.

® Use HTMLEncode and URLEncode functions to encode any output that includes
user input. This converts executable script into harmless HTML.

SQL Injection

A SQL injection attack exploits vulnerabilities in input validation to run arbitrary
commands in the database. It can occur when your application uses input to
construct dynamic SQL statements to access the database. It can also occur if your
code uses stored procedures that are passed strings that contain unfiltered user input.
Using the SQL injection attack, the attacker can execute arbitrary commands in the
database. The issue is magnified if the application uses an over-privileged account to
connect to the database. In this instance it is possible to use the database server to run
operating system commands and potentially compromise other servers, in addition
to being able to retrieve, manipulate, and destroy data.

Example of SQL Injection

Your application may be susceptible to SQL injection attacks when you incorporate
unvalidated user input into database queries. Particularly susceptible is code that
constructs dynamic SQL statements with unfiltered user input. Consider the
following code:

Sq1DataAdapter myCommand = new SqlDataAdapter(
"SELECT * FROM Users
WHERE UserName ='" + txtuid.Text + "'", conn);

Attackers can inject SQL by terminating the intended SQL statement with the single
quote character followed by a semicolon character to begin a new command, and
then executing the command of their choice. Consider the following character string
entered into the txtuid field.

'; DROP TABLE Customers -

28

Part I: Introduction to Threats and Countermeasures

This results in the following statement being submitted to the database for execution.

SELECT * FROM Users WHERE UserName=''; DROP TABLE Customers --'

This deletes the Customers table, assuming that the application’s login has sufficient
permissions in the database (another reason to use a least privileged login in the
database). The double dash (--) denotes a SQL comment and is used to comment out
any other characters added by the programmer, such as the trailing quote.

Note The semicolon is not actually required. SQL Server will execute two commands separated by
spaces.

Other more subtle tricks can be performed. Supplying this input to the txtuid field:

' OR 1=1 -

builds this command:

SELECT * FROM Users WHERE UserName='' OR 1=1 -

Because 1=1 is always true, the attacker retrieves every row of data from the Users
table.

Countermeasures to prevent SQL injection include:

® Perform thorough input validation. Your application should validate its input
prior to sending a request to the database.

® Use parameterized stored procedures for database access to ensure that input
strings are not treated as executable statements. If you cannot use stored
procedures, use SQL parameters when you build SQL commands.

® Use least privileged accounts to connect to the database.

Canonicalization

Different forms of input that resolve to the same standard name (the canonical name),
is referred to as canonicalization. Code is particularly susceptible to canonicalization
issues if it makes security decisions based on the name of a resource that is passed to
the program as input. Files, paths, and URLs are resource types that are vulnerable to
canonicalization because in each case there are many different ways to represent the
same name. File names are also problematic. For example, a single file could be
represented as:

c:\temp\somefile.dat
somefile.dat
c:\temp\subdir\..\somefile.dat
c:\ temp\ somefile.dat
..\somefile.dat

Chapter 2: Threats and Countermeasures 29

Ideally, your code does not accept input file names. If it does, the name should be
converted to its canonical form prior to making security decisions, such as whether
access should be granted or denied to the specified file.

Countermeasures to address canonicalization issues include:

® Avoid input file names where possible and instead use absolute file paths that
cannot be changed by the end user.

® Make sure that file names are well formed (if you must accept file names as input)
and validate them within the context of your application. For example, check that
they are within your application’s directory hierarchy.

® Ensure that the character encoding is set correctly to limit how input can be
represented. Check that your application’s Web.config has set the
requestEncoding and responseEncoding attributes on the <globalization>
element.

Authentication

Depending on your requirements, there are several available authentication
mechanisms to choose from. If they are not correctly chosen and implemented, the
authentication mechanism can expose vulnerabilities that attackers can exploit to
gain access to your system. The top threats that exploit authentication vulnerabilities
include:

Network eavesdropping
Brute force attacks
Dictionary attacks
Cookie replay attacks
Credential theft

Network Eavesdropping

If authentication credentials are passed in plaintext from client to server, an attacker
armed with rudimentary network monitoring software on a host on the same
network can capture traffic and obtain user names and passwords.

Countermeasures to prevent network eavesdropping include:

® Use authentication mechanisms that do not transmit the password over the
network such as Kerberos protocol or Windows authentication.

® Make sure passwords are encrypted (if you must transmit passwords over the
network) or use an encrypted communication channel, for example with SSL.

30

Part I: Introduction to Threats and Countermeasures

Brute Force Attacks

Brute force attacks rely on computational power to crack hashed passwords or other
secrets secured with hashing and encryption. To mitigate the risk, use strong
passwords.

Dictionary Attacks

This attack is used to obtain passwords. Most password systems do not store
plaintext passwords or encrypted passwords. They avoid encrypted passwords
because a compromised key leads to the compromise of all passwords in the data
store. Lost keys mean that all passwords are invalidated.

Most user store implementations hold password hashes (or digests). Users are
authenticated by re-computing the hash based on the user-supplied password value
and comparing it against the hash value stored in the database. If an attacker
manages to obtain the list of hashed passwords, a brute force attack can be used to
crack the password hashes.

With the dictionary attack, an attacker uses a program to iterate through all of the
words in a dictionary (or multiple dictionaries in different languages) and computes
the hash for each word. The resultant hash is compared with the value in the data
store. Weak passwords such as “Yankees” (a favorite team) or “Mustang”

(a favorite car) will be cracked quickly. Stronger passwords such as
“?You’'LINevaFiNdMeyePasSWerd!”, are less likely to be cracked.

Note Once the attacker has obtained the list of password hashes, the dictionary attack can be
performed offline and does not require interaction with the application.

Countermeasures to prevent dictionary attacks include:

® Use strong passwords that are complex, are not regular words, and contain a
mixture of upper case, lower case, numeric, and special characters.

® Store non-reversible password hashes in the user store. Also combine a salt value
(a cryptographically strong random number) with the password hash.

For more information about storing password hashes with added salt, see Chapter 14,
“Building Secure Data Access.”

Chapter 2: Threats and Countermeasures 31

Cookie Replay Attacks

With this type of attack, the attacker captures the user’s authentication cookie using
monitoring software and replays it to the application to gain access under a false
identity.

Countermeasures to prevent cookie replay include:

® Use an encrypted communication channel provided by SSL whenever an
authentication cookie is transmitted.

® Use a cookie timeout to a value that forces authentication after a relatively short
time interval. Although this doesn’t prevent replay attacks, it reduces the time
interval in which the attacker can replay a request without being forced to re-
authenticate because the session has timed out.

Credential Theft

If your application implements its own user store containing user account names and
passwords, compare its security to the credential stores provided by the platform, for
example, a Microsoft Active Directory® directory service or Security Accounts
Manager (SAM) user store. Browser history and cache also store user login
information for future use. If the terminal is accessed by someone other than the user
who logged on, and the same page is hit, the saved login will be available.

Countermeasures to help prevent credential theft include:
Use and enforce strong passwords.

Store password verifiers in the form of one way hashes with added salt.

Enforce account lockout for end-user accounts after a set number of retry attempts.

To counter the possibility of the browser cache allowing login access, create
functionality that either allows the user to choose to not save credentials, or force
this functionality as a default policy.

Authorization

Based on user identity and role membership, authorization to a particular resource or
service is either allowed or denied. Top threats that exploit authorization
vulnerabilities include:

e Elevation of privilege

® Disclosure of confidential data
® Data tampering

® Luring attacks

32 Part I: Introduction to Threats and Countermeasures

Elevation of Privilege

When you design an authorization model, you must consider the threat of an attacker
trying to elevate privileges to a powerful account such as a member of the local
administrators group or the local system account. By doing this, the attacker is able to
take complete control over the application and local machine. For example, with
classic ASP programming, calling the RevertToSelf API from a component might
cause the executing thread to run as the local system account with the most power
and privileges on the local machine.

The main countermeasure that you can use to prevent elevation of privilege is to use
least privileged process, service, and user accounts.

Disclosure of Confidential Data

The disclosure of confidential data can occur if sensitive data can be viewed by
unauthorized users. Confidential data includes application specific data such as
credit card numbers, employee details, financial records and so on together with
application configuration data such as service account credentials and database
connection strings. To prevent the disclosure of confidential data you should secure it
in persistent stores such as databases and configuration files, and during transit over
the network. Only authenticated and authorized users should be able to access the
data that is specific to them. Access to system level configuration data should be
restricted to administrators.

Countermeasures to prevent disclosure of confidential data include:

® Perform role checks before allowing access to the operations that could potentially
reveal sensitive data.

Use strong ACLs to secure Windows resources.

Use standard encryption to store sensitive data in configuration files and
databases.

Data Tampering
Data tampering refers to the unauthorized modification of data.

Countermeasures to prevent data tampering include:

® Use strong access controls to protect data in persistent stores to ensure that only
authorized users can access and modify the data.

® Use role-based security to differentiate between users who can view data and
users who can modify data.

Chapter 2: Threats and Countermeasures 33

Luring Attacks

A luring attack occurs when an entity with few privileges is able to have an entity
with more privileges perform an action on its behalf.

To counter the threat, you must restrict access to trusted code with the appropriate
authorization. Using .NET Framework code access security helps in this respect by
authorizing calling code whenever a secure resource is accessed or a privileged
operation is performed.

Configuration Management

Many applications support configuration management interfaces and functionality to
allow operators and administrators to change configuration parameters, update Web
site content, and to perform routine maintenance. Top configuration management
threats include:

Unauthorized access to administration interfaces
Unauthorized access to configuration stores
Retrieval of plaintext configuration secrets

Lack of individual accountability

Over-privileged process and service accounts

Unauthorized Access to Administration Interfaces

Administration interfaces are often provided through additional Web pages or
separate Web applications that allow administrators, operators, and content
developers to managed site content and configuration. Administration interfaces
such as these should be available only to restricted and authorized users. Malicious
users able to access a configuration management function can potentially deface the
Web site, access downstream systems and databases, or take the application out of
action altogether by corrupting configuration data.

Countermeasures to prevent unauthorized access to administration interfaces
include:

Minimize the number of administration interfaces.

Use strong authentication, for example, by using certificates.

Use strong authorization with multiple gatekeepers.

Consider supporting only local administration. If remote administration is
absolutely essential, use encrypted channels, for example, with VPN technology or
SSL, because of the sensitive nature of the data passed over administrative
interfaces. To further reduce risk, also consider using IPSec policies to limit remote
administration to computers on the internal network.

34

Part I: Introduction to Threats and Countermeasures

Unauthorized Access to Configuration Stores

Because of the sensitive nature of the data maintained in configuration stores, you
should ensure that the stores are adequately secured.

Countermeasures to protect configuration stores include:

® Configure restricted ACLs on text-based configuration files such as
Machine.config and Web.config.

® Keep custom configuration stores outside of the Web space. This removes the
potential to download Web server configurations to exploit their vulnerabilities.

Retrieval of Plaintext Configuration Secrets

Restricting access to the configuration store is a must. As an important defense in
depth mechanism, you should encrypt sensitive data such as passwords and
connection strings. This helps prevent external attackers from obtaining sensitive
configuration data. It also prevents rogue administrators and internal employees
from obtaining sensitive details such as database connection strings and account
credentials that might allow them to gain access to other systems.

Lack of Individual Accountability

Lack of auditing and logging of changes made to configuration information threatens
the ability to identify when changes were made and who made those changes. When
a breaking change is made either by an honest operator error or by a malicious
change to grant privileged access, action must first be taken to correct the change.
Then apply preventive measures to prevent breaking changes to be introduced in the
same manner. Keep in mind that auditing and logging can be circumvented by a
shared account; this applies to both administrative and user/application/service
accounts. Administrative accounts must not be shared. User/application/service
accounts must be assigned at a level that allows the identification of a single source of
access using the account, and that contains any damage to the privileges granted that
account.

Over-privileged Application and Service Accounts

If application and service accounts are granted access to change configuration
information on the system, they may be manipulated to do so by an attacker. The risk
of this threat can be mitigated by adopting a policy of using least privileged service
and application accounts. Be wary of granting accounts the ability to modify their
own configuration information unless explicitly required by design.

Chapter 2: Threats and Countermeasures 35

Sensitive Data

Sensitive data is subject to a variety of threats. Attacks that attempt to view or modify
sensitive data can target persistent data stores and networks. Top threats to sensitive
data include:

® Access to sensitive data in storage
® Network eavesdropping
® Data tampering

Access to Sensitive Data in Storage

You must secure sensitive data in storage to prevent a user—malicious or otherwise
—from gaining access to and reading the data.

Countermeasures to protect sensitive data in storage include:

® Use restricted ACLs on the persistent data stores that contain sensitive data.

® Store encrypted data.

® Use identity and role-based authorization to ensure that only the user or users
with the appropriate level of authority are allowed access to sensitive data. Use
role-based security to differentiate between users who can view data and users
who can modify data.

Network Eavesdropping

The HTTP data for Web application travels across networks in plaintext and is subject
to network eavesdropping attacks, where an attacker uses network monitoring
software to capture and potentially modify sensitive data.

Countermeasures to prevent network eavesdropping and to provide privacy include:
® Encrypt the data.

® Use an encrypted communication channel, for example, SSL.

Data Tampering

Data tampering refers to the unauthorized modification of data, often as it is passed
over the network.

One countermeasure to prevent data tampering is to protect sensitive data passed
across the network with tamper-resistant protocols such as hashed message
authentication codes (HMACsS).

36

Part I: Introduction to Threats and Countermeasures

An HMAC provides message integrity in the following way:

1. The sender uses a shared secret key to create a hash based on the message
payload.

2. The sender transmits the hash along with the message payload.

3. The receiver uses the shared key to recalculate the hash based on the received
message payload. The receiver then compares the new hash value with the

transmitted hash value. If they are the same, the message cannot have been
tampered with.

Session Management

Session management for Web applications is an application layer responsibility.
Session security is critical to the overall security of the application.

Top session management threats include:

® Session hijacking

® Session replay

® Man in the middle

Session Hijacking

A session hijacking attack occurs when an attacker uses network monitoring software
to capture the authentication token (often a cookie) used to represent a user’s session
with an application. With the captured cookie, the attacker can spoof the user’s
session and gain access to the application. The attacker has the same level of
privileges as the legitimate user.

Countermeasures to prevent session hijacking include:
® Use SSL to create a secure communication channel and only pass the
authentication cookie over an HTTPS connection.

® Implement logout functionality to allow a user to end a session that forces
authentication if another session is started.

® Make sure you limit the expiration period on the session cookie if you do not use
SSL. Although this does not prevent session hijacking, it reduces the time window
available to the attacker.

Session Replay

Session replay occurs when a user’s session token is intercepted and submitted by an
attacker to bypass the authentication mechanism. For example, if the session token is
in plaintext in a cookie or URL, an attacker can sniff it. The attacker then posts a
request using the hijacked session token.

Chapter 2: Threats and Countermeasures 37

Countermeasures to help address the threat of session replay include:

® Re-authenticate when performing critical functions. For example, prior to
performing a monetary transfer in a banking application, make the user supply
the account password again.

Expire sessions appropriately, including all cookies and session tokens.

Create a “do not remember me” option to allow no session data to be stored on the
client.

Man in the Middle Attacks

A man in the middle attack occurs when the attacker intercepts messages sent
between you and your intended recipient. The attacker then changes your message
and sends it to the original recipient. The recipient receives the message, sees that it
came from you, and acts on it. When the recipient sends a message back to you, the
attacker intercepts it, alters it, and returns it to you. You and your recipient never
know that you have been attacked.

Any network request involving client-server communication, including Web
requests, Distributed Component Object Model (DCOM) requests, and calls to remote
components and Web services, are subject to man in the middle attacks.

Countermeasures to prevent man in the middle attacks include:

® Use cryptography. If you encrypt the data before transmitting it, the attacker can
still intercept it but cannot read it or alter it. If the attacker cannot read it, he or she
cannot know which parts to alter. If the attacker blindly modifies your encrypted
message, then the original recipient is unable to successfully decrypt it and, as a
result, knows that it has been tampered with.

® Use Hashed Message Authentication Codes (HMACsS). If an attacker alters the
message, the recalculation of the HMAC at the recipient fails and the data can be
rejected as invalid.

Cryptography

Most applications use cryptography to protect data and to ensure it remains private
and unaltered. Top threats surrounding your application’s use of cryptography
include:

® Poor key generation or key management
® Weak or custom encryption
® Checksum spoofing

38

Part I: Introduction to Threats and Countermeasures

Poor Key Generation or Key Management

Attackers can decrypt encrypted data if they have access to the encryption key or can
derive the encryption key. Attackers can discover a key if keys are managed poorly or
if they were generated in a non-random fashion.

Countermeasures to address the threat of poor key generation and key management
include:

® Use built-in encryption routines that include secure key management. Data
Protection application programming interface (DPAPI) is an example of an
encryption service provided on Windows 2000 and later operating systems where
the operating system manages the key.

® Use strong random key generation functions and store the key in a restricted
location—for example, in a registry key secured with a restricted ACL—if you
use an encryption mechanism that requires you to generate or manage the key.

® Encrypt the encryption key using DPAPI for added security.
® Expire keys regularly.

Weak or Custom Encryption

An encryption algorithm provides no security if the encryption is cracked or is
vulnerable to brute force cracking. Custom algorithms are particularly vulnerable if
they have not been tested. Instead, use published, well-known encryption algorithms
that have withstood years of rigorous attacks and scrutiny.

Countermeasures that address the vulnerabilities of weak or custom encryption
include:

® Do not develop your own custom algorithms.
® Use the proven cryptographic services provided by the platform.
® Stay informed about cracked algorithms and the techniques used to crack them.

Checksum Spoofing

Do not rely on hashes to provide data integrity for messages sent over networks.
Hashes such as Safe Hash Algorithm (SHA1) and Message Digest compression
algorithm (MD5) can be intercepted and changed. Consider the following base 64
encoding UTF-8 message with an appended Message Authentication Code (MAC).

PTlaintext: Place 10 orders.
Hash: TOmUNdEQh13I090TcaP4FYDX6pU=

Chapter 2: Threats and Countermeasures 39

If an attacker intercepts the message by monitoring the network, the attacker could
update the message and recompute the hash (guessing the algorithm that you used).
For example, the message could be changed to:

PTaintext: Place 100 orders.
Hash: oEDulpv/ZtIU7BXDDNv17EAHeAU=

When recipients process the message, and they run the plaintext (“Place 100 orders”)
through the hashing algorithm, and then recompute the hash, the hash they calculate
will be equal to whatever the attacker computed.

To counter this attack, use a MAC or HMAC. The Message Authentication Code
Triple Data Encryption Standard (MACTripleDES) algorithm computes a MAC, and
HMACSHAT1 computes an HMAC. Both use a key to produce a checksum. With these
algorithms, an attacker needs to know the key to generate a checksum that would
compute correctly at the receiver.

Parameter Manipulation

Parameter manipulation attacks are a class of attack that relies on the modification of
the parameter data sent between the client and Web application. This includes query
strings, form fields, cookies, and HTTP headers. Top parameter manipulation threats
include:

® Query string manipulation
® Form field manipulation

e Cookie manipulation

e HTTP header manipulation

Query String Manipulation

Users can easily manipulate the query string values passed by HTTP GET from client
to server because they are displayed in the browser’s URL address bar. If your
application relies on query string values to make security decisions, or if the values
represent sensitive data such as monetary amounts, the application is vulnerable to
attack.

Countermeasures to address the threat of query string manipulation include:

® Avoid using query string parameters that contain sensitive data or data that can
influence the security logic on the server. Instead, use a session identifier to
identify the client and store sensitive items in the session store on the server.

® Choose HTTP POST instead of GET to submit forms.

] Encrypt query string parameters.

40

Part I: Introduction to Threats and Countermeasures

Form Field Manipulation

The values of HTML form fields are sent in plaintext to the server using the HTTP
POST protocol. This may include visible and hidden form fields. Form fields of any
type can be easily modified and client-side validation routines bypassed. As a result,
applications that rely on form field input values to make security decisions on the
server are vulnerable to attack.

To counter the threat of form field manipulation, instead of using hidden form fields,
use session identifiers to reference state maintained in the state store on the server.

Cookie Manipulation

Cookies are susceptible to modification by the client. This is true of both persistent
and memory-resident cookies. A number of tools are available to help an attacker
modify the contents of a memory-resident cookie. Cookie manipulation is the attack

that refers to the modification of a cookie, usually to gain unauthorized access to a
Web site.

While SSL protects cookies over the network, it does not prevent them from being
modified on the client computer. To counter the threat of cookie manipulation,
encrypt or use an HMAC with the cookie.

HTTP Header Manipulation

HTTP headers pass information between the client and the server. The client
constructs request headers while the server constructs response headers. If your
application relies on request headers to make a decision, your application is
vulnerable to attack.

Do not base your security decisions on HTTP headers. For example, do not trust the
HTTP Referer to determine where a client came from because this is easily falsified.

Exception Management

Exceptions that are allowed to propagate to the client can reveal internal
implementation details that make no sense to the end user but are useful to attackers.
Applications that do not use exception handling or implement it poorly are also
subject to denial of service attacks. Top exception handling threats include:

® Attacker reveals implementation details
® Denial of service

Chapter 2: Threats and Countermeasures 41

Attacker Reveals Implementation Details

One of the important features of the NET Framework is that it provides rich
exception details that are invaluable to developers. If the same information is allowed
to fall into the hands of an attacker, it can greatly help the attacker exploit potential
vulnerabilities and plan future attacks. The type of information that could be
returned includes platform versions, server names, SQL command strings, and
database connection strings.

Countermeasures to help prevent internal implementation details from being
revealed to the client include:
® Use exception handling throughout your application’s code base.

e Handle and log exceptions that are allowed to propagate to the application
boundary.

® Return generic, harmless error messages to the client.

Denial of Service

Attackers will probe a Web application, usually by passing deliberately malformed
input. They often have two goals in mind. The first is to cause exceptions that reveal
useful information and the second is to crash the Web application process. This can
occur if exceptions are not properly caught and handled.

Countermeasures to help prevent application-level denial of service include:

® Thoroughly validate all input data at the server.

® Use exception handling throughout your application’s code base.

Auditing and Logging

Auditing and logging should be used to help detect suspicious activity such as
footprinting or possible password cracking attempts before an exploit actually occurs.
It can also help deal with the threat of repudiation. It is much harder for a user to
deny performing an operation if a series of synchronized log entries on multiple
servers indicate that the user performed that transaction.

Top auditing and logging related threats include:

® User denies performing an operation

® Attackers exploit an application without leaving a trace

® Attackers cover their tracks

42

Part I: Introduction to Threats and Countermeasures

User Denies Performing an Operation

The issue of repudiation is concerned with a user denying that he or she performed
an action or initiated a transaction. You need defense mechanisms in place to ensure
that all user activity can be tracked and recorded.

Countermeasures to help prevent repudiation threats include:

® Audit and log activity on the Web server and database server, and on the
application server as well, if you use one.

® Log key events such as transactions and login and logout events.
® Do not use shared accounts since the original source cannot be determined.

Attackers Exploit an Application Without Leaving a Trace

System and application-level auditing is required to ensure that suspicious activity
does not go undetected.

Countermeasures to detect suspicious activity include:

® Log critical application level operations.

® Use platform-level auditing to audit login and logout events, access to the file
system, and failed object access attempts.

® Back up log files and regularly analyze them for signs of suspicious activity.

Attackers Cover Their Tracks

Your log files must be well-protected to ensure that attackers are not able to cover
their tracks.

Countermeasures to help prevent attackers from covering their tracks include:

® Secure log files by using restricted ACLs.

® Relocate system log files away from their default locations.

Summary

By being aware of the typical approach used by attackers as well as their goals, you
can be more effective when applying countermeasures. It also helps to use a goal-
based approach when considering and identifying threats, and to use the STRIDE
model to categorize threats based on the goals of the attacker, for example, to spoof
identity, tamper with data, deny service, elevate privileges, and so on. This allows
you to focus more on the general approaches that should be used for risk mitigation,
rather than focusing on the identification of every possible attack, which can be a
time-consuming and potentially fruitless exercise.

Chapter 2: Threats and Countermeasures 43

This chapter has shown you the top threats that have the potential to compromise
your network, host infrastructure, and applications. Knowledge of these threats,
together with the appropriate countermeasures, provides essential information for
the threat modeling process It enables you to identify the threats that are specific to
your particular scenario and prioritize them based on the degree of risk they pose to
your system. This structured process for identifying and prioritizing threats is
referred to as threat modeling. For more information, see Chapter 3, “Threat
Modeling.”

Additional Resources

For further related reading, see the following resources:

® For more information about network threats and countermeasures, see Chapter 15,
“Securing Your Network.”

® For more information about host threats and countermeasures, see Chapter 16,
“Securing Your Web Server,” Chapter 17, “Securing Your Application Server,”
Chapter 18, “Securing Your Database Server,” and Chapter 19, “Securing Your
ASPNET Application.”

® For more information about addressing the application level threats presented
in this chapter, see the Building chapters in Part III, “Building Secure Web
Applications” of this guide.

e Michael Howard and David LeBlanc, Writing Secure Code 2nd Edition.
Microsoft Press, Redmond, WA, 2002

® For more information about tracking and fixing buffer overruns, see the
MSDN article, “Fix Those Buffer Overruns,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dncode/html/secure05202002.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure05202002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure05202002.asp

Threat Modeling

In This Chapter

® Steps to decompose an application architecture to discover vulnerabilities
® How to identify and document threats that are relevant to your application

Overview

Threat modeling allows you to systematically identify and rate the threats that are
most likely to affect your system. By identifying and rating threats based on a solid
understanding of the architecture and implementation of your application, you can
address threats with appropriate countermeasures in a logical order, starting with the
threats that present the greatest risk.

Threat modeling has a structured approach that is far more cost efficient and effective
than applying security features in a haphazard manner without knowing precisely
what threats each feature is supposed to address. With a random, “shotgun”
approach to security, how do you know when your application is “secure enough,”
and how do you know the areas where your application is still vulnerable? In short,
until you know your threats, you cannot secure your system.

Before You Begin

Before you start the threat modeling process, it is important that you understand the
following basic terminology:

® Asset. Aresource of value, such as the data in a database or on the file system.
A system resource.

® Threat. A potential occurrence, malicious or otherwise, that might damage or
compromise your assets.

46 Part I: Introduction to Threats and Countermeasures

® Vulnerability. A weakness in some aspect or feature of a system that makes a
threat possible. Vulnerabilities might exist at the network, host, or application
levels.

® Attack (or exploit). An action taken by someone or something that harms an asset.
This could be someone following through on a threat or exploiting a vulnerability.

® Countermeasure. A safeguard that addresses a threat and mitigates risk.

Consider a simple house analogy: an item of jewelry in a house is an asset and a
burglar is an attacker. A door is a feature of the house and an open door represents a
vulnerability. The burglar can exploit the open door to gain access to the house and
steal the jewelry. In other words, the attacker exploits a vulnerability to gain access to
an asset. The appropriate countermeasure in this case is to close and lock the door.

How to Use This Chapter

This chapter outlines a generic process that helps you identify and document threats
to your application. The following are recommendations on how to use this chapter:

e Establish a process for threat modeling. Use this chapter as a starting point for
introducing a threat modeling process in your organization if you do not already
have one. If you already have a process, then you can use this as a reference for
comparison.

® Use the other chapters in this guide to familiarize yourself with the most
common threats. Read Chapter 2, “Threats and Countermeasures,” for an
overview of common threats that occur at the network, host, and application
levels.

® For more specific threats to your network, see “Threats and Countermeasures”
in Chapter 15, “Securing Your Network.”

® For more specific threats to your Web server, application server, and database
server, see “Threats and Countermeasures” in Chapter 16, “Securing Your Web
Server,” Chapter 17, “Securing Your Application Server,” and Chapter 18,
“Securing Your Database Server.”

® For more specific threats to your assemblies, ASP.NET, serviced components,
remoted components, Web Services, and data access, see “Threats and
Countermeasures” in Chapter 7, “Building Secure Assemblies;” Chapter 10,
“Building Secure ASPNET Pages and Controls;” Chapter 11, “Building
Secure Serviced Components;” Chapter 12, “Building Secure Web Services;”
Chapter 13, “Building Secure Remoted Components;” and Chapter 14,
“Building Secure Data Access.”

® Evolve your threat model. Build a threat model early and then evolve it as you go.
It is a work in progress. Security threats evolve, and so does your application.
Having a document that identifies both what the known threats are and how they
have been addressed (or not) puts you in control of the security of your
application.

Chapter 3: Threat Modeling 47

Threat Modeling Principles

Threat modeling should not be a one time only process. It should be an iterative
process that starts during the early phases of the design of your application and
continues throughout the application life cycle. There are two reasons for this. First,
it is impossible to identify all of the possible threats in a single pass. Second, because
applications are rarely static and need to be enhanced and adapted to suit changing
business requirements, the threat modeling process should be repeated as your
application evolves.

The Process

Figure 3.1 shows the threat modeling process that you can perform using a six-stage
process.

Note The following process outline can be used for applications that are currently in development
and for existing applications.

Threat Modeling Process

1. Identify Assets

2. Create an Architecture Overview

3. Decompose the Application

4. |dentify the Threats

5. Document the Threats

v 6. Rate the Threats

Figure 3.1
An overview of the threat modeling process

48 Part I: Introduction to Threats and Countermeasures

1. Identify assets.

2.

Identify the valuable assets that your systems must protect.
Create an architecture overview.

Use simple diagrams and tables to document the architecture of your application,
including subsystems, trust boundaries, and data flow.

. Decompose the application.

Decompose the architecture of your application, including the underlying network
and host infrastructure design, to create a security profile for the application. The
aim of the security profile is to uncover vulnerabilities in the design,
implementation, or deployment configuration of your application.

. Identify the threats.

Keeping the goals of an attacker in mind, and with knowledge of the architecture
and potential vulnerabilities of your application, identify the threats that could
affect the application.

. Document the threats.

Document each threat using a common threat template that defines a core set of
attributes to capture for each threat.

. Rate the threats.

Rate the threats to prioritize and address the most significant threats first. These
threats present the biggest risk. The rating process weighs the probability of the
threat against damage that could result should an attack occur. It might turn out
that certain threats do not warrant any action when you compare the risk posed by
the threat with the resulting mitigation costs.

The Output

The output from the threat modeling process is a document for the various members
of your project team. It allows them to clearly understand the threats that need to be
addressed and how to address them. Threat models consist of a definition of the
architecture of your application and a list of threats for your application scenario, as
Figure 3.2 shows.

Architecture
Diagrams and
Definitions

Identified
Threats and
Threat
Attributes

Figure 3.2

B H

Threat #1

Threat #2

Threat #3

Threat #n

Components of the threat model

Step 1. Identify Assets

Identify the assets that you need to protect. This could range from confidential data,
such as your customer or orders database, to your Web pages or Web site availability.

Step 2. Create an Architecture Overview

Chapter 3: Threat Modeling 49

At this stage, the goal is to document the function of your application, its architecture
and physical deployment configuration, and the technologies that form part of your
solution. You should be looking for potential vulnerabilities in the design or
implementation of the application.

During this step, you perform the following tasks:
® Identify what the application does.

® Create an architecture diagram.

® Identify the technologies.

50 Part I: Introduction to Threats and Countermeasures

Identify What the Application Does

Identify what the application does and how it uses and accesses assets. Document
use cases to help you and others understand how your application is supposed to be
used. This also helps you work out how it can be misused. Use cases put application
functionality in context.

Here are some sample use cases for a self-service, employee human resources
application:

e Employee views financial data.

e Employee updates personal data.

® Manager views employee details.

In the above cases you can look at the implications of the business rules being
misused. For example, consider a user trying to modify personal details of another
user. He or she should not be authorized to access those details according to the
defined application requirements.

Create an Architecture Diagram

Create a high-level architecture diagram that describes the composition and structure
of your application and its subsystems as well as its physical deployment
characteristics, such as the diagram in Figure 3.3. Depending on the complexity of
your system, you might need to create additional diagrams that focus on different
areas, for example, a diagram to model the architecture of a middle-tier application
server, or one to model the interaction with an external system.

Chapter 3: Threat Modeling 51

File Authorization

URL Authorization
NTFS Permissions .NET Roles User-Defined Role
(Authorization) (Authorization) (Authorization)
Trust Boundary
Trust|Boundary
Alice ASPNET
M b (Procgss
ary | | | ns Lol L Identity)
Bob X
> 4 !
IPSec
SSL (Privacy/Integrity)
(Privacy/Integrity)
Anonymous Forms Windows
Authentication Authentication Authentication

Figure 3.3
Sample application architecture diagram

Start by drawing a rough diagram that conveys the composition and structure of the
application and its subsystems together with its deployment characteristics. Then,
evolve the diagram by adding details about the trust boundaries, authentication, and
authorization mechanisms as and when you discover them (usually during Step 3
when you decompose the application).

Identify the Technologies

Identify the distinct technologies that are used to implement your solution. This helps
you focus on technology-specific threats later in the process. It also helps you
determine the correct and most appropriate mitigation techniques. The technologies
you are most likely to identify include ASP.NET, Web Services, Enterprise Services,
Microsoft NET Remoting, and ADO.NET. Also identify any unmanaged code that
your application calls.

52 Part I: Introduction to Threats and Countermeasures

Document the technologies using a table similar to Table 3.1, below.

Table 3.1 Implementation Technologies

Technology/Platform Implementation Details

Microsoft SQL Server on Microsoft Includes logins, database users, user defined database roles,
Windows Advanced Server 2000 tables, stored procedures, views, constraints, and triggers.
Microsoft .NET Framework Used for Forms authentication.

Secure Sockets Layer (SSL) Used to encrypt HTTP traffic.

Step 3. Decompose the Application

In this step, you break down your application to create a security profile for the
application based on traditional areas of vulnerability. You also identify trust
boundaries, data flow, entry points, and privileged code. The more you know about
the mechanics of your application, the easier it is to uncover threats. Figure 3.4 shows
the various targets for the decomposition process.

Application Decomposition
Security Profile Trust Boundaries
Input Validation Session Management Data Flow
Authentication Cryptography Entry Points
- Parameter .
Authorization Manipulation Privileged Code
Configuration Exception
Management Management
Sensitive Data Auditing and Logging

Figure 3.4

Targets for application decomposition

During this step, you perform the following tasks:
Identify trust boundaries.

Identify data flow.

Identify entry points.

Identify privileged code.

Document the security profile.

Chapter 3: Threat Modeling 53

Identify Trust Boundaries

Identify the trust boundaries that surround each of the tangible assets of your
application. These assets are determined by your application design. For each
subsystem, consider whether the upstream data flows or user input is trusted, and if
not, consider how the data flows and input can be authenticated and authorized.
Also consider whether the calling code is trusted, and if it is not, consider how it can
be authenticated and authorized. You must be able to ensure that the appropriate
gatekeepers guard all entry points into a particular trust boundary and that the
recipient entry point fully validates all data passed across a trust boundary.

Start by analyzing trust boundaries from a code perspective. The assembly, which
represents one form of trust boundary, is a useful place to start. Which assemblies
trust which other assemblies? Does a particular assembly trust the code that calls it,
or does it use code access security to authorize the calling code?

Also consider server trust relationships. Does a particular server trust an upstream
server to authenticate and authorize the end users, or does the server provide its own
gatekeeping services? Also, does a server trust an upstream server to pass it data that
is well formed and correct?

For example, in Figure 3.3, the Web application accesses the database server by using
a fixed, trusted identity, which in this case is the ASPNET Web application process
account. In this scenario, the database server trusts the application to authenticate
and authorize callers and forward only valid data request data on behalf of
authorized users.

Note In a .NET Framework application, the assembly defines the smallest unit of trust. Whenever
data is passed across an assembly boundary—which by definition includes an application domain,
process, or machine boundary—the recipient entry point should validate its input data.

Identify Data Flow

A simple approach is to start at the highest level and then iteratively decompose the
application by analyzing the data flow between individual subsystems. For example,
analyze the data flow between a Web application and an Enterprise Services
application and then between individual serviced components.

Data flow across trust boundaries is particularly important because code that is
passed data from outside its own trust boundary should assume that the data is
malicious and perform thorough validation of the data.

Note Data flow diagrams (DFDs) and sequence diagrams can help with the formal decomposition
of a system. A DFD is a graphical representation of data flows, data stores, and relationships
between data sources and destinations. A sequence diagram shows how a group of objects
collaborate in terms of chronological events.

54 Part I: Introduction to Threats and Countermeasures

Identify Entry Points

The entry points of your application also serve as entry points for attacks. Entry
points might include the front-end Web application listening for HTTP requests. This
entry point is intended to be exposed to clients. Other entry points, such as internal
entry points exposed by subcomponents across the tiers of your application, may
only exist to support internal communication with other components. However, you
should know where these are, and what types of input they receive in case an
attacker manages to bypass the front door of the application and directly attack an
internal entry point.

For each entry point, you should be able to determine the types of gatekeepers that
provide authorization and the degree of validation.

Logical application entry points include user interfaces provide by Web pages,
service interfaces provided by Web services, serviced components, and .NET
Remoting components and message queues that provide asynchronous entry points.
Physical or platform entry points include ports and sockets.

Identify Privileged Code

Privileged code accesses specific types of secure resources and performs other
privileged operations. Secure resource types include DNS servers, directory services,
environment variables, event logs, file systems, message queues, performance
counters, printers, the registry, sockets, and Web services. Secure operations include
unmanaged code calls, reflection, serialization, code access security permissions, and
manipulation of code access security policy, including evidence.

Privileged code must be granted the appropriate code access security permissions by
code access security policy. Privileged code must ensure that the resources and
operations that it encapsulates are not exposed to untrusted and potentially malicious
code. .NET Framework code access security verifies the permissions granted to
calling code by performing stack walks. However, it is sometimes necessary to
override this behavior and short-circuit the full stack walk, for example, when you
want to restrict privileged code with a sandbox or otherwise isolate privileged code.
Doing so opens your code up to luring attacks, where malicious code calls your code
through trusted intermediary code.

Whenever you override the default security behavior provided by code access
security, do it diligently and with the appropriate safeguards. For more information
about reviewing code for security flaws, see Chapter 21, “Code Review.” For more
information about code access security, see Chapter 8, “Code Access Security in
Practice” and Chapter 9, “Using Code Access Security with ASP.NET.”

Chapter 3: Threat Modeling 55

Document the Security Profile

Next, you should identify the design and implementation approaches used for input
validation, authentication, authorization, configuration management, and the
remaining areas where applications are most susceptible to vulnerabilities. By doing
this, you create a security profile for the application.

The following table shows what kinds of questions to ask while analyzing each
aspect of the design and implementation of your application. For more information
about reviewing application architecture and design, see Chapter 5, “Architecture
and Design Review.”

Table 3.2 Creating a Security Profile

Category
Input validation

Authentication

Authorization

Configuration
management

Sensitive data

Considerations
Is all input data validated?

Could an attacker inject commands or malicious data into the application?

Is data validated as it is passed between separate trust boundaries (by the
recipient entry point)?

Can data in the database be trusted?

Are credentials secured if they are passed over the network?

Are strong account policies used?

Are strong passwords enforced?

Are you using certificates?

Are password verifiers (using one-way hashes) used for user passwords?
What gatekeepers are used at the entry points of the application?

How is authorization enforced at the database?

Is a defense in depth strategy used?

Do you fail securely and only allow access upon successful confirmation of
credentials?

What administration interfaces does the application support?
How are they secured?

How is remote administration secured?

What configuration stores are used and how are they secured?
What sensitive data is handled by the application?

How is it secured over the network and in persistent stores?

What type of encryption is used and how are encryption keys secured?

(continued)

56 Part I: Introduction to Threats and Countermeasures

Table 3.2 Creating a Security Profile /continued)

Category

Session
management

Cryptography

Parameter
manipulation

Exception
management

Auditing and
logging

Considerations
How are session cookies generated?

How are they secured to prevent session hijacking?

How is persistent session state secured?

How is session state secured as it crosses the network?

How does the application authenticate with the session store?

Are credentials passed over the wire and are they maintained by the
application? If so, how are they secured?

What algorithms and cryptographic techniques are used?
How long are encryption keys and how are they secured?
Does the application put its own encryption into action?
How often are keys recycled?

Does the application detect tampered parameters?

Does it validate all parameters in form fields, view state, cookie data, and
HTTP headers?

How does the application handle error conditions?

Are exceptions ever allowed to propagate back to the client?

Are generic error messages that do not contain exploitable information used?
Does your application audit activity across all tiers on all servers?

How are log files secured?

Step 4. Identify the Threats

In this step, you identify threats that might affect your system and compromise your
assets. To conduct this identification process, bring members of the development and
test teams together to conduct an informed brainstorming session in front of a
whiteboard. This is a simple yet effective way to identify potential threats. Ideally, the
team consists of application architects, security professionals, developers, testers, and
system administrators.

You can use two basic approaches:

Chapter 3: Threat Modeling 57

® Use STRIDE to identify threats. Consider the broad categories of threats, such as
spoofing, tampering, and denial of service, and use the STRIDE model from
Chapter 2, “Threats and Countermeasures” to ask questions in relation to each
aspect of the architecture and design of your application. This is a goal-based
approach where you consider the goals of an attacker. For example, could an
attacker spoof an identity to access your server or Web application? Could
someone tamper with data over the network or in a store? Could someone deny
service?

® Use categorized threat lists. With this approach, you start with a laundry list of
common threats grouped by network, host, and application categories. Next,
apply the threat list to your own application architecture and any vulnerabilities
you have identified earlier in the process. You will be able to rule some threats out
immediately because they do not apply to your scenario.

Use the following resources to help you with the threat identification process:

® For a list of threats organized by network, host, and application layers, as well as
explanations of the threats and associated countermeasures, see Chapter 2,
“Threats and Countermeasures.”

® For a list of threats by technology, see “Threats and Countermeasures” at the
beginning of each of the “Building” chapters in Part III of this guide.

During this step, you perform the following tasks:

® Identify network threats.

® Identity host threats.

® Identify application threats.

Identify Network Threats

This is a task for network designers and administrators. Analyze the network
topology and the flow of data packets, together with router, firewall, and switch
configurations, and look for potential vulnerabilities. Also pay attention to virtual
private network (VPN) endpoints. Review the network defenses against the most
common network layer threats identified in Chapter 2, “Threats and
Countermeasures.”

Top network threats to consider during the design phase include:

® Using security mechanisms that rely on the IP address of the sender. It is relatively
easy to send IP packets with false source IP addresses (IP spoofing).

® Passing session identifiers or cookies over unencrypted network channels. This
can lead to IP session hijacking.

® Passing clear text authentication credentials or other sensitive data over
unencrypted communication channels. This could allow an attacker to monitor the
network, obtain logon credentials, or obtain and possibly tamper with other
sensitive data items.

58 Part I: Introduction to Threats and Countermeasures

You must also ensure that your network is not vulnerable to threats arising from
insecure device and server configuration. For example, are unnecessary ports and
protocols closed and disabled? Are routing tables and DNS server secured? Are
the TCP network stacks hardened on your servers? For more information about
preventing this type of vulnerability, see Chapter 15, “Securing Your Network.”

Identify Host Threats

The approach used throughout this guide when configuring host security (that is,
Microsoft Windows 2000 and .NET Framework configuration) is to divide the
configuration into separate categories to allow you to apply security settings in a
structured and logical manner. This approach is also ideally suited for reviewing
security, spotting vulnerabilities, and identifying threats. Common configuration
categories applicable to all server roles include patches and updates, services,
protocols, accounts, files and directories, shares, ports, and auditing and logging.
For each category, identify potentially vulnerable configuration settings. From these,
identify threats.

Top vulnerabilities to consider include:

® Maintaining unpatched servers, which can be exploited by viruses, Trojan horses,
worms, and well-known IIS attacks.

e Using nonessential ports, protocols, and services, which increase the attack profile
and enable attackers to gather information about and exploit your environment.

Allowing unauthenticated anonymous access.

Using weak passwords and account policies that lead to password cracking,
identity spoofing, and denial of service attacks if accounts can be locked out
deliberately.

Identify Application Threats

In the previous steps, you defined the architecture, data flow, and trust boundaries of
your application. You also created a security profile that describes how the
application handles core areas, such as authentication, authorization, configuration
management, and other areas.

Now use the broad STRIDE threat categories and predefined threat lists to scrutinize
each aspect of the security profile of your application. Focus on application threats,
technology-specific threats, and code threats. Key vulnerabilities to consider include:

e Using poor input validation that leads to cross-site scripting (XSS), SQL injection,
and buffer overflow attacks.

® Passing authentication credentials or authentication cookies over unencrypted
network links, which can lead to credential capture or session hijacking.

e Using weak password and account policies, which can lead to unauthorized
access.

Chapter 3: Threat Modeling 59

® Failing to secure the configuration management aspects of your application,
including administration interfaces.

® Storing configuration secrets, such as connection strings and service account
credentials, in clear text.

Using over-privileged process and service accounts.

Using insecure data access coding techniques, which can increase the threat posed
by SQL injection.

® Using weak or custom encryption and failing to adequately secure encryption
keys.

® Relying on the integrity of parameters that are passed from the Web browser, for
example, form fields, query strings, cookie data, and HTTP headers.

® Using insecure exception handling, which can lead to denial of service attacks and
the disclosure of system-level details that are useful to an attacker.

® Doing inadequate auditing and logging, which can lead to repudiation threats.

Using Attack Trees and Attack Patterns

Attack trees and attack patterns are the primary tools that security professionals use.
These are not essential components of the threat identification phase but you may
find them useful. They allow you to analyze threats in greater depth, going beyond
what you already know to identify other possibilities.

Important When you use previously prepared categorized lists of known threats, it only reveals the
common, known threats. Additional approaches, such as the use of attack trees and attack patterns,
can help you identify other potential threats.

An attack tree is a way of collecting and documenting the potential attacks on your
system in a structured and hierarchical manner. The tree structure gives you a
descriptive breakdown of various attacks that the attacker uses to compromise the
system. By creating attack trees, you create a reusable representation of security
issues that helps focus efforts. Your test team can create test plans to validate security
design. Developers can make tradeoffs during implementation and architects or
developer leads can evaluate the security cost of alternative approaches.

Attack patterns are a formalized approach to capturing attack information in your
enterprise. These patterns can help you identify common attack techniques.

60 Part I: Introduction to Threats and Countermeasures

Creating Attack Trees

While several approaches can be used in practice, the accepted method is to identify
goals and sub-goals of an attack, as well as what must be done so that the attack
succeeds. You can use a hierarchical diagram to represent your attack tree, or use a
simple outline. What is important in the end is that you have something that portrays
the attack profile of your application. You can then evaluate likely security risks,
which you can mitigate with the appropriate countermeasures, such as correcting a
design approach, hardening a configuration setting, and other solutions.

Start building an attack tree by creating root nodes that represent the goals of the
attacker. Then add the leaf nodes, which are the attack methodologies that represent
unique attacks. Figure 3.5 shows a simple example.

Threat #1

Obtaining authentication
credentials over the

network
and//
1.1 1.2
Clear text credentials Attacker uses network
sent over the network monitoring tools

1.21
Attacker recognizes
credential data

Figure 3.5
Representation of an attack tree

You can label leaf nodes with AND and OR labels. For example, in Figure 3.5, both
1.1 and 1.2 must occur for the threat to result in an attack.

Attack trees like the one shown above have a tendency to become complex quickly.
They are also time-consuming to create. An alternative approach favored by some
teams is to structure your attack tree using an outline such as the one shown below.

1. Goal One
1.1 Sub-goal one
1.2 Sub-goal two
2. Goal Two
2.1 Sub-goal one
2.2 Sub-goal two

Chapter 3: Threat Modeling 61

Note In addition to goals and sub-goals, attack trees include methodologies and required
conditions.

Here is an example of the outline approach in action:

Threat #1 Attacker obtains authentication credentials by monitoring the network
1.1 Clear text credentials sent over the network AND
1.2 Attacker uses network-monitoring tools
1.2.1 Attacker recognizes credential data

For a complete example, see “Sample Attack Trees” in the “Cheat Sheets” section of
this guide.

Attack Patterns

Attack patterns are generic representations of commonly occurring attacks that

can occur in a variety of different contexts. The pattern defines the goal of the attack
as well as the conditions that must exist for the attack to occur, the steps that are
required to perform the attack, and the results of the attack. Attack patterns focus
on attack techniques, whereas STRIDE-based approaches focus on the goals of the
attacker.

An example of an attack pattern is the code-injection attack pattern that is used to
describe code injection attacks in a generic way. Table 3.3 describes the code-injection
attack pattern.

Table 3.3 Code Injection Attack Pattern
Pattern Code injection attacks
Attack goals Command or code execution

Required conditions Weak input validation
Code from the attacker has sufficient privileges on the server.
Attack technique 1. Identify program on target system with an input validation vulnerability.

2. Create code to inject and run using the security context of the target
application.

3. Construct input value to insert code into the address space of the target
application and force a stack corruption that causes application
execution to jump to the injected code.

Attack results Code from the attacker runs and performs malicious action.

For more information about attack patterns, see the “Additional References” section
at the end of this chapter.

62 Part I: Introduction to Threats and Countermeasures

Step 5. Document the Threats

To document the threats of your application, use a template that shows several threat
attributes similar to the one below. The threat description and threat target are
essential attributes. Leave the risk rating blank at this stage. This is used in the final
stage of the threat modeling process when you prioritize the identified threat list.
Other attributes you may want to include are the attack techniques, which can also
highlight the vulnerabilities exploited, and the countermeasures that are required to
address the threat.

Table 3.4 Threat 1
Threat Description Attacker obtains authentication credentials by monitoring the network

Threat target Web application user authentication process
Risk

Attack techniques Use of network monitoring software
Countermeasures Use SSL to provide encrypted channel

Table 3.5 Threat 2
Threat Description Injection of SQL commands

Threat target Data access component

Risk

Attack techniques Attacker appends SQL commands to user name, which is used to form a
SQL query

Countermeasures Use a regular expression to validate the user name, and use a stored

procedure that uses parameters to access the database.

Step 6. Rate the Threats

At this stage in the process, you have a list of threats that apply to your particular
application scenario. In the final step of the process, you rate threats based on the
risks they pose. This allows you to address the threats that present the most risk first,
and then resolve the other threats. In fact, it may not be economically viable to
address all of the identified threats, and you may decide to ignore some because of
the chance of them occurring is small and the damage that would result if they did is
minimal.

Chapter 3: Threat Modeling 63

Risk = Probability * Damage Potential

This formula indicates that the risk posed by a particular threat is equal to the
probability of the threat occurring multiplied by the damage potential, which
indicates the consequences to your system if an attack were to occur.

You can use a 1-10 scale for probability where 1 represents a threat that is very
unlikely to occur and 10 represents a near certainty. Similarly, you can use a 1-10
scale for damage potential where 1 indicates minimal damage and 10 represents a
catastrophe. Using this approach, the risk posed by a threat with a low likelihood of
occurring but with high damage potential is equal to the risk posed by a threat with
limited damage potential but that is extremely likely to occur.

For example, if Probability=10 and Damage Potential=1, then Risk = 10 * 1 = 10. If
Probability=1 and Damage Potential=10, then Risk = 1 * 10 = 10.

This approach results in a scale of 1-100, and you can divide the scale into three
bands to generate a High, Medium, or Low risk rating.

High, Medium, and Low Ratings

You can use a simple High, Medium, or Low scale to prioritize threats. If a threat is
rated as High, it poses a significant risk to your application and needs to be
addressed as soon as possible. Medium threats need to be addressed, but with less
urgency. You may decide to ignore low threats depending upon how much effort and
cost is required to address the threat.

DREAD

The problem with a simplistic rating system is that team members usually will not
agree on ratings. To help solve this, add new dimensions that help determine what
the impact of a security threat really means. At Microsoft, the DREAD model is used
to help calculate risk. By using the DREAD model, you arrive at the risk rating for a
given threat by asking the following questions:

Damage potential: How great is the damage if the vulnerability is exploited?
Reproducibility: How easy is it to reproduce the attack?

Exploitability: How easy is it to launch an attack?

Affected users: As a rough percentage, how many users are affected?

Discoverability: How easy is it to find the vulnerability?

You can use above items to rate each threat. You can also extend the above questions
to meet your needs. For example, you could add a question about potential
reputation damage:

Reputation: How high are the stakes? Is there a risk to reputation, which could lead
to the loss of customer trust?

64 Part I: Introduction to Threats and Countermeasures

Ratings do not have to use a large scale because this makes it difficult to rate threats
consistently alongside one another. You can use a simple scheme such as High (1),
Medium (2), and Low (3).

When you clearly define what each value represents for your rating system, it helps
avoids confusion. Table 3.6 shows a typical example of a rating table that can be used
by team members when prioritizing threats.

Table 3.6 Thread Rating Table

Rating

D | Damage
potential

R | Reproducibility

E | Exploitability

A | Affected users

D | Discoverability

High (3)

The attacker can
subvert the security
system; get full trust
authorization; run as
administrator; upload
content.

The attack can be
reproduced every time
and does not require a
timing window.

A novice programmer
could make the attack
in a short time.

All users, default
configuration, key
customers

Published information
explains the attack. The
vulnerability is found in
the most commonly
used feature and is
very noticeable.

Medium (2)

Leaking sensitive
information

The attack can be
reproduced, but only
with a timing window
and a particular race
situation.

A skilled programmer
could make the attack,
then repeat the steps.

Some users, non-
default configuration

The vulnerability is in a
seldom-used part of
the product, and only a
few users should come
across it. It would take
some thinking to see
malicious use.

Low (1)

Leaking trivial
information

The attack is very
difficult to reproduce,
even with knowledge of
the security hole.

The attack requires an
extremely skilled
person and in-depth
knowledge every time
to exploit.

Very small percentage
of users, obscure
feature; affects
anonymous users

The bug is obscure,
and it is unlikely that
users will work out
damage potential.

After you ask the above questions, count the values (1-3) for a given threat. The
result can fall in the range of 5-15. Then you can treat threats with overall ratings of
12-15 as High risk, 8-11 as Medium risk, and 5-7 as Low risk.

For example, consider the two threats described earlier:

® Attacker obtains authentication credentials by monitoring the network.

® SQL commands injected into application.

Chapter 3: Threat Modeling 65

Table 3.7 shows an example DREAD rating for both threats:

Table 3.7 DREAD rating

Threat D R E A D Total Rating

Attacker obtains authentication 3 3 2 2 2 12 High
credentials by monitoring the network.

SQL commands injected into application. 3 3 3 3 2 14 High

Once you have obtained the risk rating, you update the documented threats and add
the discovered rating level, which is High for both of the above threats. Table 3.8
shows an example.

Table 3.8 Threat 1

Threat Description Attacker obtains authentication credentials by monitoring the network

Threat target Web application user authentication process
Risk rating High

Attack techniques Use of network monitoring software
Countermeasures Use SSL to provide encrypted channel

What Comes After Threat Modeling?

The output of the threat modeling process includes documentation of the security
aspects of the architecture of your application and a list of rated threats. The threat
model helps you orchestrate development team members and focus on the most
potent threats.

Important Threat modeling is an iterative process. The threat model is a document that evolves
and that various team members can work from.

The threat model can be used by the following groups of people:

® Designers can use it to make secure design choices about technologies and
functionality.

Developers who write code can use it to mitigate risks.

Testers can write test cases to test if the application is vulnerable to the threats
identified by the analysis.

66 Part I: Introduction to Threats and Countermeasures

Generating a Work Item Report

From the initial threat model, you can create a more formalized work item report that
can include additional attributes, such as a Bug ID, which can be used to tie the threat
in with your favorite bug tracking system. In fact, you may choose to enter the
identified threats in your bug tracking system and use its reporting facilities to
generate the report. You can also include a status column to indicate whether or not
the bug has been fixed. You should make sure the report includes the original threat
number to tie it back to the threat model document.

Organize the threats in the report by network, host, and application categories. This
makes the report easier to consume for different team members in different roles.
Within each category, present the threats in prioritized order starting with the ones
given a high risk rating followed by the threats that present less risk.

Summary

While you can mitigate the risk of an attack, you do not mitigate or eliminate the
actual threat. Threats still exist regardless of the security actions you take and the
countermeasures you apply. The reality in the security world is that you
acknowledge the presence of threats and you manage your risks. Threat modeling
can help you manage and communicate security risks across your team.

Treat threat modeling as an iterative process. Your threat model should be a dynamic
item that changes over time to cater to new types of threats and attacks as they are
discovered. It should also be capable of adapting to follow the natural evolution of
your application as it is enhanced and modified to accommodate changing business
requirements.

Additional Resources

For additional related reading, see the following resources:

e For information on attack patterns, see “Attack Modeling for Information Security
and Survivability,” by Andrew P. Moore, Robert J. Ellison, and Richard C. Linger
at http:/fwwuw.cert.org/archive/pdf/01tn001.pdf

® For information on evaluating threats, assets and vulnerabilities, see
“Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
Framework, Version 1.0” on the Carnegie Mellon Software Engineering Institute
Web site at http://www.sei.cmu.edu/publications/documents/99.reports/99tr017
/99tr017figures.html

® For a walkthrough of threat modeling, see “Architect WebCast: Using Threat
Models to Design Secure Solutions” at http://www.microsoft.com/usa/webcasts
Jondemand/1617.asp

® For more information on creating DFDs, see Writing Secure Code, Second Edition, by
Michael Howard, David C. LeBlanc.

http://www.cert.org/archive/pdf/01tn001.pdf
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017figures.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017figures.html
http://www.microsoft.com/usa/webcasts/ondemand/1617.asp
http://www.microsoft.com/usa/webcasts/ondemand/1617.asp

Designing Secure
Web Applications

In This Part:

o Design Guidelines for Secure Web Applications
o Architecture and Design Review for Security

Design Guidelines for Secure Web
Applications

In This Chapter

Designing input validation strategies

Partitioning Web sites into open and restricted areas
Implementing effective account management practices
Developing effective authentication and authorization strategies
Protecting sensitive data

Protecting user sessions

Preventing parameter manipulation

Handling exceptions securely

Securing an application’s configuration management features

Listing audit and logging considerations

Overview

Web applications present a complex set of security issues for architects, designers,
and developers. The most secure and hack-resilient Web applications are those that
have been built from the ground up with security in mind.

In addition to applying sound architectural and design practices, incorporate
deployment considerations and corporate security policies during the early design
phases. Failure to do so can result in applications that cannot be deployed on an
existing infrastructure without compromising security.

70 Part lI: Designing Secure Web Applications

This chapter presents a set of secure architecture and design guidelines. They have
been organized by common application vulnerability category. These are key areas
for Web application security and they are the areas where mistakes are most often
made.

How to Use This Chapter

This chapter focuses on the guidelines and principles you should follow when
designing an application. The following are recommendations on how to use this
chapter:

® Know the threats to your application so that you can make sure these are
addressed by your design. Read Chapter 2, “Threats and Countermeasures,” to
gain understanding of the threat types to consider. Chapter 2 lists the threats that
may harm your application; keep these threats in mind during the design phase.

® When designing your application, take a systematic approach to the key areas
where your application could be vulnerable to attack. Focus on deployment
considerations; input validation; authentication and authorization; cryptography
and data sensitivity; configuration, session, and exception management; and
adequate auditing and logging to ensure accountability.

Architecture and Design Issues for Web Applications

Web applications present designers and developers with many challenges. The
stateless nature of HTTP means that tracking per-user session state becomes the
responsibility of the application. As a precursor to this, the application must be able
to identify the user by using some form of authentication. Given that all subsequent
authorization decisions are based on the user’s identity, it is essential that the
authentication process is secure and that the session handling mechanism used to
track authenticated users is equally well protected. Designing secure authentication
and session management mechanisms are just a couple of the issues facing Web
application designers and developers. Other challenges occur because input and
output data passes over public networks. Preventing parameter manipulation and
the disclosure of sensitive data are other top issues.

Some of the top issues that must be addressed with secure design practices are shown
in Figure 4.1.

Chapter 4: Design Guidelines for Secure Web Applications 71

Providing
o secure
Authenticating configuration
users .
Preventing Handl_lng Protectin
parameter exceptions I 9
.) sensitive data
manipulation ‘
Application Database
Server Server
§ Web
e - -
[|-y B
Browser 2 Application P | Applications
Protecting | ™=
seg:;t;ve Authorizing Auditing and ‘
users logging activity Encrypting or
I and hashing
venti i iti
i Validating . transactlons seg:;t;ve
cookie replay upstream 9
attacks identities

Figure 4.1
Web application design issues

The design guidelines in this chapter are organized by application vulnerability
category. Experience shows that poor design in these areas, in particular, leads to
security vulnerabilities. Table 4.1 lists the vulnerability categories, and for each one
highlights the potential problems that can occur due to bad design.

Table 4.1 Web Application Vulnerabilities and Potential Problem Due to Bad Design
Vulnerability Category Potential Problem Due to Bad Design

Input Validation Attacks performed by embedding malicious strings in query strings,
form fields, cookies, and HTTP headers. These include command
execution, cross-site scripting (XSS), SQL injection, and buffer
overflow attacks.

Authentication Identity spoofing, password cracking, elevation of privileges, and
unauthorized access.

Authorization Access to confidential or restricted data, tampering, and execution
of unauthorized operations.

Configuration Management Unauthorized access to administration interfaces, ability to update
configuration data, and unauthorized access to user accounts and
account profiles.

(continued)

72 Part lI: Designing Secure Web Applications

Table 4.1 Web Application Vulnerabilities and Potential Problem Due to Bad Design /continued)

Vulnerability Category Potential Problem Due to Bad Design
Sensitive Data Confidential information disclosure and data tampering.
Session Management Capture of session identifiers resulting in session hijacking and

identity spoofing.
Cryptography Access to confidential data or account credentials, or both.

Parameter Manipulation Path traversal attacks, command execution, and bypass of access
control mechanisms among others, leading to information
disclosure, elevation of privileges, and denial of service.

Exception Management Denial of service and disclosure of sensitive system level details.

Auditing and Logging Failure to spot the signs of intrusion, inability to prove a user’s
actions, and difficulties in problem diagnosis.

Deployment Considerations

During the application design phase, you should review your corporate security
policies and procedures together with the infrastructure your application is to be
deployed on. Frequently, the target environment is rigid, and your application design
must reflect the restrictions. Sometimes design tradeoffs are required, for example,
because of protocol or port restrictions, or specific deployment topologies. Identify
constraints early in the design phase to avoid surprises later and involve members of
the network and infrastructure teams to help with this process.

Figure 4.2 shows the various deployment aspects that require design time
consideration.

Application Security I

Host Security I

Deployment Topologies

Local Remote
Application Application
Tier Tier

Network Infrastructure Security

Security Policies and Procedures

Router Firewall Switch

Figure 4.2
Deployment considerations

Chapter 4: Design Guidelines for Secure Web Applications 73

Security Policies and Procedures

Security policy determines what your applications are allowed to do and what the
users of the application are permitted to do. More importantly, they define
restrictions to determine what applications and users are not allowed to do. Identify
and work within the framework defined by your corporate security policy while
designing your applications to make sure you do not breach policy that might
prevent the application being deployed.

Network Infrastructure Components

Make sure you understand the network structure provided by your target
environment and understand the baseline security requirements of the network in
terms of filtering rules, port restrictions, supported protocols, and so on.

Identify how firewalls and firewall policies are likely to affect your application’s
design and deployment. There may be firewalls to separate the Internet-facing
applications from the internal network. There may be additional firewalls in front of
the database. These can affect your possible communication ports and, therefore,
authentication options from the Web server to remote application and database
servers. For example, Windows authentication requires additional ports.

At the design stage, consider what protocols, ports, and services are allowed to access
internal resources from the Web servers in the perimeter network. Also identify the
protocols and ports that the application design requires and analyze the potential
threats that occur from opening new ports or using new protocols.

Communicate and record any assumptions made about network and application
layer security and which component will handle what. This prevents security
controls from being missed when both development and network teams assume that
the other team is addressing the issue. Pay attention to the security defenses that your
application relies upon the network to provide. Consider the implications of a change
in network configuration. How much security have you lost if you implement a
specific network change?

Deployment Topologies

Your application’s deployment topology and whether you have a remote application
tier is a key consideration that must be incorporated in your design. If you have a
remote application tier, you need to consider how to secure the network between
servers to address the network eavesdropping threat and to provide privacy and
integrity for sensitive data.

74

Part lI: Designing Secure Web Applications

Also consider identity flow and identify the accounts that will be used for network
authentication when your application connects to remote servers. A common
approach is to use a least privileged process account and create a duplicate (mirrored)
account on the remote server with the same password. Alternatively, you might use a
domain process account, which provides easier administration but is more
problematic to secure because of the difficulty of limiting the account’s use
throughout the network. An intervening firewall or separate domains without trust
relationships often makes the local account approach the only viable option.

Intranet, Extranet, and Internet

Intranet, extranet, and Internet application scenarios each present design challenges.
Questions that you should consider include: How will you flow caller identity
through multiple application tiers to back-end resources? Where will you perform
authentication? Can you trust authentication at the frontend and then use a trusted
connection to access back-end resources? In extranet scenarios, you also must
consider whether you trust partner accounts.

For more information about these and other scenario-specific issues, see the
“Intranet Security,” “Extranet Security,” and “Internet Security” sections in
the “Microsoft patterns & practices Volume I, Building Secure ASPNET
Applications: Authentication, Authorization, and Secure Communication”

at http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

Input Validation

Input validation is a challenging issue and the primary burden of a solution falls on
application developers. However, proper input validation is one of your strongest
measures of defense against today’s application attacks. Proper input validation is an
effective countermeasure that can help prevent XSS, SQL injection, buffer overflows,
and other input attacks.

Input validation is challenging because there is not a single answer for what
constitutes valid input across applications or even within applications. Likewise,
there is no single definition of malicious input. Adding to this difficulty is that what
your application does with this input influences the risk of exploit. For example, do
you store data for use by other applications or does your application consume input
from data sources created by other applications?

The following practices improve your Web application’s input validation:

Assume all input is malicious.

Centralize your approach.

Do not rely on client-side validation.

Be careful with canonicalization issues.

Constrain, reject, and sanitize your input.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Chapter 4: Design Guidelines for Secure Web Applications 75

Assume All Input Is Malicious

Input validation starts with a fundamental supposition that all input is malicious
until proven otherwise. Whether input comes from a service, a file share, a user, or a
database, validate your input if the source is outside your trust boundary. For
example, if you call an external Web service that returns strings, how do you know
that malicious commands are not present? Also, if several applications write to a
shared database, when you read data, how do you know whether it is safe?

Centralize Your Approach

Make your input validation strategy a core element of your application design.
Consider a centralized approach to validation, for example, by using common
validation and filtering code in shared libraries. This ensures that validation rules are
applied consistently. It also reduces development effort and helps with future
maintenance.

In many cases, individual fields require specific validation, for example, with
specifically developed regular expressions. However, you can frequently factor out
common routines to validate regularly used fields such as e-mail addresses, titles,
names, postal addresses including ZIP or postal codes, and so on. This approach is
shown in Figure 4.3.

Specific
Validation

Pages

Browser Controls ppeattic VSF(? r?_d
- Validation aication
or Service Routines
. Specific
Services | yqjigation
Figure 4.3

A centralized approach to input validation

76

Part lI: Designing Secure Web Applications

Do Not Rely on Client-Side Validation

Server-side code should perform its own validation. What if an attacker bypasses
your client, or shuts off your client-side script routines, for example, by disabling
JavaScript? Use client-side validation to help reduce the number of round trips to the
server but do not rely on it for security. This is an example of defense in depth.

Be Careful with Canonicalization Issues

Data in canonical form is in its most standard or simplest form. Canonicalization is
the process of converting data to its canonical form. File paths and URLs are
particularly prone to canonicalization issues and many well-known exploits are a
direct result of canonicalization bugs. For example, consider the following string that
contains a file and path in its canonical form.

c:\temp\somefile.dat

The following strings could also represent the same file.

somefile.dat

c:\temp\subdir\..\somefile.dat

c:\ temp\ somefile.dat

..\somefile.dat
c%3A%5Ctemp%5Csubdir%5C%2E%2E%5Csomefile.dat

In the last example, characters have been specified in hexadecimal form:

® 9%3A is the colon character.

® 9%5C is the backslash character.

® 9%2E is the dot character.

You should generally try to avoid designing applications that accept input file names

from the user to avoid canonicalization issues. Consider alternative designs instead.
For example, let the application determine the file name for the user.

If you do need to accept input file names, make sure they are strictly formed before
making security decisions such as granting or denying access to the specified file.

For more information about how to handle file names and to perform file I/O in a
secure manner, see the “File I/O” sections in Chapter 7, “Building Secure
Assemblies,” and Chapter 8, “Code Access Security in Practice.”

Chapter 4: Design Guidelines for Secure Web Applications 77

Constrain, Reject, and Sanitize Your Input

The preferred approach to validating input is to constrain what you allow from the
beginning. It is much easier to validate data for known valid types, patterns, and
ranges than it is to validate data by looking for known bad characters. When you
design your application, you know what your application expects. The range of valid
data is generally a more finite set than potentially malicious input. However, for
defense in depth you may also want to reject known bad input and then sanitize the
input. The recommended strategy is shown in Figure 4.4.

Make
potentially
Allow known Reject known malicious data
good data bad data safe

Input) Constrain Reject ‘M\ Sanitize

Validate type, format, For example, stripping
length and range Null characters or
(Use regular expressions spaces

for string data)

Figure 4.4

Input validation strategy: constrain, reject, and sanitize input

To create an effective input validation strategy, be aware of the following approaches
and their tradeoffs:

e Constrain input.

® Validate data for type, length, format, and range.
® Reject known bad input.

® Sanitize input.

Constrain Input

Constraining input is about allowing good data. This is the preferred approach. The
idea here is to define a filter of acceptable input by using type, length, format, and
range. Define what is acceptable input for your application fields and enforce it.
Reject everything else as bad data.

Constraining input may involve setting character sets on the server so that you can
establish the canonical form of the input in a localized way:.

78

Part lI: Designing Secure Web Applications

Validate Data for Type, Length, Format, and Range

Use strong type checking on input data wherever possible, for example, in the classes
used to manipulate and process the input data and in data access routines. For
example, use parameterized stored procedures for data access to benefit from strong
type checking of input fields.

String fields should also be length checked and in many cases checked for
appropriate format. For example, ZIP codes, personal identification numbers, and so
on have well defined formats that can be validated using regular expressions.
Thorough checking is not only good programming practice; it makes it more difficult
for an attacker to exploit your code. The attacker may get through your type check,
but the length check may make executing his favorite attack more difficult.

Reject Known Bad Input

Deny “bad” data; although do not rely completely on this approach. This approach is
generally less effective than using the “allow” approach described earlier and it is
best used in combination. To deny bad data assumes your application knows all the
variations of malicious input. Remember that there are multiple ways to represent
characters. This is another reason why “allow” is the preferred approach.

While useful for applications that are already deployed and when you cannot afford
to make significant changes, the “deny” approach is not as robust as the “allow”
approach because bad data, such as patterns that can be used to identify common
attacks, do not remain constant. Valid data remains constant while the range of bad
data may change over time.

Sanitize Input

Sanitizing is about making potentially malicious data safe. It can be helpful when the
range of input that is allowed cannot guarantee that the input is safe. This includes
anything from stripping a null from the end of a user-supplied string to escaping out
values so they are treated as literals.

Another common example of sanitizing input in Web applications is using URL
encoding or HTML encoding to wrap data and treat it as literal text rather than
executable script. HtmlEncode methods escape out HTML characters, and UrlEncode
methods encode a URL so that it is a valid URI request.

Chapter 4: Design Guidelines for Secure Web Applications 79

In Practice

The following are examples applied to common input fields, using the preceding
approaches:

® Last Name field. This is a good example where constraining input is appropriate
In this case, you might allow string data in the range ASCII A-Z and a-z, and also
hyphens and curly apostrophes (curly apostrophes have no significance to SQL) to
handle names such as O’Dell. You would also limit the length to your longest
expected value.

® Quantity field. This is another case where constraining input works well. In this
example, you might use a simple type and range restriction. For example, the
input data may need to be a positive integer between 0 and 1000.

® Free-text field. Examples include comment fields on discussion boards. In this
case, you might allow letters and spaces, and also common characters such as
apostrophes, commas, and hyphens. The set that is allowed does not include less
than and greater than signs, brackets, and braces.

Some applications might allow users to mark up their text using a finite set of
script characters, such as bold “", italic “<i>*, or even include a link to their
favorite URL. In the case of a URL, your validation should encode the value so
that it is treated as a URL.

For more information about validating free text fields, see “Input Validation” in
Chapter 10, “Building Secure ASP.NET Pages and Controls.”

® An existing Web application that does not validate user input. In an ideal
scenario, the application checks for acceptable input for each field or entry point.
However, if you have an existing Web application that does not validate user
input, you need a stopgap approach to mitigate risk until you can improve your
application’s input validation strategy. While neither of the following approaches
ensures safe handling of input, because that is dependent on where the input
comes from and how it is used in your application, they are in practice today as
quick fixes for short-term security improvement:

e HTML-encoding and URL-encoding user input when writing back to the
client. In this case, the assumption is that no input is treated as HTML and all
output is written back in a protected form. This is sanitization in action.

® Rejecting malicious script characters. This is a case of rejecting known bad
input. In this case, a configurable set of malicious characters is used to reject the
input. As described earlier, the problem with this approach is that bad data is a
matter of context.

For more information and examples of input coding, using regular expressions, and
ASP.NET validation controls, see “Input Validation” in Chapter 10, “Building Secure
ASPNET Pages and Controls.”

80 Part II: Designing Secure Web Applications

Authentication

Authentication is the process of determining caller identity. There are three aspects to
consider:

Identify where authentication is required in your application. It is generally
required whenever a trust boundary is crossed. Trust boundaries usually include
assemblies, processes, and hosts.

Validate who the caller is. Users typically authenticate themselves with user
names and passwords.

Identify the user on subsequent requests. This requires some form of
authentication token.

Many Web applications use a password mechanism to authenticate users, where the
user supplies a user name and password in an HTML form. The issues and questions
to consider here include:

Are user names and passwords sent in plaintext over an insecure channel? If so,
an attacker can eavesdrop with network monitoring software to capture the
credentials. The countermeasure here is to secure the communication channel by
using Secure Socket Layer (SSL).

How are the credentials stored? If you are storing user names and passwords in
plaintext, either in files or in a database, you are inviting trouble. What if your
application directory is improperly configured and an attacker browses to the file
and downloads its contents or adds a new privileged logon account? What if a
disgruntled administrator takes your database of user names and passwords?

How are the credentials verified? There is no need to store user passwords if the
sole purpose is to verify that the user knows the password value. Instead, you can
store a verifier in the form of a hash value and re-compute the hash using the user-
supplied value during the logon process. To mitigate the threat of dictionary
attacks against the credential store, use strong passwords and combine a randomly
generated salt value with the password hash.

How is the authenticated user identified after the initial logon? Some form of
authentication ticket, for example an authentication cookie, is required. How is the
cookie secured? If it is sent across an insecure channel, an attacker can capture the
cookie and use it to access the application. A stolen authentication cookie is a
stolen logon.

Chapter 4: Design Guidelines for Secure Web Applications 81

The following practices improve your Web application’s authentication:
Separate public and restricted areas.

Use account lockout policies for end-user accounts.

Support password expiration periods.

Be able to disable accounts.

Do not store passwords in user stores.

Require strong passwords.

Do not send passwords over the wire in plaintext.

Protect authentication cookies.

Separate Public and Restricted Areas

A public area of your site can be accessed by any user anonymously. Restricted areas
can be accessed only by specific individuals and the users must authenticate with the
site. Consider a typical retail Web site. You can browse the product catalog
anonymously. When you add items to a shopping cart, the application identifies you
with a session identifier. Finally, when you place an order, you perform a secure
transaction. This requires you to log in to authenticate your transaction over SSL.

By partitioning your site into public and restricted access areas, you can apply
separate authentication and authorization rules across the site and limit the use of
SSL. To avoid the unnecessary performance overhead associated with SSL, design
your site to limit the use of SSL to the areas that require authenticated access.

Use Account Lockout Policies for End-User Accounts

Disable end-user accounts or write events to a log after a set number of failed logon
attempts. If you are using Windows authentication, such as NTLM or the Kerberos
protocol, these policies can be configured and applied automatically by the operating
system. With Forms authentication, these policies are the responsibility of the
application and must be incorporated into the application design.

Be careful that account lockout policies cannot be abused in denial of service attacks.
For example, well known default service accounts such as IUSR_MACHINENAME
should be replaced by custom account names to prevent an attacker who obtains the
Internet Information Services (IIS) Web server name from locking out this critical
account.

Support Password Expiration Periods

Passwords should not be static and should be changed as part of routine password
maintenance through password expiration periods. Consider providing this type of
facility during application design.

82

Part lI: Designing Secure Web Applications

Be Able to Disable Accounts

If the system is compromised, being able to deliberately invalidate credentials or
disable accounts can prevent additional attacks.

Do Not Store Passwords in User Stores

If you must verify passwords, it is not necessary to actually store the passwords.
Instead, store a one way hash value and then re-compute the hash using the user-
supplied passwords. To mitigate the threat of dictionary attacks against the user
store, use strong passwords and incorporate a random salt value with the password.

Require Strong Passwords

Do not make it easy for attackers to crack passwords. There are many guidelines
available, but a general practice is to require a minimum of eight characters and a
mixture of uppercase and lowercase characters, numbers, and special characters.
Whether you are using the platform to enforce these for you, or you are developing
your own validation, this step is necessary to counter brute-force attacks where an
attacker tries to crack a password through systematic trial and error. Use regular
expressions to help with strong password validation.

For examples of regular expressions to aid password validation, see “Input
Validation” in Chapter 10, “Building Secure ASP.NET Pages and Controls.”

Do Not Send Passwords Over the Wire in Plaintext

Plaintext passwords sent over a network are vulnerable to eavesdropping. To address
this threat, secure the communication channel, for example, by using SSL to encrypt
the traffic.

Protect Authentication Cookies

A stolen authentication cookie is a stolen logon. Protect authentication tickets using
encryption and secure communication channels. Also limit the time interval in which
an authentication ticket remains valid, to counter the spoofing threat that can result
from replay attacks, where an attacker captures the cookie and uses it to gain illicit
access to your site. Reducing the cookie timeout does not prevent replay attacks but it
does limit the amount of time the attacker has to access the site using the stolen
cookie.

Chapter 4: Design Guidelines for Secure Web Applications 83

Authorization

Authorization determines what the authenticated identity can do and the resources
that can be accessed. Improper or weak authorization leads to information disclosure
and data tampering. Defense in depth is the key security principle to apply to your
application’s authorization strategy.

The following practices improve your Web application’s authorization:
e Use multiple gatekeepers.

® Restrict user access to system-level resources.

® Consider authorization granularity.

Use Multiple Gatekeepers

On the server side, you can use IP Security Protocol (IPSec) policies to provide host
restrictions to restrict server-to-server communication. For example, an IPSec policy
might restrict any host apart from a nominated Web server from connecting to a
database server. IIS provides Web permissions and Internet Protocol/ Domain Name
System (IP/DNS) restrictions. IIS Web permissions apply to all resources requested
over HTTP regardless of the user. They do not provide protection if an attacker
manages to log on to the server. For this, NTFS permissions allow you to specify per
user access control lists. Finally, ASPNET provides URL authorization and File
authorization together with principal permission demands. By combining these
gatekeepers you can develop an effective authorization strategy.

Restrict User Access to System Level Resources

System level resources include files, folders, registry keys, Active Directory objects,
database objects, event logs, and so on. Use Windows Access Control Lists (ACLs) to
restrict which users can access what resources and the types of operations that they
can perform. Pay particular attention to anonymous Internet user accounts; lock these
down with ACLs on resources that explicitly deny access to anonymous users.

For more information about locking down anonymous Internet user accounts with
Windows ACLs, see Chapter 16, “Securing Your Web Server.”
Consider Authorization Granularity

There are three common authorization models, each with varying degrees of
granularity and scalability.

84

Part lI: Designing Secure Web Applications

The most granular approach relies on impersonation. Resource access occurs using
the security context of the caller. Windows ACLs on the secured resources (typically
files or tables, or both) determine whether the caller is allowed to access the resource.
If your application provides access primarily to user specific resources, this approach
may be valid. It has the added advantage that operating system level auditing can be
performed across the tiers of your application, because the original caller’s security
context flows at the operating system level and is used for resource access. However,
the approach suffers from poor application scalability because effective connection
pooling for database access is not possible. As a result, this approach is most
frequently found in limited scale intranet-based applications. The impersonation
model is shown in Figure 4.5.

Database
Server

Web Server
or
Application
Server

T

Caller
Impersonation /
Delegation

]

Figure 4.5

Impersonation model providing per end user authorization granularity

The least granular but most scalable approach uses the application’s process identity
for resource access. This approach supports database connection pooling but it means
that the permissions granted to the application’s identity in the database are
common, irrespective of the identity of the original caller. The primary authorization
is performed in the application’s logical middle tier using roles, which group together
users who share the same privileges in the application. Access to classes and methods
is restricted based on the role membership of the caller. To support the retrieval of per
user data, a common approach is to include an identity column in the database tables
and use query parameters to restrict the retrieved data. For example, you may pass
the original caller’s identity to the database at the application (not operating system)
level through stored procedure parameters, and write queries similar to the
following;:

SELECT fieldl, field2, field3 FROM Tablel WHERE {some search criteria} AND
UserName = @originalCallerUserName

This model is referred to as the trusted subsystem or sometimes as the trusted server
model. It is shown in Figure 4.6.

Chapter 4: Design Guidelines for Secure Web Applications 85

Web or Application Database
Server Server
A |-y
B |-y
c » || Role-based Trusted |
p-|| authorization service identity”
D |-y

Database Trusts the Web /
Trust Boundary Application Server

Figure 4.6

Trusted subsystem model that supports database connection pooling

The third option is to use a limited set of identities for resource access based on the
role membership of the caller. This is really a hybrid of the two models described
earlier. Callers are mapped to roles in the application’s logical middle tier, and access
to classes and methods is restricted based on role membership. Downstream resource
access is performed using a restricted set of identities determined by the current
caller’s role membership. The advantage of this approach is that permissions can be
assigned to separate logins in the database, and connection pooling is still effective
with multiple pools of connections. The downside is that creating multiple thread
access tokens used to establish different security contexts for downstream resource
access using Windows authentication is a privileged operation that requires
privileged process accounts. This is counter to the principle of least privilege. The
hybrid model using multiple trusted service identities for downstream resource
access is shown in Figure 4.7.

Web or Application Database
Server Server

A

» Role Trusted service |
e - 1 identity 1
C
D > Role Trusted service . .

2 identity 2
Identity 1 and 2 have
different permissions in the
Trust Boundary database
Figure 4.7

Hybrid model

86

Part lI: Designing Secure Web Applications

Configuration Management

Carefully consider your Web application’s configuration management functionality.
Most applications require interfaces that allow content developers, operators, and
administrators to configure the application and manage items such as Web page
content, user accounts, user profile information, and database connection strings. If
remote administration is supported, how are the administration interfaces secured?
The consequences of a security breach to an administration interface can be severe,
because the attacker frequently ends up running with administrator privileges and
has direct access to the entire site.

The following practices improve the security of your Web application’s configuration
management:

® Secure your administration interfaces.

® Secure your configuration store.

® Maintain separate administration privileges.

® Use least privileged process and service accounts.

Secure Your Administration Interfaces

It is important that configuration management functionality is accessible only by
authorized operators and administrators. A key part is to enforce strong
authentication over your administration interfaces, for example, by using certificates.

If possible, limit or avoid the use of remote administration and require administrators
to log on locally. If you need to support remote administration, use encrypted
channels, for example, with SSL or VPN technology, because of the sensitive nature of
the data passed over administrative interfaces. Also consider limiting remote
administration to computers on the internal network by using IPSec policies, to
further reduce risk.

Secure Your Configuration Stores

Text-based configuration files, the registry, and databases are common options for
storing application configuration data. If possible, avoid using configuration files in
the application’s Web space to prevent possible server configuration vulnerabilities
resulting in the download of configuration files. Whatever approach you use, secure
access to the configuration store, for example, by using Windows ACLs or database
permissions. Also avoid storing plaintext secrets such as database connection strings
or account credentials. Secure these items using encryption and then restrict access to
the registry key, file, or table that contains the encrypted data.

Chapter 4: Design Guidelines for Secure Web Applications 87

Separate Administration Privileges

If the functionality supported by the features of your application’s configuration
management varies based on the role of the administrator, consider authorizing each
role separately by using role-based authorization. For example, the person
responsible for updating a site’s static content should not necessarily be allowed to
change a customer’s credit limit.

Use Least Privileged Process and Service Accounts

An important aspect of your application’s configuration is the process accounts used
to run the Web server process and the service accounts used to access downstream
resources and systems. Make sure these accounts are set up as least privileged. If an
attacker manages to take control of a process, the process identity should have very
restricted access to the file system and other system resources to limit the damage
that can be done.

Sensitive Data

Applications that deal with private user information such as credit card numbers,
addresses, medical records, and so on should take special steps to make sure that the
data remains private and unaltered. In addition, secrets used by the application’s
implementation, such as passwords and database connection strings, must be
secured. The security of sensitive data is an issue while the data is stored in persistent
storage and while it is passed across the network.

Secrets

Secrets include passwords, database connection strings, and credit card numbers. The
following practices improve the security of your Web application’s handling of
secrets:

Do not store secrets if you can avoid it.

Do not store secrets in code.

Do not store database connections, passwords, or keys in plaintext.
Avoid storing secrets in the Local Security Authority (LSA).

Use Data Protection API (DPAPI) for encrypting secrets.

88

Part lI: Designing Secure Web Applications

Do Not Store Secrets if You Can Avoid It

Storing secrets in software in a completely secure fashion is not possible. An
administrator, who has physical access to the server, can access the data. For example,
it is not necessary to store a secret when all you need to do is verify whether a user
knows the secret. In this case, you can store a hash value that represents the secret
and compute the hash using the user-supplied value to verify whether the user
knows the secret.

Do Not Store Secrets in Code

Do not hard code secrets in code. Even if the source code is not exposed on the Web
server, it is possible to extract string constants from compiled executable files. A
configuration vulnerability may allow an attacker to retrieve the executable.

Do Not Store Database Connections, Passwords, or Keys in Plaintext

Avoid storing secrets such as database connection strings, passwords, and keys in
plaintext. Use encryption and store encrypted strings.

Avoid Storing Secrets in the LSA

Avoid the LSA because your application requires administration privileges to access
it. This violates the core security principle of running with least privilege. Also, the
LSA can store secrets in only a restricted number of slots. A better approach is to use
DPAP]I, available on Microsoft Windows® 2000 and later operating systems.

Use DPAPI for Encrypting Secrets

To store secrets such as database connection strings or service account credentials, use
DPAPI. The main advantage to using DPAPI is that the platform system manages the
encryption/decryption key and it is not an issue for the application. The key is either
tied to a Windows user account or to a specific computer, depending on flags passed
to the DPAPI functions.

DPAPIT is best suited for encrypting information that can be manually recreated when
the master keys are lost, for example, because a damaged server requires an
operating system re-install. Data that cannot be recovered because you do not know
the plaintext value, for example, customer credit card details, require an alternate
approach that uses traditional symmetric key-based cryptography such as the use of
triple-DES.

For more information about using DPAPI from Web applications, see Chapter 10,
“Building Secure ASPNET Web Pages and Controls.”

Chapter 4: Design Guidelines for Secure Web Applications 89

Sensitive Per User Data

Sensitive data such as logon credentials and application level data such as credit card
numbers, bank account numbers, and so on, must be protected. Privacy through
encryption and integrity through message authentication codes (MAC) are the key
elements.

The following practices improve your Web application’s security of sensitive per user
data:

® Retrieve sensitive data on demand.

® Encrypt the data or secure the communication channel.

® Do not store sensitive data in persistent cookies.

® Do not pass sensitive data using the HTTP-GET protocol.

Retrieve Sensitive Data on Demand

The preferred approach is to retrieve sensitive data on demand when it is needed
instead of persisting or caching it in memory. For example, retrieve the encrypted
secret when it is needed, decrypt it, use it, and then clear the memory (variable) used
to hold the plaintext secret. If performance becomes an issue, consider the following
options:

® Cache the encrypted secret.

® Cache the plaintext secret.

Cache the Encrypted Secret

Retrieve the secret when the application loads and then cache the encrypted secret in
memory, decrypting it when the application uses it. Clear the plaintext copy when it
is no longer needed. This approach avoids accessing the data store on a per request
basis.

Cache the Plaintext Secret

Avoid the overhead of decrypting the secret multiple times and store a plaintext copy
of the secret in memory. This is the least secure approach but offers the optimum
performance. Benchmark the other approaches before guessing that the additional
performance gain is worth the added security risk.

Encrypt the Data or Secure the Communication Channel

If you are sending sensitive data over the network to the client, encrypt the data or
secure the channel. A common practice is to use SSL between the client and Web
server. Between servers, an increasingly common approach is to use IPSec. For
securing sensitive data that flows through several intermediaries, for example, Web
service Simple Object Access Protocol (SOAP) messages, use message level
encryption.

90 Part II: Designing Secure Web Applications

Do Not Store Sensitive Data in Persistent Cookies

Avoid storing sensitive data in persistent cookies. If you store plaintext data, the end
user is able to see and modify the data. If you encrypt the data, key management can
be a problem. For example, if the key used to encrypt the data in the cookie has
expired and been recycled, the new key cannot decrypt the persistent cookie passed
by the browser from the client.

Do Not Pass Sensitive Data Using the HTTP-GET Protocol

You should avoid storing sensitive data using the HTTP-GET protocol because the
protocol uses query strings to pass data. Sensitive data cannot be secured using query
strings and query strings are often logged by the server.

Session Management

Web applications are built on the stateless HTTP protocol, so session management is
an application-level responsibility. Session security is critical to the overall security of
an application.

The following practices improve the security of your Web application’s session
management:

Use SSL to protect session authentication cookies.
® Encrypt the contents of the authentication cookies.
® Limit session lifetime.

® Protect session state from unauthorized access.

Use SSL to Protect Session Authentication Cookies

Do not pass authentication cookies over HTTP connections. Set the secure cookie
property within authentication cookies, which instructs browsers to send cookies
back to the server only over HTTPS connections. For more information, see
Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

Encrypt the Contents of the Authentication Cookies

Encrypt the cookie contents even if you are using SSL. This prevents an attacker
viewing or modifying the cookie if he manages to steal it through an XSS attack. In
this event, the attacker could still use the cookie to access your application, but only
while the cookie remains valid.

Chapter 4: Design Guidelines for Secure Web Applications 91

Limit Session Lifetime

Reduce the lifetime of sessions to mitigate the risk of session hijacking and replay
attacks. The shorter the session, the less time an attacker has to capture a session
cookie and use it to access your application.

Protect Session State from Unauthorized Access

Consider how session state is to be stored. For optimum performance, you can store
session state in the Web application’s process address space. However, this approach
has limited scalability and implications in Web farm scenarios, where requests from
the same user cannot be guaranteed to be handled by the same server. In this
scenario, an out-of-process state store on a dedicated state server or a persistent state
store in a shared database is required. ASPNET supports all three options.

You should secure the network link from the Web application to state store using
IPSec or SSL to mitigate the risk of eavesdropping. Also consider how the Web
application is to be authenticated by the state store. Use Windows authentication
where possible to avoid passing plaintext authentication credentials across the
network and to benefit from secure Windows account policies.

Cryptography

Cryptography in its fundamental form provides the following;:
® Privacy (Confidentiality). This service keeps a secret confidential.

® Non-Repudiation (Authenticity). This service makes sure a user cannot deny
sending a particular message.

e Tamperproofing (Integrity). This service prevents data from being altered.
® Authentication. This service confirms the identity of the sender of a message.
Web applications frequently use cryptography to secure data in persistent stores or as

it is transmitted across networks. The following practices improve your Web
application’s security when you use cryptography:

® Do not develop your own cryptography.

e Keep unencrypted data close to the algorithm.
® Use the correct algorithm and correct key size.
® Secure your encryption keys.

92

Part lI: Designing Secure Web Applications

Do Not Develop Your Own Cryptography

Cryptographic algorithms and routines are notoriously difficult to develop
successfully. As a result, you should use the tried and tested cryptographic services
provided by the platform. This includes the .NET Framework and the underlying
operating system. Do not develop custom implementations because these frequently
result in weak protection.

Keep Unencrypted Data Close to the Algorithm

When passing plaintext to an algorithm, do not obtain the data until you are ready to
use it, and store it in as few variables as possible.

Use the Correct Algorithm and Correct Key Size

It is important to make sure you choose the right algorithm for the right job and to
make sure you use a key size that provides a sufficient degree of security. Larger key
sizes generally increase security. The following list summarizes the major algorithms
together with the key sizes that each uses:

® Data Encryption Standard (DES) 64bit key (8 bytes)

® TripleDES 128-bit key or 192-bit key (16 or 24 bytes)

® Rijndael 128-256 bit keys (16-32 bytes)

® RSA 384-16,384 bit keys (48-2,048 bytes)

For large data encryption, use the TripleDES symmetric encryption algorithm. For
slower and stronger encryption of large data, use Rijndael. To encrypt data that is to
be stored for short periods of time, you can consider using a faster but weaker
algorithm such as DES. For digital signatures, use Rivest, Shamir, and Adleman
(RSA) or Digital Signature Algorithm (DSA). For hashing, use the Secure Hash

Algorithm (SHA)1.0. For keyed hashes, use the Hash-based Message Authentication
Code (HMAC) SHA1.0.

Secure Your Encryption Keys

An encryption key is a secret number used as input to the encryption and decryption
processes. For encrypted data to remain secure, the key must be protected. If an
attacker compromises the decryption key, your encrypted data is no longer secure.
The following practices help secure your encryption keys:

® Use DPAPI to avoid key management.

® Cycle your keys periodically.

Chapter 4: Design Guidelines for Secure Web Applications 93

Use DPAPI to Avoid Key Management

As mentioned previously, one of the major advantages of using DPAPI is that the key
management issue is handled by the operating system. The key that DPAPI uses is
derived from the password that is associated with the process account that calls the
DPAPI functions. Use DPAPI to pass the burden of key management to the operating
system.

Cycle Your Keys Periodically

Generally, a static secret is more likely to be discovered over time. Questions to keep
in mind are: Did you write it down somewhere? Did Bob, the administrator with the
secrets, change positions in your company or leave the company? Do not overuse
keys.

Parameter Manipulation

With parameter manipulation attacks, the attacker modifies the data sent between the
client and Web application. This may be data sent using query strings, form fields,
cookies, or in HTTP headers. The following practices help secure your Web
application’s parameter manipulation:

® Encrypt sensitive cookie state.

® Make sure that users do not bypass your checks.
® Validate all values sent from the client.

® Do not trust HTTP header information.

Encrypt Sensitive Cookie State

Cookies may contain sensitive data such as session identifiers or data that is used as
part of the server-side authorization process. To protect this type of data from
unauthorized manipulation, use cryptography to encrypt the contents of the cookie.

Make Sure that Users Do Not Bypass Your Checks

Make sure that users do not bypass your checks by manipulating parameters. URL
parameters can be manipulated by end users through the browser address text box.
For example, the URL http:/ /www.<YourSite>/<YourApp>/sessionld=10 has a value
of 10 that can be changed to some random number to receive different output. Make
sure that you check this in server-side code, not in client-side JavaScript, which can
be disabled in the browser.

94

Part lI: Designing Secure Web Applications

Validate All Values Sent from the Client

Restrict the fields that the user can enter and modify and validate all values coming
from the client. If you have predefined values in your form fields, users can change
them and post them back to receive different results. Permit only known good values
wherever possible. For example, if the input field is for a state, only inputs matching
a state postal code should be permitted.

Do Not Trust HTTP Header Information

HTTP headers are sent at the start of HTTP requests and HTTP responses. Your Web
application should make sure it does not base any security decision on information in
the HTTP headers because it is easy for an attacker to manipulate the header. For
example, the referer field in the header contains the URL of the Web page from where
the request originated. Do not make any security decisions based on the value of the
referer field, for example, to check whether the request originated from a page
generated by the Web application, because the field is easily falsified.

Exception Management

Secure exception handling can help prevent certain application-level denial of service
attacks and it can also be used to prevent valuable system-level information useful to
attackers from being returned to the client. For example, without proper exception
handling, information such as database schema details, operating system versions,
stack traces, file names and path information, SQL query strings and other
information of value to an attacker can be returned to the client.

A good approach is to design a centralized exception management and logging
solution and consider providing hooks into your exception management system to
support instrumentation and centralized monitoring to help system administrators.
The following practices help secure your Web application’s exception management:
® Do not leak information to the client.

® Log detailed error messages.

® Catch exceptions.

Do Not Leak Information to the Client

In the event of a failure, do not expose information that could lead to information
disclosure. For example, do not expose stack trace details that include function names
and line numbers in the case of debug builds (which should not be used on
production servers). Instead, return generic error messages to the client.

Chapter 4: Design Guidelines for Secure Web Applications 95

Log Detailed Error Messages

Send detailed error messages to the error log. Send minimal information to the
consumer of your service or application, such as a generic error message and custom
error log ID that can subsequently be mapped to detailed message in the event logs.
Make sure that you do not log passwords or other sensitive data.

Catch Exceptions

Use structured exception handling and catch exception conditions. Doing so avoids
leaving your application in an inconsistent state that may lead to information
disclosure. It also helps protect your application from denial of service attacks.
Decide how to propagate exceptions internally in your application and give special
consideration to what occurs at the application boundary.

For more information about designing and implementing an exception management
framework for .NET applications, see the MSDN article “Exception Management in
NET,” at http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp

Auditing and Logging

You should audit and log activity across the tiers of your application. Using logs, you
can detect suspicious-looking activity. This frequently provides early indications of a
full-blown attack and the logs help address the repudiation threat where users deny
their actions. Log files may be required in legal proceedings to prove the wrongdoing
of individuals. Generally, auditing is considered most authoritative if the audits are
generated at the precise time of resource access and by the same routines that access
the resource.

The following practices improve your Web application’s security:
e Audit and log access across application tiers.

Consider identity flow.

Log key events.

Secure log files.

Back up and analyze log files regularly.

Audit and Log Access Across Application Tiers

Audit and log access across the tiers of your application for non-repudiation. Use a
combination of application-level logging and platform auditing features, such as
Windows, IIS, and SQL Server auditing.

http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp

96

Part lI: Designing Secure Web Applications

Consider Identity Flow

Consider how your application will flow caller identity across multiple application
tiers. You have two basic choices. You can flow the caller’s identity at the operating
system level using the Kerberos protocol delegation. This allows you to use operating
system level auditing. The drawback with this approach is that it affects scalability
because it means there can be no effective database connection pooling at the middle
tier. Alternatively, you can flow the caller’s identity at the application level and use
trusted identities to access back-end resources. With this approach, you have to trust
the middle tier and there is a potential repudiation risk. You should generate audit
trails in the middle tier that can be correlated with back-end audit trails. For this, you
must make sure that the server clocks are synchronized, although Microsoft
Windows 2000 and Active Directory do this for you.

Log Key Events

The types of events that should be logged include successful and failed logon
attempts, modification of data, retrieval of data, network communications, and
administrative functions such as the enabling or disabling of logging. Logs should
include the time of the event, the location of the event including the machine name,
the identity of the current user, the identity of the process initiating the event, and a
detailed description of the event.

Secure Log Files

Secure log files using Windows ACLs and restrict access to the log files. This makes it
more difficult for attackers to tamper with log files to cover their tracks. Minimize the
number of individuals who can manipulate the log files. Authorize access only to
highly trusted accounts such as administrators.

Back Up and Analyze Log Files Regularly

There’s no point in logging activity if the log files are never analyzed. Log files
should be removed from production servers on a regular basis. The frequency of
removal is dependent upon your application’s level of activity. Your design should
consider the way that log files will be retrieved and moved to offline servers for
analysis. Any additional protocols and ports opened on the Web server for this
purpose must be securely locked down.

Chapter 4: Design Guidelines for Secure Web Applications 97

Design Guidelines Summary

Table 4.2 summarizes the design guidelines discussed in this chapter and organizes
them by application vulnerability category.

Table 4.2 Design Guidelines for Your Application

Category
Input Validation

Authentication

Authorization

Configuration
Management

Sensitive Data

Session Management

Cryptography

Parameter Manipulation

Exception Management

Auditing and Logging

Guidelines

Do not trust input; consider centralized input validation. Do not rely on
client-side validation. Be careful with canonicalization issues. Constrain,
reject, and sanitize input. Validate for type, length, format, and range.

Partition site by anonymous, identified, and authenticated area. Use
strong passwords. Support password expiration periods and account
disablement. Do not store credentials (use one-way hashes with salt).
Encrypt communication channels to protect authentication tokens. Pass
Forms authentication cookies only over HTTPS connections.

Use least privileged accounts. Consider authorization granularity. Enforce
separation of privileges. Restrict user access to systemievel resources.

Use least privileged process and service accounts. Do not store
credentials in plaintext. Use strong authentication and authorization on
administration interfaces. Do not use the LSA. Secure the
communication channel for remote administration. Avoid storing sensitive
data in the Web space.

Avoid storing secrets. Encrypt sensitive data over the wire. Secure the
communication channel. Provide strong access controls on sensitive data
stores. Do not store sensitive data in persistent cookies. Do not pass
sensitive data using the HTTP-GET protocol.

Limit the session lifetime. Secure the channel. Encrypt the contents of
authentication cookies. Protect session state from unauthorized access.

Do not develop your own. Use tried and tested platform features. Keep
unencrypted data close to the algorithm. Use the right algorithm and key
size. Avoid key management (use DPAPI). Cycle your keys periodically.
Store keys in a restricted location.

Encrypt sensitive cookie state. Do not trust fields that the client can
manipulate (query strings, form fields, cookies, or HTTP headers).
Validate all values sent from the client.

Use structured exception handling. Do not reveal sensitive application
implementation details. Do not log private data such as passwords.
Consider a centralized exception management framework.

Identify malicious behavior. Know what good traffic looks like. Audit and
log activity through all of the application tiers. Secure access to log files.
Back up and regularly analyze log files.

98 Part II: Designing Secure Web Applications

Summary

Security should permeate every stage of the product development life cycle and it
should be a focal point of application design. Pay particular attention to the design of
a solid authentication and authorization strategy. Also remember that the majority of
application level attacks rely on maliciously formed input data and poor application
input validation. The guidance presented in this chapter should help you with these
and other challenging aspects of designing and building secure applications.

Additional Resources

For more information, see the following resources:

® The current guide is Volume II in a series dedicated to helping customers
improve Web application security. For more information on architecting,
designing, building and configuring authentication, authorization, and secure
communications across tiers of a distributed Web applications, see “Microsoft
patterns & practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library/en-us
/dnnetsec/html/secnetlpMSDN.asp

® The MSDN article “Security Models for ASPNET Applications” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch02.asp?frame=true

® The MSDN article “Designing Authentication and Authorization” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch03.asp?frame=true

® “Checklist: Architecture and Design Review” in the “Checklists” section of
this guide.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch02.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch02.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp?frame=true

Architecture and Design Review
for Security

In This Chapter

® Analyzing and reviewing application architecture and design
® Identifying key application deployment and infrastructure security considerations

Overview

To build a secure Web application, you need an appropriate architecture and design.
The cost and effort of retrofitting security after development are too high. An
architecture and design review helps you validate the security-related design features
of your application before you start the development phase. This allows you to
identify and fix potential vulnerabilities before they can be exploited and before the
fix requires a substantial reengineering effort.

If you have already created your application, you should still review this chapter and
then revisit the concepts, principles, and techniques that you used during your
application design.

100 Part ll:Designing Secure Web Applications

How to Use This Chapter

This chapter gives you the questions to ask when performing a thorough review of
your architecture design. The following are recommendations on how to use this
chapter:

® Integrate a security review into your architecture design process. Start early on,
and as your design changes, review those changes with the steps given in this
chapter.

® Evolve your security review. This chapter provides questions that you can ask to
improve the security of your design. To complete the review process, you might
also need to add specific questions that are unique to your application.

® Know the threats you are reviewing against. Chapter 2, “Threats and
Countermeasures,” lists the threats that affect the various components and layers
that make up your application. Knowing these threats is essential to improving the
results of your review process.

Architecture and Design Review Process

The architecture and design review process analyzes the architecture and design from
a security perspective. If you have just completed the design, the design
documentation can help you with this process. Regardless of how comprehensive
your design documentation is, you must be able to decompose your application and
be able to identify key items, including trust boundaries, data flow, entry points, and
privileged code. You must also know the physical deployment configuration of your
application. Pay attention to the design approaches you have adopted for those areas
that most commonly exhibit vulnerabilities. This guide refers to these as application
vulnerability categories.

Consider the following aspects when you review the architecture and design of your

application:

® Deployment and infrastructure. You review the design of your application in
relation to the target deployment environment and the associated security policies.
You also consider the restrictions imposed by the underlying infrastructure-layer
security.

® Application architecture and design. You review the approach to critical areas in
your application, including authentication, authorization, input validation,
exception management, and other areas. You can use the application vulnerability
categories as a roadmap and to ensure that you do not miss any key areas during
the review.

® Tier-by-tier analysis. You walk through the logical tiers of your application and
examine the security of ASP.NET Web pages and controls, Web services, serviced
components, Microsoft NET Remoting, data access code, and others.

Chapter 5: Architecture and Design Review for Security 101

Figure 5.1 shows this three-pronged approach to the review process.

Application
Deployment and Component
Infrastructure Analysis
Host ASP.NET Pages
Network Web Services

Enterprise Services
Application Architecture and Design P

Remotin
Input Validation Session Management ing
o Data Access
Authentication Cryptography
Authorization Parameter Manipulation

Configuration Mgmt | Exception Management

Sensitive Data Auditing and Logging

Figure 5.1

Application review

The remainder of this chapter presents the key considerations and questions to ask
during the review process for each of these distinct areas.

Deployment and Infrastructure Considerations

Examine the security settings that the underlying network and host infrastructure
offer to the application, and examine any restrictions that the target environment
might impose. Also consider your deployment topology and the impact of middle-
tier application servers, perimeter zones, and internal firewalls on your design.

Review the following questions to identify potential deployment and infrastructure
issues:

Does the network provide secure communication?

Does your deployment topology include an internal firewall?

Does your deployment topology include a remote application server?

What restrictions does infrastructure security impose?

Have you considered Web farm issues?

What trust levels does the target environment support?

102

Part ll:Designing Secure Web Applications

Does the Network Provide Secure Communication?

Your data is at its most vulnerable while in transit between a client and server, or
server to server. How private should the data be? Are you legally responsible for
customer data?

While your application is responsible for handling and transforming data securely
prior to transit, the network is responsible for the integrity and privacy of the data as
it transmits. Use an appropriate encryption algorithm when the data must remain
private. Additionally, make sure that your network devices are secured because they
maintain network integrity.

Does Your Deployment Topology Include an Internal Firewall?

If an internal firewall separates your Web server from an application server or a
database server, review the following questions to ensure that your design
accommodates this:

® How do downstream servers authenticate the Web server?

If you use domain accounts and Windows authentication, does the firewall open
the necessary ports? If not, or if the Web server and downstream server are in
separate domains, you can use mirrored local accounts. For example, you can
duplicate the least privileged local ASPNET account that is used to run the Web
application on the database server.

® Do you use distributed transactions?

If the Web server initiates distributed transactions using the services of the
Microsoft Distributed Transaction Coordinator (DTC), does the internal firewall
open the necessary ports for DTC communication?

For more information about using the DTC through a firewall, see Microsoft
Knowledge Base article 250367, “INFO: Configuring Microsoft Distributed
Transaction Coordinator (DTC) to Work Through a Firewall.”

Does Your Deployment Topology Include a Remote Application Server?

If your deployment topology includes a physically remote middle tier, review the
following questions:

® Do you use Enterprise Services?

If so, have you restricted the DCOM port range and does any internal firewall
open these ports?

Note In some scenarios, using a middle-tier Web service as a front end to the Enterprise
Services application is a superior design choice. With this approach, the Web server can
communicate with the application server through port 80 using Simple Object Access
Protocol (SOAP).

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q250367
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q250367

Chapter 5: Architecture and Design Review for Security 103

For more information, see the following Microsoft Knowledge Base articles:
Article 312960, “Cannot Set Fixed Endpoint for a COM+ Application”
Article 259011, “SAMPLE: A Simple DCOM Client Server Test Application”
Article 248809, “PRB: DCOM Does Not Work over NAT-Based Firewall”

Article 154596, “THOWTO: Configure RPC Dynamic Port Allocation to
Work w /Firewall”

® Do you use .NET Remoting?

Remoting is designed to be used in trusted server scenarios. Does the network
support an IPSec policy that ensures that your middle-tier Remoting components
can only be accessed from the Web server? Does ASP.NET host your remote
components to support authentication and authorization?

® Do you use Web services?

If so, how do middle-tier Web services authenticate the Web application? Does the
Web application configure credentials on the Web service proxy so that the Web
service can authenticate the Web server? If not, how does the Web service identify
the caller?

What Restrictions Does Infrastructure Security Impose?

Does your design make any assumptions that the host infrastructure security
restrictions will invalidate? For example, the security restrictions may require design
tradeoffs based on the availability of required services, protocols, or account
privileges. Review the following questions:

® Do you rely on services or protocols that might not be available?

Services and protocols that are available in the development and test
environments might not be available in the production environment.
Communicate with the team responsible for the infrastructure security to
understand the restrictions and requirements.

® Do you rely on sensitive account privileges?

Your design should use least privileged process, service, and user accounts.
Do you perform operations that require sensitive privileges that might not be
permitted?

For example, does your application need to create thread-level impersonation
tokens to create service identities for resource access? This requires the “Act as
part of the operating system” privilege, which should not be granted to Web
server processes because of the increased security risk associated with a process
compromise. If this feature is required, your design should compartmentalize the
higher privileges, for example, in an out-of-process Enterprise Services
application.

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q312960
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q259011
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q248809
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q154596
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q154596

104

Part ll:Designing Secure Web Applications

Have You Considered Web Farm Issues?

If your application is going to be deployed in a Web farm, you can make no
assumptions about which server in the farm will process client requests. Successive
requests from the same client may be served by separate servers. As a result, you
need to consider the following issues:

How are you managing session state?

In a Web farm, you cannot manage session state on the Web server. Instead, your
design must incorporate a remote state store on a server that is accessed by all the
Web servers in the farm. For more information, see “Session Management” later in
this chapter.

Are you using machine-specific encryption keys?

If you plan to use encryption to encrypt data in a shared data source, such as a
database, the encryption and decryption keys must be the same across all
machines in the farm. Check that your design does not require encryption
mechanisms that require machine affinity.

Are you using Forms authentication or protected view state?

If so, you are reliant upon the <machineKey> settings. In a Web farm, you must
use common key across all servers.

Are you using Secure Sockets Layer (SSL)?

If you use SSL to encrypt the traffic between browser and Web server, where do
you terminate the SSL connection? Your options include the Web server, a Web
server with an accelerator card, or a load balancer with an accelerator card.
Terminating the SSL session at a load balancer with an accelerator card generally
offers the best performance, particularly for sites with large numbers of
connections.

If you terminate SSL at the load balancer, network traffic is not encrypted from the
load balancer to the Web server. This means that an attacker can potentially sniff
network traffic after the data is decrypted, while it is in transit between the load
balancer and Web server. You can address this threat either by ensuring that the
Web server environment is physically secured or by using transport-level
encryption provided by IPSec policies to protect internal data center links.

What Trust Levels Does the Target Environment Support?

The code access security trust level of the target environment determines the
resources your code can access and the privileged operations it can perform. Check
the supported trust level of your target environment. If your Web application is
allowed to run with Full trust, your code can access any resources, subject to
operating system security.

Chapter 5: Architecture and Design Review for Security 105

If your Web application must run at a reduced trust level, this limits the types of
resources and privileged operations your code can perform. In partial trust scenarios,
your design should sandbox your privileged code. You should also use separate
assemblies to isolate your privileged code. This is done so that the privileged code
can be configured separately from the rest of the application and granted the
necessary additional code access permissions.

For more information, see Chapter 9, “Using Code Access Security with ASPNET.”

Note Trust levels are often an issue if you are planning to deploy your application onto a shared
server, or if your application is going to be run by a hosting company. In these cases, check the
security policy and find out what trust levels it mandates for Web applications.

Input Validation

Examine how your application validates input because many Web application attacks
use deliberately malformed input . SQL injection, cross-site scripting (XSS), buffer
overflow, code injection, and numerous other denial of service and elevation of
privilege attacks can exploit poor input validation. Table 5.1 highlights the most
common input validation vulnerabilities.

Table 5.1 Common Input Validation Vulnerabilities
Vulnerability Implications

Non-validated input in the The application is susceptible to XSS attacks.
Hypertext Markup Language
(HTML) output stream

Non-validated input used to The application is susceptible to SQL injection attacks.
generate SQL queries

Reliance on client-side Client validation is easily bypassed.
validation

Use of input file names, URLs, | The application is susceptible to canonicalization bugs, leading to

or user names for security security flaws.

decisions

Application-only filters for This is almost impossible to do correctly because of the enormous
malicious input range of potentially malicious input. The application should

constrain, reject, and sanitize input.

Review the following questions to help you identify potential input validation
security issues:

® How do you validate input?
® What do you do with the input?

106 Part ll:Designing Secure Web Applications

How Do You Validate Input?

What approach to input validation does your design specify? First, your design
should lay out the strategy. Your application should constrain, reject, and sanitize all
of the input it receives. Constraining input is the best approach because validating
data for known valid types, patterns, and ranges is much easier than validating data
by looking for known bad characters. With a defense in depth strategy, you should
also reject known bad input and sanitize input.

The following questions can help you identify potential vulnerabilities:

Do you know your entry points?

Make sure the design identifies entry points of the application so that you can
track what happens to individual input fields. Consider Web page input, input to
components and Web services, and input from databases.

Do you know your trust boundaries?

Input validation is not always necessary if the input is passed from a trusted
source inside your trust boundary, but it should be considered mandatory if the
input is passed from sources that are not trusted.

Do you validate Web page input?

Do not consider the end user as a trusted source of data. Make sure you validate
regular and hidden form fields, query strings, and cookies.

Do you validate arguments that are passed to your components or Web services?
The only case where it might be safe not to do so is where data is received from
inside the current trust boundary. However, with a defense in depth strategy,
multiple validation layers are recommended.

Do you validate data that is retrieved from a database?

You should also validate this form of input, especially if other applications write to
the database. Make no assumptions about how thorough the input validation of
the other application is.

Do you centralize your approach?

For common types of input fields, examine whether or not you are using common
validation and filtering libraries to ensure that validation rules are performed
consistently.

Do you rely on client-side validation?

Do not. Client-side validation can be used to reduce the number of round trips to
the server, but do not rely on it for security because it is easy to bypass. Validate all
input at the server.

Chapter 5: Architecture and Design Review for Security 107

What Do You Do with the Input?

Check what your application does with its input because different types of processing
can lead to various types of vulnerabilities. For example, if you use input in SQL
queries your application is potentially vulnerable to SQL injection.

Review the following questions to help you identify possible vulnerabilities:
® Is your application susceptible to canonicalization issues?

Check whether your application uses names based on input to make security
decisions. For example, does it accept user names, file names, or URLs? These are
notorious for canonicalization bugs because of the many ways that the names can
be represented. If your application does accept names as input, check that they are
validated and converted to their canonical representation before processing.

® Is your application susceptible to SQL injection attacks?

Pay close attention to any input field that you use to form a SQL database query.
Check that these fields are suitably validated for type, format, length, and range.
Also check how the queries are generated. If you use parameterized stored
procedures, input parameters are treated as literals and are not treated as
executable code. This is effective risk mitigation.

® Is your application susceptible to XSS attacks?
If you include input fields in the HTML output stream, you might be vulnerable to

XSS. Check that input is validated and that output is encoded. Pay close attention
to how input fields that accept a range of HTML characters are processed.

Authentication

Examine how your application authenticates its callers, where it uses authentication,
and how it ensures that credentials remain secure while in storage and when passed
over the network. Vulnerabilities in authentication can make your application
susceptible to spoofing attacks, dictionary attacks, session hijacking, and other
attacks. Table 5.2 highlights the most common authentication vulnerabilities.

Table 5.2 Common Authentication Vulnerabilities

Vulnerability Implications

Weak passwords The risk of password cracking and dictionary attacks increase.
Clear text credentials in Insiders who can access the server or attackers who exploit a
configuration files host vulnerability to download the configuration file have

immediate access to credentials.

Passing clear text credentials Attackers can monitor the network to steal authentication
over the network credentials and spoof identity.

(continued)

108

Part ll:Designing Secure Web Applications

Table 5.2 Common Authentication Vulnerabilities /continued)

Vulnerability Implications

Over-privileged accounts The risks associated with a process or account compromise
increase.

Long sessions The risks associated with session hijacking increase.

Mixing personalization with Personalization data is suited to persistent cookies.

authentication Authentication cookies should not be persisted.

Review the following questions to identify potential vulnerabilities in the way your
application performs authentication:

Do you separate public and restricted access?

Have you identified service account requirements?
How do you authenticate the caller?

How do you authenticate with the database?

Do you enforce strong account management practices?

Do You Separate Public and Restricted Access?

If your application provides public areas that do not require authentication and
restricted areas that do require authentication, examine how your site design
distinguishes between the two. You should use separate subfolders for restricted
pages and resources and then secure those folders in Internet Information Services
(IIS) by configuring them to require SSL. This approach allows you to provide
security for sensitive data and authentication cookies using SSL in only those areas of
your site that need it. You avoid the added performance hit associated with SSL
across the whole site.

Have You Identified Service Account Requirements?

Your design should identify the range of service accounts that is required to connect
to different resources, including databases, directory services, and other types of
remote network resources. Make sure that the design does not require a single, highly
privileged account with sufficient privileges to connect to the range of different
resource types.

Does the design require least privileged accounts?

Have you identified which resources and operations require which privileges?
Check that the design identifies precisely which privileges each account requires
to perform its specific function and use least privileged accounts in all cases.
Does the application need to maintain service account credentials?

If so make sure that the credentials are encrypted and held in a restricted location,
such as a registry key with a restricted access control list (ACL).

Chapter 5: Architecture and Design Review for Security 109

How Do You Authenticate the Caller?

Review the following aspects of authenticating a caller. The aspects you use depend
on the type of authentication your design uses.

® Do you pass clear text credentials over the wire?

If you use Forms or Basic authentication, or if you use Web services and pass
credentials in SOAP headers, make sure that you use SSL to protect the credentials
in transit.

® Do you implement your own user store?

If so, check where and how the user credentials will be stored. A common mistake
is to store plaintext or encrypted passwords in the user store. Instead, you should
store a password hash for verification.

If you validate credentials against a SQL Server user store, pay close attention to
the input user names and passwords. Check for the malicious injection of SQL
characters.

® Do you use Forms authentication?

If so, in addition to using SSL to protect the credentials, you should use SSL to
protect the authentication cookie. Also check that your design uses a limited
session lifetime to counter the threat of cookie replay attacks and check that the
cookie is encrypted.

For more information about Forms authentication, see Chapter 10, “Building Secure
ASPNET Web Pages and Controls” and Chapter 19, “Securing Your ASPNET
Application and Web Services.”

How Do You Authenticate with the Database?

When your application connects to the database, examine what authentication
mechanism you will use, what account or accounts you plan to use, and how you
plan to authorize the application in the database.

The following questions help review your approach to database authentication:
® Do you use SQL authentication?

Ideally, your design uses Windows authentication to connect to SQL Server
because this is an inherently more secure approach. If you use SQL authentication,
examine how you plan to secure credentials over the network and in database
connection strings.

If your network infrastructure does not provide IPSec encrypted channels, make
sure a server certificate is installed on the database to provide automatic SQL
credential encryption. Also examine how you plan to secure database connection
strings because these strings contain SQL account user names and passwords.

110

Part ll:Designing Secure Web Applications

® Do you use the process account?

If you use the process account of the application and connect to SQL Server using
Windows authentication, make sure that your design assumes a least privileged
account. The local ASPNET account is provided for this purpose, although with
local accounts, you need to create a duplicate account on the database server.

If you plan to use a domain account, make sure that it is a least privileged account
and check that all intervening firewalls support Windows authentication by
opening the relevant ports.

® Do you use service accounts?

If your design requires multiple identities to support more granular authorization
in the database, examine how you plan to store the account credentials (ideally
they are encrypted using the Data Protection API (DPAPI) and held in a secured
registry key) and how you are going to use the service identity.

Also examine which process will be used to create the impersonated security
context using the service account. This should not be done by the ASPNET
application process on Microsoft Windows 2000 because it forces you to increase
the privileges of the process account and grant the “Act as part of the operation
system” privilege. This should be avoided because it significantly increases the
risk factor.

e Have you considered using the anonymous Internet user identity?

For applications that use Forms or Passport authentication, you can configure a
separate anonymous user account for each application. Next, you can enable
impersonation and then use the anonymous identity to access the database. This
approach accommodates separate authorization and identity tracking for separate
applications on the same Web server.

® Do you use the original user identity?

If your design requires impersonation of the original caller, you need to consider
whether or not the approach provides sufficient scalability because connection
pooling is ineffective. An alternative approach is to flow the identity of the
original caller at the application level through trusted query parameters.

® How do you store database connection strings?

If database connection strings are hard coded or stored in clear text in
configuration files or the COM+ catalog, it makes them vulnerable. Instead, you
should encrypt them and restrict access to the encrypted data.

For more information about the different options for connecting to SQL Server and
about storing database connection strings securely, see Chapter 14, “Building Secure
Data Access.”

Chapter 5: Architecture and Design Review for Security 111

Do You Enforce Strong Account Management Practices?

The use of strong passwords, restricted login attempts, and other best practice
account management policies can be enforced by Windows security policy if your
application uses Windows authentication. Otherwise, the application layer is
responsible for this. Review the following aspects of the account management of your
application:
® Does your application enforce strong passwords?
For example, do your ASP.NET Web pages use regular expressions to verify
password complexity rules?
® Do you restrict the number of failed login attempts?
Doing so can help counter the threat of dictionary attacks.
® Do you reveal too much information in the event of failure?

Make sure you do not display messages such as “Incorrect password” because this
tells malicious users that the user name is correct. This allows them to focus their
efforts on cracking passwords.

® Do you enforce a periodic change of passwords?

This is recommended because otherwise there is a high probability that a user will
not change his or her password, which makes it more vulnerable.

e Can you quickly disable accounts in the event of compromise?
If an account is compromised, can you easily disable the account to prevent the
attacker from continuing to use the account?

® Does your application record login attempts?

Recording failed login attempts is an effective way to detect an attacker who is
attempting to break in.

Authorization

Examine how your application authorizes its users. Also examine how your
application is authorized inside the database and how access to system-level
resources is controlled. Authorization vulnerabilities can result in information
disclosure, data tampering, and elevation of privileges. A defense in depth strategy is
the key security principle that you can apply to the authorization strategy of your
application. Table 5.3 highlights the most common authorization vulnerabilities.

112

Part ll:Designing Secure Web Applications

Table 5.3 Common Authorization Vulnerabilities
Vulnerability Implications

Reliance on a single gatekeeper If the gatekeeper is bypassed or is improperly
configured, a user gains unauthorized access.

Failing to lock down system resources An attacker can coerce the application into accessing
against application identities restricted system resources.

Failing to limit database access to An attacker mounts a SQL injection attack to retrieve,
specified stored procedures manipulate, or destroy data.

Inadequate separation of privileges There is no accountability or ability to perform per user

authorization.

Review the following questions to help validate the authorization strategy of your
application design:

® How do you authorize end users?
® How do you authorize the application in the database?
® How do you restrict access to system-level resources?

How Do You Authorize End Users?

You should consider authorization from two perspectives at design time. First,
consider end-user authorization. Which users can access which resources and
perform which operations? Secondly, how do you prevent malicious users from using
the application to access system level resources? Review the following questions to
validate the authorization strategy of your application:
® Do you use a defense in depth strategy?
Make sure that your design does not rely on a single gatekeeper to enforce access
control. Consider what happens if this gatekeeper fails or if an attack manages to
bypass it.
® Which gatekeepers are used?
Options include IIS Web permissions, NTFS permissions, ASP.NET file
authorization (which applies only with Windows authentication), URL
authorization, and principal permission demands. If certain types are not used,
make sure you know the reasons why not.
® Do you use a role-based approach?
If so, how are the role lists maintained and how secure are the administration
interfaces that are required to do this?
® Do your roles provide adequate privilege separation?
Does your design provide the right degree of granularity so that the privileges
that are associated with distinct user roles are adequately separated? Avoid
situations where roles are granted elevated privileges just to satisfy the
requirements of certain users. Consider adding new roles instead.

Chapter 5: Architecture and Design Review for Security 113

How Do You Authorize the Application in the Database?

The accounts that your application uses to connect to the database should have
restricted capabilities that are sufficient for the application requirements, but no
more.

® Does the application access the database using stored procedures?

This is recommended because the login of the application can only be granted
permissions to access the specified stored procedures. The login can be restricted
from performing direct create/read /update/delete (CRUD) operations against the
database.

This benefits security, and performance and future maintainability also benefit.

For more information about database authorization approaches, see Chapter 14,
“Building Secure Data Access.”

How Do You Restrict Access to System-Level Resources?

When you design your application, consider the restrictions that will be placed on the
application in terms of which system-level resources it can access. The application
should only be granted access to the minimum required resources. This is a risk
mitigation strategy that limits damage if an application is compromised. Consider the
following issues:

® Does your design use code access security?

Code access security provides a resource constraint model that can prevent code
(and Web applications) from accessing specific types of system-level resources.
When you use code access security, it inevitably influences your design. Identify
whether or not you want to include code access security in your design plans, and
then design accordingly by isolating and sandboxing privileged code and placing
resource access code in its own separate assemblies.

® What identities does your application use?

Your design should identify all of the identities that the application uses, including
the process identity, and any impersonated identities, including anonymous
Internet user accounts and service identities. The design should also indicate to
which resources these identities require access.

At deployment time, the appropriate ACLs can be configured on system-level
resources to ensure that the identities of the application only have access to the
resources they require.

For more information about designing for code access security, see Chapter 9, “Using
Code Access Security with ASP.NET.”

114 Part ll:Designing Secure Web Applications

Configuration Management

If your application provides an administration interface that allows it to be
configured, examine how the administration interfaces are secured. Also examine
how sensitive configuration data is secured. Table 5.4 shows the most common
configuration management vulnerabilities.

Table 5.4 Common Configuration Management Vulnerabilities

Vulnerability Implications

Insecure administration Unauthorized users can reconfigure your application and access
interfaces sensitive data.

Insecure configuration stores Unauthorized users can access configuration stores and obtain

secrets, such as account names and passwords, and database
connection details.

Clear text configuration data Anyone that can log in to the server can view sensitive
configuration data.

Too many administrators This makes it difficult to audit and vet administrators.

Over-privileged process accounts | This can allow privilege escalation attacks.
and service accounts

Use the following questions to help validate the approach of your application design
to configuration management:

® Do you support remote administration?
® Do you secure configuration stores?
® Do you separate administrator privileges?

Do You Support Remote Administration?

If your design specifies remote administration, then you must secure the
administration interfaces and configuration stores because of the sensitive nature of
the operations and the data that is accessible over the administration interface.
Review the following aspects of your remote administration design:

® Do you use strong authentication?

All administration interface users should be required to authenticate. Use strong
authentication, such as Windows or client-certificate authentication.

® Do you encrypt the network traffic?

Use encrypted communication channels, such as those provided by IPSec or
virtual private network (VPN) connections. Do not support remote administration
over insecure channels. IPSec allows you to limit the identity and number of client
machines that can be used to administer the server.

Chapter 5: Architecture and Design Review for Security 115

Do You Secure Configuration Stores?

Identify the configuration stores of your application and then examine your approach
to restricting access to the stores and securing the data inside the stores.

® Is your configuration store in the Web space?

Configuration data that is held in files in the Web space is considered less secure
than data that is held outside the Web space. Host configuration mistakes or
undiscovered bugs could potentially allow an attacker to retrieve and download
configuration files over HTTP.

® Is the data in the configuration store secure?

Make sure that key items of configuration data, such as database connection
strings, encryption keys, and service account credentials, are encrypted inside the
store.

® How is access to the configuration store restricted?

Check that the administration interface provides the necessary authorization to
ensure that only authenticated administrators can access and manipulate the data.

Do You Separate Administrator Privileges?

If your administration interfaces support different functionalities —for example, site
content updates, service account reconfiguration, and database connection details —
verify that your administration interfaces support role-based authorization to
differentiate between content developers and operators or system administrators. For
example, the person who updates static Web site content should not necessarily be
allowed to alter the credit limit of a customer or reconfigure a database connection
string.

Sensitive Data

Examine how your application handles sensitive data in store, in application
memory, and while in transit across the network. Table 5.5 shows the most common
vulnerabilities that are associated with handling sensitive data.

Table 5.5 Common Vulnerabilities with Handling Sensitive Data

Vulnerability Implications

Storing secrets when you do not | This drastically increases the security risk as opposed to not
need to storing the secret in the first place.

Storing secrets in code If the code is on the server, an attacker might be able to

download it. Secrets are visible in binary assemblies.
Storing secrets in clear text Anyone who can log on to the server can see secret data.

Passing sensitive data in clear Eavesdroppers can monitor the network to reveal and tamper
text over networks with the data.

116 Part ll:Designing Secure Web Applications

Use the following questions to help validate the handling of sensitive data by your
application:

Do you store secrets?

How do you store sensitive data?

Do you pass sensitive data over the network?
Do you log sensitive data?

Do You Store Secrets?

Secrets include application configuration data, such as account passwords and
encryption keys. If possible, identify alternate design approaches that remove any
reason to store secrets. If you handle secrets, let the platform handle them so that the
burden is lifted from your application wherever possible. If you do store secrets,
review the following questions:

Can you avoid storing the secret?

If you use an alternative implementation technique, it could remove the need to
store secrets. For example, if all you need to do is verify that a user knows a
password, you do not need to store passwords. Store one-way password hashes
instead.

Also, if you use Windows authentication, you avoid storing connection strings
with embedded credentials.

How do you store secrets?

If you use encryption, how do you secure the encryption keys? Consider using

platform-provided DPAPI encryption that takes care of the key management for
you.

Where do you store secrets?

Examine how your application stores its encrypted data. For maximum security,
access to the encrypted data should be restricted with Windows ACLs. Check that
the application does not store secrets in clear text or in source code.

If you use the Local Security Authority (LSA), the code that retrieves the secret has
to run with administrator privileges, which increases risk. An alternative approach
that does not require extended privileges is to use DPAPI.

How do you process secrets?

Examine how your application accesses the secrets and how long they are retained
in memory in clear text form. Secrets should generally be retrieved on demand,
used for the smallest amount of time possible, and then discarded.

Do you store secrets in cookies?

If so, make sure the cookie is encrypted and is not persisted on the client
computer.

Chapter 5: Architecture and Design Review for Security 117

How Do You Store Sensitive Data?

If you store sensitive application data, such as custom credit card details, examine
how you protect the data.

e What encryption algorithm do you use? You should encrypt the data using a
strong encryption algorithm with a large key size, such as Triple DES.

e How do you secure the encryption keys? The data is only as secure as the
encryption key, so examine how you secure the key. Ideally, encrypt the key with
DPAPI and secure it in a restricted location, for example, a registry key.

Do You Pass Sensitive Data Over the Network?

If you pass sensitive data over the network, check that the data is either encrypted by
the application or that the data is only passed over encrypted communication links.

Do You Log Sensitive Data?

Examine whether or not your application (or the host) logs sensitive data such as user
account passwords in clear text log files. You should generally avoid this. Make sure
the application does not pass sensitive data in query strings because these are logged
and are also clearly visible in the client’s browser address bar.

Session Management

Because Web applications are built on the stateless HTTP protocol, session
management is an application-level responsibility. Examine the approach to session
management by your application because it directly affects the overall security of
your application. Table 5.6 shows the most common vulnerabilities associated with
session management.

Table 5.6 Common Session Management Vulnerabilities
Vulnerability Implications

Passing session identifiers over | Attackers can capture session identifiers to spoof identity.
unencrypted channels

Prolonged session lifetime This increases the risk of session hijacking and replay attacks.
Insecure session state stores Attackers can access the private session data of a user.
Session identifiers in query Session identifiers can easily be modified at the client to spoof

strings identity and access the application as another user.

118

Part ll:Designing Secure Web Applications

Use the following questions to help validate the handling of sensitive data by your
application:

® How are session identifiers exchanged?
® Do you restrict session lifetime?
® How is the session state store secured?

How Are Session Identifiers Exchanged?

Examine the session identifier that your application uses to manage user sessions and
how these session identifiers are exchanged. Consider the following:

® Do you pass session identifiers over unencrypted channels?

If you track session state with session identifiers—for example, tokens contained
in cookies—examine whether or not the identifier or cookie is only passed over an
encrypted channel, such as SSL.

® Do you encrypt session cookies?

If you use Forms authentication, make sure your application encrypts the
authentication cookies using the protection="All" attribute on the <forms>
element. This practice is recommended in addition to SSL to mitigate the risk of an
XSS attack that manages to steal the authentication cookie of a user.

® Do you pass session identifiers in query strings?
Make sure that your application does not pass session identifiers in query strings.
These strings can be easily modified at the client, which would allow a user to

access the application as another user, access the private data of other users, and
potentially elevate privileges.

Do You Restrict Session Lifetime?

Examine how long your application considers a session identifier valid. The
application should limit this time to mitigate the threat of session hijacking and
replay attacks.

How Is the Session State Store Secured?

Examine how your application stores session state. Session state can be stored in the
Web application process, the ASP.NET session state service, or a SQL Server state
store. If you use a remote state store, make sure that the link from the Web server to
the remote store is encrypted with IPSec or SSL to protect data over the wire.

For more information about securing ASP.NET session state, see “Session State” in
Chapter 19, “Securing Your ASP.NET Application and Web Services.”

Chapter 5: Architecture and Design Review for Security 119

Cryptography

If your application uses cryptography to provide security, examine what it is used for
and the way it is used. Table 5.7 shows the most common vulnerabilities relating to

cryptography.

Table 5.7 Common Cryptography Vulnerabilities

Vulnerability Implications

Using custom cryptography This is almost certainly less secure than the tried and
tested platform-provided cryptography.

Using the wrong algorithm or too Newer algorithms increase security. Larger key sizes

small a key size increase security.

Failing to secure encryption keys Encrypted data is only as secure as the encryption key.

Using the same key for a prolonged A static key is more likely to be discovered over time.

period of time

Review the following questions to help validate the handling of sensitive data by
your application:

® Why do you use particular algorithms?
o How do you secure encryption keys?

Why Do You Use Particular Algorithms?

Cryptography only provides real security if it is used appropriately and the right
algorithms are used for the right job. The strength of the algorithm is also important.
Review the following questions to review your use of cryptographic algorithms:

® Do you develop your own cryptography?

Do not. Cryptographic algorithms and routines are notoriously difficult to develop
and get right. Custom implementations frequently result in weak protection and
are almost always less secure than the proven platform-provided services.

® Do you use the right algorithm with an adequate key size?

Examine what algorithms your application uses and for what purpose. Larger key
sizes result in improved security, but performance suffers. Stronger encryption is
most important for persisted data that is retained in data stores for prolonged
periods of time.

For more information about choosing an appropriate algorithm and key size, see the
Cryptography section in Chapter 4, “Design Guidelines for Secure Web
Applications.”

120 Part ll:Designing Secure Web Applications

How Do You Secure Encryption Keys?

The encrypted data is only as secure as the key. To decipher encrypted data, an
attacker must be able to retrieve the key and the cipher text. Therefore, examine your
design to ensure that the encryption keys and the encrypted data are secured.
Consider the following review questions:

e How do you secure the encryption key?

If you use DPAPI], the platform manages the key for you. Otherwise, the
application is responsible for key management. Examine how your application
secures its encryption keys. A good approach is to use DPAPI to encrypt the
encryption keys that are required by other forms of encryption. Then securely
store the encrypted key, for example, by placing it in the registry beneath a key
configured with a restricted ACL.

® How often are keys recycled?

Do not overuse keys. The longer the same key is used, the more likely it is to be
discovered. Does your design consider how and how often you are going to
recycle keys and how they are going to be distributed and installed on your
servers?

Parameter Manipulation

Examine how your application uses parameters. These parameters include form
fields, query strings, cookies, HTTP headers, and view state that are passed between
client and server. If you pass sensitive data, such as session identifiers, using
parameters such as query strings, a malicious client can easily bypass your server
side checks with simple parameter manipulation. Table 5.8 shows the most common
parameter manipulation vulnerabilities.

Table 5.8 Common Parameter Manipulation Vulnerabilities

Vulnerability Implications

Failing to validate all input Your application is susceptible to denial of service attacks and
parameters code injection attacks, including SQL injection and XSS.
Sensitive data in unencrypted Cookie data can be changed at the client or it can be captured
cookies and changed as it is passed over the network.

Sensitive data in query strings This is easily changed on the client.
and form fields

Trusting HTTP header This is easily changed on the client.
information

Unprotected view state This is easily changed on the client.

Chapter 5: Architecture and Design Review for Security 121

Examine the following questions to help ensure that your design is not susceptible to
parameter manipulation attacks:

® Do you validate all input parameters?
® Do you pass sensitive data in parameters?
® Do you use HTTP header data for security?

Do You Validate All Input Parameters?

Check that your application validates all input parameters, including regular and
hidden form fields, query strings, and cookies.

Do You Pass Sensitive Data in Parameters?

If your application passes sensitive data in parameters such as query strings or form
fields, examine why your application favors this approach over the much more
secure approach of passing a session identifier (for example, in an encrypted cookie).
Use this information to associate the session with the state of a user that is
maintained in the state store on the server. Consider the following review points:

® Do you encrypt cookies with sensitive data?

If your application uses a cookie that contains sensitive data, such as a user name
or a role list, make sure it is encrypted.

® Do you pass sensitive data in query strings or Form fields?

This is not recommended because there is no easy way to prevent the
manipulation of data in query strings or form fields. Instead, consider using
encrypted session identifiers and store the sensitive data in the session state store
on the server.

® Do you protect view state?

If your Web pages or controls use view state to maintain state across HTTP
requests, check that the view state is encrypted and checked for integrity with
message authentication codes (MACs). You can configure this at the machine level
or on a page-by-page basis.

Do You Use HTTP Header Data for Security?

Make sure that your Web application does not make security decisions based on
information in HTTP headers because an attacker can easily manipulate the header.
Do not rely on the value of the HTTP referer field to check that the request originated
from a page that is generated by your Web application —this creates vulnerabilities.
Doing this is inherently insecure because the referer field can easily be changed by
the client.

122

Part ll:Designing Secure Web Applications

Exception Management

Examine the way that your application handles error conditions. It is recommended
that you consistently use structured exception handling. Also, check that your
application does not reveal too much information when an exception occurs.

Table 5.9 shows the two major exception management vulnerabilities.

Table 5.9 Common Exception Management Vulnerabilities

Vulnerability Implications
Failing to use structured Your application is more susceptible to denial of service attacks
exception handling and logic flaws, which can expose security vulnerabilities.

Revealing too much information | An attacker can use this information to help plan and tune
to the client subsequent attacks.

Review the following questions to help ensure that your design is not susceptible to
exception management security vulnerabilities:

® Do you use structured exception handling?

® Do you reveal too much information to the client?

Do You Use Structured Exception Handling?

Examine how your application uses structured exception handling. Your design
should mandate that structured exception handling be used consistently throughout
the entire application. This creates more robust applications and your application is
less likely to be left in inconsistent states that can reveal security vulnerabilities.

Do You Reveal Too Much Information to the Client?

Make sure that a malicious user cannot exploit the overly detailed information that
an error message contains. Review the following points:

® Do you catch, handle, and log exceptions on the server?

Make sure that the application does not let internal exception conditions
propagate beyond the application boundary. Exceptions should be caught and
logged on the server and, if necessary, generic error messages should be returned
to the client.

® Do you use a centralized exception management system?

The best way to handle and log exceptions consistently throughout your
application is to use a formalized exception management system. You can also tie
this system into monitoring systems that can be used by the operations team for
health and performance monitoring.

Chapter 5: Architecture and Design Review for Security 123

e Have you defined a set of custom error messages?
Your design should define the custom error messages will be used by your

application when critical errors occur. Make sure they do not contain any sensitive
items of data that could be exploited by a malicious user.

For more information about designing and implementing an exception management
framework for .NET applications, see MSDN article, “Exception Management in
NET,” at http://msdn.microsoft.com/library/default.asp ?url=/library/en-us/dnbda/html
/exceptdotnet.asp.

Auditing and Logging

Examine how your application uses auditing and logging. Besides preventing
repudiation issues, regular log file analysis helps identify signs of intrusion.
Table 5.10 shows the most common auditing and logging vulnerabilities.

Table 5.10 Common Auditing and Logging Vulnerabilities

Vulnerability Implications

Failing to audit failed logons Attempted break-ins go undetected.
Failing to secure audit files An attacker can cover his or her tracks.
Failing to audit across application tiers The threat of repudiation increases.

Review the following questions to help verify the approach to auditing and logging
by your application:

® Have you identified key activities to audit?
® Have you considered how to flow original caller identity?
® Have you considered secure log file management policies?

Have You Identified Key Activities to Audit?

Your design should define which activities should be audited. Consider the
following;:

® Do you audit failed login attempts?
This allows you to detect break-in and password-cracking attempts.
® Do you audit other key operations?

Check that you audit other key events, including data retrieval, network
communications, and administrative functions (such as enabling and disabling

of logging).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp

124 Part ll:Designing Secure Web Applications

Have You Considered How to Flow Original Caller Identity?

Your design should ensure that activity is audited across multiple application tiers.
To do so, the identity of the original caller must be available at each tier.

® Do you audit across application tiers?
Examine whether each tier audits activity as it should.
® How do you synchronize multiple logs?

Log files may be needed in legal proceedings to prove crimes committed by
individuals or to settle cases of repudiation. Generally, auditing is considered most
authoritative if the audits are generated at the time of resource access and by the
same routines that access the resource. Verify that the application design factors in
log file synchronization and logs some form of request identifier to ensure that
multiple log file entries can be correlated and related back to a single request.

e How do you flow the original caller identity?

If you do not flow the original caller identity at the operating system level, for
example, because of the limited scalability that this approach offers, identify how
the application flows the original caller identity. This is required for cross-tier
auditing (and potentially for authorization).

Also, if multiple users are mapped to a single application role, check that the
application logs the identity of the original caller.

Have You Considered Secure Log File Management Policies?

Check whether your application design factors in how log files are backed up,
archived, and analyzed. Log files should be archived regularly to ensure that they do
not fill up or start to cycle, and they should be regularly analyzed to detect signs of
intrusion. Also ensure that any accounts used to perform the backup are least
privileged and that you secure any additional communication channels exposed
purely for the purpose of the backup.

Summary

By spending the time and effort up front to analyze and review your application
architecture and design, you can improve its overall security by eliminating design-
related vulnerabilities. It is much easier and less expensive to fix vulnerabilities at
design time than it is later in the development cycle when substantial reengineering
might be required.

By considering your design in relation to the target deployment environment and the
security policies defined by that environment, you can help ensure a smooth and
secure application deployment.

Chapter 5: Architecture and Design Review for Security 125

If your application has already been created, the architecture and design review is
still an important part of the security assessment process that helps you fix
vulnerabilities and improve future designs.

Additional Resources

For more information, see the following resources:

® For more information on designing, building and configuring authentication,
authorization and secure communications across the tiers of a distributed
Web application, see “Microsoft patterns & practices Volume 1, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

® For a printable checklist, see “Checklist: Architecture and Design Review for
Security,” in the “Checklists” section of this guide.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Building Secure Web
Applications

In This Part:

.NET Security Overview

Building Secure Assemblies

Code Access Security in Practice

Using Code Access Security with ASP.NET
Building Secure ASP.NET Pages and Controls
Building Secure Serviced Components
Building Secure Web Services

Building Secure Remoted Components

Building Secure Data Access

.NET Security Overview

In This Chapter

® Security benefits of managed code

® Role-based security versus code access security

® Principals and identities

® PrincipalPermission objects

® NET Framework role-based security fundamentals
® NET Framework security namespaces

Overview

The Microsoft NET Framework gives numerous techniques and a vast range of types
in the security namespaces to help you build secure code and create secure Web
applications. This chapter defines the .NET Framework security landscape by briefly
introducing the security benefits of managed code development. This chapter also
introduces and contrasts the two complimentary forms of security that are available
to .NET Framework applications: user security and code security. Finally, the chapter
briefly examines the security namespaces that you use to program .NET Framework
security.

This chapter emphasizes how .NET Framework security applies to ASPNET Web
applications and Web services.

130

Part lll: Building Secure Web Applications

How to Use This Chapter

This chapter describes the security benefits inherent in using the .NET Framework
and explains the complementary features of NET Framework user (or role-based)
security and .NET Framework code-based (or code access) security. We recommend
that you use this chapter as follows:

® Understand the two-layered defense provided by the .NET Framework.
Role-based security allows you to control user access to application resources and
operations, while code access security can control which code can access resources
and perform privileged operations.

® Create applications that use the security concepts in this chapter. This chapter
tells you when you should use user-based security and when you should use
code-based security. After reading this chapter, you will be able to identify how
any new applications you create can be more secure by using role-based or
code-based security.

Managed Code Benefits

Developing .NET Framework applications provides you with some immediate
security benefits, although there are still many issues for you to think about. These
issues are discussed in the Building chapters in Part III of this guide.

NET Framework assemblies are built with managed code. Compilers for languages,
such as the Microsoft Visual C#° development tool and Microsoft Visual Basic” .NET
development system, output Microsoft intermediate language (MSIL) instructions,
which are contained in standard Microsoft Windows portable executable (PE) .dll or
.exe files. When the assembly is loaded and a method is called, the method’s MSIL
code is compiled by a just-in-time (JIT) compiler into native machine instructions,
which are subsequently executed. Methods that are never called are not JIT-compiled.

The use of an intermediate language coupled with the run-time environment
provided by the common language runtime offers assembly developers immediate
security advantages.

e File format and metadata validation. The common language runtime verifies that
the PE file format is valid and that addresses do not point outside of the PE file.
This helps provide assembly isolation. The common language runtime also
validates the integrity of the metadata that is contained in the assembly.

Chapter 6: .NET Security Overview 131

® Code verification. The MSIL code is verified for type safety at JIT compile time.
This is a major plus from a security perspective because the verification process
can prevent bad pointer manipulation, validate type conversions, check array
bounds, and so on. This virtually eliminates buffer overflow vulnerabilities in
managed code, although you still need to carefully inspect any code that calls
unmanaged application programming interfaces (APIs) for the possibility of buffer
overflow.

® Integrity checking. The integrity of strong named assemblies is verified using a
digital signature to ensure that the assembly has not been altered in any way since
it was built and signed. This means that attackers cannot alter your code in any
way by directly manipulating the MSIL instructions.

® Code access security. The virtual execution environment provided by the
common language runtime allows additional security checks to be performed at
runtime. Specifically, code access security can make various run-time security
decisions based on the identity of the calling code.

User vs. Code Security

User security and code security are two complementary forms of security that are
available to .NET Framework applications. User security answers the questions,
“Who is the user and what can the user do?” while code security answers the
questions “Where is the code from, who wrote the code, and what can the code do?”
Code security involves authorizing the application’s (not the user’s) access to system-
level resources, including the file system, registry, network, directory services, and
databases. In this case, it does not matter who the end user is, or which user account
runs the code, but it does matter what the code is and is not allowed to do.

The .NET Framework user security implementation is called role-based security.
The code security implementation is called code access security.

Role-Based Security

NET Framework role-based security allows a Web application to make security
decisions based on the identity or role membership of the user that interacts with

the application. If your application uses Windows authentication, then a role is a
Windows group. If your application uses other forms of authentication, then a role is
application-defined and user and role details are usually maintained in SQL Server or
user stores based on Active Directory.

The identity of the authenticated user and its associated role membership is made
available to Web applications through Principal objects, which are attached to the
current Web request.

132 Part lll: Building Secure Web Applications

Figure 6.1 shows a logical view of how user security is typically used in a Web
application to restrict user access to Web pages, business logic, operations, and data

access.
What can the user do? User Store
(Authorization) (SAM, Active
Who is the user? Directory or SQL
(Authentication) Server)
Role-Based Security
Web Pages Operations
User > . ,
Business Logic | Data Access
T
Web Application
Figure 6.1

A logical view of (user) role-based security

Code Access Security

Code access security authorizes code when it attempts to access secured resources,
such as the file system, registry, network, and so on, or when it attempts to perform
other privileged operations, such as calling unmanaged code or using reflection.

Code access security is an important additional defense mechanism that you can use
to provide constraints on a piece of code. An administrator can configure code access
security policy to restrict the resource types that code can access and the other
privileged operations it can perform. From a Web application standpoint, this means
that in the event of a compromised process where an attacker takes control of a Web
application process or injects code to run inside the process, the additional constraints
that code access security provides can limit the damage that can be done.

Figure 6.2 shows a logical view of how code access security is used in a Web
application to constrain the application’s access to system resources, resources owned
by other applications, and privileged operations, such as calling unmanaged code.

Chapter 6: .NET Security Overview 133

What is the code? What can the code do?
(Evidence-based authentication) (Permission-based CAS
Authorization) Policy

Code Access Security
Evidence Secure Resources

User |’> Privileged
Operations

Web Application

Code

Figure 6.2

Logical view of code-based security

The authentication (identification) of code is based on evidence about the code, for
example, its strong name, publisher, or installation directory. Authorization is based
on the code access permissions granted to code by security policy. For more
information about .NET Framework code access security, see Chapter 8, “Code
Access Security in Practice.”

.NET Framework Role-Based Security

NET Framework role-based security is a key technology that is used to authorize a
user’s actions in an application. Roles are often used to enforce business rules. For
example, a financial application might allow only managers to perform monetary
transfers that exceed a particular threshold.

Role-based security consists of the following elements:

® Principals and identities

® PrincipalPermission objects

® Role-based security checks

e URL authorization

134

Part lll: Building Secure Web Applications

Principals and Identities

Role-based security is implemented with Principal and Identity objects. The identity
and role membership of the authenticated caller is exposed through a Principal
object, which is attached to the current Web request. You can retrieve the object by
using the HttpContext.Current.User property. If the caller is not required to
authenticate with the application, for example, because the user is browsing a
publicly accessible part of the site, the Principal object represents the anonymous
Internet user.

There are many types of Principal objects and the precise type depends on the
authentication mechanism used by the application. However, all Principal objects
implement the System.Security.Principal.IPrincipal interface and they all maintain a
list of roles of which the user is a member.

Principal objects also contain Identity objects, which include the user’s name,
together with flags that indicate the authentication type and whether or not the user
has been authenticated. This allows you to distinguish between authenticated and
anonymous users. There are different types of Identity objects, depending on the
authentication type, although all implement the System.Security.Principal.Ildentity
interface.

The following table shows the range of possible authentication types and the
different types of Principal and Identity objects that ASPNET Web applications use.

Table 6.1 Principal and Identity Objects Per Authentication Type

Authentication Principal and
Type Identity Type Comments
Windows WindowsPrincipal + Verification of credentials is automatic and uses the

Security Accounts Manager (SAM) or Active Directory.

Windowsldentity Windows groups are used for roles.

Forms GenericPrincipal + You must add code to verify credentials and retrieve role

membership from a user store.
Formsldentity P

Passport GenericPrincipal + Relies on the Microsoft Passport SDK. Passportldentity

rovides access to the passport authentication ticket.
Passportldentity P passp

PrincipalPermission Objects

The PrincipalPermission object represents the identity and role that the current
principal must have to execute code. PrincipalPermission objects can be used
declaratively or imperatively in code.

Chapter 6: .NET Security Overview 135

Declarative Security

You can control precisely which users should be allowed to access a class or a method
by adding a PrincipalPermissionAttribute to the class or method definition. A class-
level attribute automatically applies to all class members unless it is overridden by a
member-level attribute. The PrincipalPermissionAttribute type is defined within the
System.Security.Permissions namespace.

Note You can also use the PrincipalPermissionAttribute to restrict access to structures and to
other member types, such as properties and delegates.

The following example shows how to restrict access to a particular class to members
of a Managers group. Note that this example assumes Windows authentication,
where the format of the role name is in the format MachineName\ RoleName or
DomainName\ RoleName. For other authentication types, the format of the role name is
application specific and depends on the role-name strings held in the user store.

[PrincipalPermissionAttribute(SecurityAction.Demand, Role=@"DOMAINNAME\Managers")]
public sealed class OnlyManagersCanCallMe

{

}

Note The trailing Attribute can be omitted from the attribute type names. This makes the attribute
type name appear to be the same as the associated permission type name, which in this case is
PrincipalPermission. They are distinct (but logically related) types.

The next example shows how to restrict access to a particular method on a class. In
this example, access is restricted to members of the local administrators group, which
is identified by the special “BUILTIN\ Administrators” identifier.

[PrincipalPermissionAttribute(SecurityAction.Demand,
Role=@"BUILTIN\Administrators")]

public void SomeMethod()

{

}

Other built-in Windows group names can be used by prefixing the group name with
“BUILTIN\” (for example, “BUILTIN\Users” and “BUILTIN\Power Users”).

Imperative Security

If method-level security is not granular enough for your security requirements, you
can perform imperative security checks in code by using
System.Security.Permissions.PrincipalPermission objects.

136

Part lll: Building Secure Web Applications

The following example shows imperative security syntax using a
PrincipalPermission object.

PrincipalPermission permCheck = new PrincipalPermission(
null, @"DomainName\WindowsGroup");
permCheck.Demand() ;

To avoid a local variable, the code above can also be written as:

(new PrincipalPermission(null, @"DomainName\WindowsGroup")).Demand();

The code creates a PrincipalPermission object with a blank user name and a specified
role name, and then calls the Demand method. This causes the common language
runtime to interrogate the current Principal object that is attached to the current
thread and check whether the associated identity is a member of the specified role.
Because Windows authentication is used in this example, the role check uses a
Windows group. If the current identity is not a member of the specified role, a
SecurityException is thrown.

The following example shows how to restrict access to an individual user.

(new PrincipalPermission(@"DOMAINNAME\James", null)).Demand();

Declarative vs. Imperative Security

You can use role-based security (and code access security) either declaratively using
attributes or imperatively in code. Generally, declarative security offers the most
benefits, although sometimes you must use imperative security (for example, when
you need to use variables that are only available at runtime) to help make a security
decision.

Advantages of Declarative Security

The main advantages of declarative security are the following;:

® [t allows the administrator or assembly consumer to see precisely which security
permissions that particular classes and methods must run. Tools such as
permview.exe provide this information. Knowing this information at deployment
time can help resolve security issues and it helps the administrator configure code
access security policy.

® [t offers increased performance. Declarative demands are evaluated only once at

load time. Imperative demands inside methods are evaluated each time the
method that contains the demand is called.

Chapter 6: .NET Security Overview 137

® Security attributes ensure that the permission demand is executed before any
other code in the method has a chance to run. This eliminates potential bugs
where security checks are performed too late.

® Declarative checks at the class level apply to all class members. Imperative checks
apply at the call site.

Advantages of Imperative Security

The main advantages of imperative security and the main reasons that you
sometimes must use it are:

e [t allows you to dynamically shape the demand by using values only available at
runtime.

® [t allows you to perform more granular authorization by implementing
conditional logic in code.

Role-Based Security Checks

For fine-grained authorization decisions, you can also perform explicit role checks by
using the IPrincipal.IsInRole method. The following example assumes Windows
authentication, although the code would be very similar for Forms authentication,
except that you would cast the User object to an object of the GenericPrincipal type.

// Extract the authenticated user from the current HTTP context.
// The User variable is equivalent to HttpContext.Current.User if you are using
// an .aspx or .asmx page
WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
if (null != authenticatedUser)
{
// Note: If you need to authorize specific users based on their identity
// and not their role membership, you can retrieve the authenticated user's
// username with the following 1ine of code (normally though, you should
// perform role-based authorization).
// string username = authenticatedUser.Identity.Name;

// Perform a role check
if (authenticatedUser.IsInRole(@"DomainName\Manager"))
{
// User is authorized to perform manager functionality
}
}
else
{
// User is not authorized to perform manager functionality
// Throw a security exception

}

138

Part lll: Building Secure Web Applications

URL Authorization

Administrators can configure role-based security by using the <authorization>
element in Machine.config or Web.config. This element configures the ASPNET
UrlAuthorizationModule, which uses the principal object attached to the current
Web request in order to make authorization decisions.

The authorization element contains child <allow> and <deny> elements, which are
used to determine which users or groups are allowed or denied access to specific
directories or pages. Unless the <authorization> element is contained within a
<location> element, the <authorization> element in Web.config controls access to the
directory in which the Web.config file resides. This is normally the Web application’s
virtual root directory.

The following example from Web.config uses Windows authentication and allows
Bob and Mary access but denies everyone else:

<authorization>
<allow users="DomainName\Bob, DomainName\Mary" />
<deny users="*" />

</authorization>

The following syntax and semantics apply to the configuration of the
<authorization> element:

V7Y

refers to all identities.

e “?” refers to unauthenticated identities (that is, the anonymous identity).
® You do not need to impersonate for URL authorization to work.
°

Users and roles for URL authorization are determined by your authentication

settings:

® When you have <authentication mode="Windows” />, you are authorizing
access to Windows user and group accounts.

User names take the form “DomainName\ WindowsUserName” .

Role names take the form “DomainName\ WindowsGroupName” .

Note The local administrators group is referred to as “BUILTIN\Administrators”. The local
users group is referred to as “BUILTIN\Users”.

® When you have <authentication mode="Forms” />, you are authorizing
against the user and roles for the IPrincipal object that was stored in the
current HTTP context. For example, if you used Forms to authenticate users
against a database, you will be authorizing against the roles retrieved from
the database.

Chapter 6: .NET Security Overview 139

® When you have <authentication mode="Passport” />, you authorize against
the Passport User ID (PUID) or roles retrieved from a store. For example, you
can map a PUID to a particular account and set of roles stored in a Microsoft
SQL Server database or Active Directory.

® When you have <authentication mode="None” />, you may not be
performing authorization. “None” specifies that you do not want to perform
any authentication or that you do not want to use any of the ASP.NET
authentication modules, but you do want to use your own custom mechanism.

However, if you use custom authentication, you should create an IPrincipal
object with roles and store it in the HttpContext.Current.User property When
you subsequently perform URL authorization, it is performed against the user
and roles (no matter how they were retrieved) maintained in the IPrincipal
object.

Configuring Access to a Specific File

To configure access to a specific file, place the <authorization> element inside a
<location> element as shown below.

<location path="somepage.aspx" />
<authorization>
<allow users="DomainName\Bob, DomainName\Mary" />
<deny users="*" />
</authorization>
</location>

You can also point the path attribute at a specific folder to apply access control to all
the files in that particular folder. For more information about the <location> element,
see Chapter 19, “Securing Your ASPNET Application.”

.NET Framework Security Namespaces

To program .NET Framework security, you use the types in the .NET Framework
security namespaces. This section introduces these namespaces and the types that
you are likely to use when you develop secure Web applications. For a full list of
types, see the NET Framework documentation. The security namespaces are listed
below and are shown in Figure 6.3.

System.Security
System.Web.Security
System.Security.Cryptography
System.Security.Principal
System.Security.Policy

System.Security.Permissions

140

Part lll: Building Secure Web Applications

Security Exception

System.Web.Security I System.Security I Ol en Pt

Windows, Forms and

Passport authentication .
for Web applications System.Security.
URL and File Policy
authorization
Code-Based
Security
System.Security. System.Security.
Cryptography Permissions
Encryption Code-Based
Decryption System.Security. Security
Hashing Principal
Random Numbers
User-Based
Security

Figure 6.3

.NET Framework security namespaces

System.Security

This namespace contains the CodeAccessPermission base class from which all other
code access permission types derive. You are unlikely to use the base class directly.
You are more likely to use specific permission types that represent the rights of code
to access specific resource types or perform other privileged operations. For example,
FileIOPermission represents the rights to perform file I/O, EventLogPermission
represents the rights for code to access the event log, and so on. For a full list of code
access permission types, see Table 6.2 later in this chapter.

The System.Security namespace also contains classes that encapsulate permission
sets. These include the PermissionSet and NamedPermissionSet classes. The types
you are most likely to use when building secure Web applications are:

® SecurityException. The exception type used to represent security errors.

e AllowPartiallyTrustedCallersAttribute. An assembly-level attribute used with
strong named assemblies that must support partial trust callers. Without this
attribute, a strong named assembly can only be called by full trust callers (callers
with unrestricted permissions.)

Chapter 6: .NET Security Overview 141

® SupressUnmanagedSecurityAttribute. Used to optimize performance and
eliminate the demand for the unmanaged code permission issued by the Platform
Invocation Services (P/Invoke) and Component Object Model (COM)
interoperability layers. This attribute must be used with caution because it exposes
a potential security risk. If an attacker gains control of unmanaged code, he is no
longer restricted by code access security. For more information about using this
attribute safely, see “Unmanaged Code” in Chapter 8, “Code Access Security in
Practice.”

System.Web.Security

This namespace contains the classes used to manage Web application authentication
and authorization. This includes Windows, Forms, and Passport authentication and
URL and File authorization, which are controlled by the UrlAuthorizationModule
and FileAuthorizationModule classes, respectively. The types you are most likely to
use when you build secure Web applications are:

® FormsAuthentication. Provides static methods to help with Forms authentication
and authentication ticket manipulation.

e Formsldentity. Used to encapsulate the user identity that is authenticated by
Forms authentication.

® Passportldentity. Used to encapsulate the user identity that is authenticated by
Passport authentication.

System.Security.Cryptography

This namespace contains types that are used to perform encryption and decryption,
hashing, and random number generation. This is a large namespace that contains
many types. Many encryption algorithms are implemented in managed code,
while others are exposed by types in this namespace that wrap the underlying
cryptographic functionality provided by the Microsoft Win32 -based CryptoAPI.

System.Security.Principal

This namespace contains types that are used to support role-based security. They are
used to restrict which users can access classes and class members. The namespace
includes the IPrincipal and IIdentity interfaces. The types you are most likely to use
when building secure Web applications are:

® GenericPrincipal and Genericldentity. Allow you to define your own roles and
user identities. These are typically used with custom authentication mechanisms.

® WindowsPrincipal and Windowsldentity. Represents a user who is authenticated
with Windows authentication together with the user’s associated Windows group
(role) list.

Part lll: Building Secure Web Applications

System.Security.Policy

This namespace contains types that are used to implement the code access security
policy system. It includes types to represent code groups, membership conditions,

policy levels, and evidence.

System.Security.Permissions

This namespace contains the majority of permission types that are used to
encapsulate the rights of code to access resources and perform privileged operations.
The following table shows the permission types that are defined in this namespace

(in alphabetical order).

Table 6.2 Permission Types Within the System.Security.Permissions Namespace

Permission
DirectoryServicesPermission

DNSPermission

EndpointPermission

EnvironmentPermission

EventLogPermission

FileDialogPermission

FilelOPermission

IsolatedStorageFilePermission

IsolatedStoragePermission

MessageQueuePermission

OdbcPermission

Description
Required to access Active Directory.

Required to access domain name system (DNS) servers on the
network.

Defines an endpoint that is authorized by a SocketPermission
object.

Controls read and write access to individual environment
variables. It can also be used to restrict all access to
environment variables.

Required to access the event log.

Allows read-only access to files only if the file name is specified
by the interactive user through a system-provided file dialog box.
It is normally used when FilelOPermission is not granted.

Controls read, write, and append access to files and directory
trees. It can also be used to restrict all access to the file
system.

Controls the usage of an application’s private virtual file system
(provided by isolated storage). Isolated storage creates a unique
and private storage area for the sole use by an application or
component.

Required to access isolated storage.

Required to access Microsoft Message Queuing message
queues.

Required to use the ADO.NET ODBC data provider. (Full trust is
also required.)

Chapter 6: .NET Security Overview 143

Table 6.2 Permission Types Within the System.Security.Permissions Namespace (continued)

Permission
OleDbPermission

OraclePermission

PerformanceCounterPermission

PrincipalPermission

PrintingPermission

ReflectionPermission

RegistryPermission

SecurityPermission

ServiceControllerPermission

SocketPermission

SqlClientPermission

UlPermission

WebPermission

Description

Required to use the ADO.NET OLE DB data provider. (Full trust is
also required.)

Required to use the ADO.NET Oracle data provider. (Full trust is
also required.)

Required to access system performance counters.

Used to restrict access to classes and methods based on the
identity and role membership of the user.

Required to access printers.

Controls access to metadata. Code with the appropriate
ReflectionPermission can obtain information about the public,
protected, and private members of a type.

Controls read, write, and create access to registry keys (including
subkeys). It can also be used to restrict all access to the registry.

This is a meta-permission that controls the use of the security
infrastructure itself.

Can be used to restrict access to the Windows Service Control
Manager and the ability to start, stop, and pause services.

Can be used to restrict the ability to make or accept a
connection on a transport address.

Can be used to restrict access to SQL Server data sources.

Can be used to restrict access to the clipboard and to restrict
the use of windows to “safe” windows in an attempt to avoid
attacks that mimic system dialog boxes that prompt for sensitive
information such as passwords.

Can be used to control access to HTTP Internet resources.

The SecurityPermission class warrants special attention because it represents the
rights of code to perform privileged operations, including asserting code access
permissions, calling unmanaged code, using reflection, and controlling policy and
evidence, among others. The precise right determined by the SecurityPermission
class is determined by its Flags property, which must be set to one of the enumerated
values defined by the SecurityPermissionFlags enumerated type (for example,
SecurityPermissionFlags.UnmanagedCode).

144 Part IlI: Building Secure Web Applications

Summary

This chapter has introduced you to the .NET Framework security landscape by
contrasting user security and code security and by examining the security
namespaces. The .NET Framework refers to these two types of security as role-based
security and code access security, respectively. Both forms of security are layered on
top of Windows security.

Role-based security is concerned with authorizing user access to application-
managed resources (such as Web pages) and operations (such as business and data
access logic). Code access security is concerned with constraining privileged code
and controlling precisely which code can access resources and perform other
privileged operations. This is a powerful additional security mechanism for Web
applications because it restricts what an attacker is able to do, even if the attacker
manages to compromise the Web application process. It is also an extremely powerful
feature for providing application isolation. This is particularly true for hosting
companies or any organization that hosts multiple Web applications on the same
Web server.

Additional Resources

For more information, see the following resources:
® For more information about code access security, see Chapter 8, “Code Access
Security in Practice,” and Chapter 9, “Using Code Access Security with ASPNET.”

® For information about code access security and role-based security, see the
MSDN article, “.NET Framework Security,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp

Building Secure Assemblies

In This Chapter

® Improving the security of your assemblies with simple, proven coding techniques.
p g yory ple, p g q

® Reducing the attack surface through well-designed interfaces and solid object
oriented programming techniques.

e Using strong names and tamperproofing your assemblies.
® Reducing the risks associated with calling unmanaged code.

® Writing secure resource access code including file I/O, registry, event log,
database, and network access.

Overview

Assemblies are the building blocks of .NET Framework applications and are the unit
of deployment, version control, and reuse. They are also the unit of trust for code
access security (all the code in an assembly is equally trusted). This chapter shows
you how to improve the security design and implementation of your assemblies. This
includes evaluating deployment considerations, following solid object-oriented
programming practices, tamperproofing your code, ensuring that internal system
level information is not revealed to the caller, and restricting who can call your code.

Managed code, the NET Framework, and the common language runtime eliminate
several important security related vulnerabilities often found in unmanaged code.
Type safe verification of code is a good example where the .NET Framework helps.
This makes it virtually impossible for buffer overflows to occur in managed code,
which all but eliminates the threat of stack-based code injection. However, if you call
unmanaged code, buffer overflows can still occur. In addition, you must also consider
many other issues when you write managed code.

146

Part lll: Building Secure Web Applications

How to Use This Chapter

The following are recommendations on how to use this chapter:

® Use this chapter in conjunction with Chapter 8, “Code Access Security in
Practice.” Chapter 8 shows you how to use code access security features to further

improve the security of your assemblies.

® Use the corresponding checklist. For a summary checklist that summarizes the
best practices and recommendations for both chapters, see “Checklist: Security
Review for Managed Code” in the Checklists section of this guide.

Threats and Countermeasures

Understanding threats and the common types of attack helps you to identify
appropriate countermeasures and allows you to build more secure and robust

assemblies. The main threats are:

® Unauthorized access or privilege elevation, or both

® Code injection

® Information disclosure

® Tampering

Figure 7.1 illustrates these top threats.

Unauthorized
Access
Luring attacks

v

Trusted Calling
Assembly

Information
Disclosure
Exceptions,

secrets in code

Figure 7.1
Assembly-level threats

T

Tampering Code Injection
MSIL attacks, Buffer overflows,
reverse untrusted

engineering delegates

F—

Y Assembly

Unauthorized
Access

Chapter 7: Building Secure Assemblies 147

Unauthorized Access or Privilege Elevation, or both

The risk with unauthorized access, which can lead to privilege elevation, is that an
unauthorized user or unauthorized code can call your assembly and execute
privileged operations and access restricted resources.

Vulnerabilities

Vulnerabilities that can lead to unauthorized access and privileged elevation include:
Weak or missing role-based authorization

Internal types and type members are inadvertently exposed

Insecure use of code access security assertions and link demands

Non-sealed and unrestricted base classes, which allow any code to derive
from them

Attacks

Common attacks include:

® A luring attack where malicious code accesses your assembly through a trusted
intermediary assembly to bypass authorization mechanisms

® An attack where malicious code bypasses access controls by directly calling classes
that do not form part of the assembly’s public API

Countermeasures
Countermeasures that you can use to prevent unauthorized access and privilege
elevation include:

® Use role-based authorization to provide access controls on all public classes and
class members.

Restrict type and member visibility to limit which code is publicly accessible.

Sandbox privileged code and ensure that calling code is authorized with the
appropriate permission demands.

® Seal non-base classes or restrict inheritance with code access security.

Code Injection

With code injection, an attacker executes arbitrary code using your assembly’s
process level security context. The risk is increased if your assembly calls unmanaged
code and if your assembly runs under a privileged account.

148 Part lll: Building Secure Web Applications

Vulnerabilities

Vulnerabilities that can lead to code injection include:

® Poor input validation, particularly where your assembly calls into
unmanaged code

® Accepting delegates from partially trusted code
Over-privileged process accounts

Attacks

Common code injection attacks include:
® Buffer overflows
® Invoking a delegate from an untrusted source

Countermeasures

Countermeasures that you can use to prevent code injection include:

e Validate input parameters.

Validate data passed to unmanaged APIs.

Do not accept delegates from untrusted sources.

Use strongly typed delegates and deny permissions before calling the delegate.

To further reduce risk, run assemblies using least privileged accounts.

Information Disclosure

Assemblies can suffer from information disclosure if they leak sensitive data such as
exception details and clear text secrets to legitimate and malicious users alike. It is
also easier to reverse engineer an assembly’s Microsoft Intermediate Language
(MSIL) into source code than it is with binary machine code. This presents a threat to
intellectual property.

Vulnerabilities

Vulnerabilities that can lead to information disclosure include:
® Weak or no formal exception handling
® Hard-coded secrets in code

Attacks

Common attacks include:
® Attempting to cause errors by passing malformed input to the assembly
® Using ILDASM on an assembly to steal secrets

Chapter 7: Building Secure Assemblies 149

Countermeasures

Countermeasures that you can use to prevent information disclosure include:

Solid input validation

® Structured exception handling and returning generic errors to the client
® Not storing secrets in code

® Obfuscation tools to foil decompilers and protect intellectual property

Tampering

The risk with tampering is that your assembly is modified by altering the MSIL
instructions in the binary DLL or EXE assembly file.

Vulnerabilities

The primary vulnerability that makes your assembly vulnerable to tampering is the
lack of a strong name signature.

Attacks

Common attacks include:
® Direct manipulation of MSIL instructions
® Reverse engineering MSIL instructions

Countermeasures

To counter the tampering threat, use a strong name to sign the assembly with a
private key. When a signed assembly is loaded, the common language runtime
detects if the assembly has been modified in any way and will not load the assembly
if it has been altered.

Privileged Code

When you design and build secure assemblies, be able to identify privileged code.
This has important implications for code access security. Privileged code is managed
code that accesses secured resources or performs other security sensitive operations
such as calling unmanaged code, using serialization, or using reflection. It is referred
to as privileged code because it must be granted permission by code access security
policy to be able to function. Non-privileged code only requires the permission to
execute.

150 Part llI: Building Secure Web Applications

Privileged Resources

The types of resources for which your code requires code access security permissions
include the file system, databases, registry, event log, Web services, sockets, DNS
databases, directory services, and environment variables.

Privileged Operations

Other privileged operations for which your code requires code access security
permissions include calling unmanaged code, using serialization, using reflection,
creating and controlling application domains, creating Principal objects, and
manipulating security policy.

For more information about the specific types of code access security permissions
required for accessing resources and performing privileged operations, see
“Privileged Code” in Chapter 8, “Code Access Security in Practice.”

Assembly Design Considerations

One of the most significant issues to consider at design time is the trust level of your
assembly’s target environment, which affects the code access security permissions
granted to your code and to the code that calls your code. This is determined by code
access security policy defined by the administrator, and it affects the types of
resources your code is allowed to access and other privileged operations it can
perform.

When designing your assembly, you should:

Identify privileged code

® Identify the trust level of your target environment
® Sandbox highly privileged code

® Design your public interface

Identify Privileged Code

Identify code that accesses secured resources or performs security sensitive
operations. This type of code requires specific code access security permissions to
function.

Chapter 7: Building Secure Assemblies 151

Identify Privileged Resources

Identify the types of resources your assembly needs to access; this allows you to
identify any potential problems that are likely to occur if the environment your
assembly ultimately runs in does not grant the relevant code access security
permissions. In this case you are forced either to update code access security policy
for your application if the administrator allows this, or you must sandbox your
privileged code. For more information about sandboxing, see Chapter 9, “Using Code
Access Security with ASP.NET.”

Identify Privileged Operations

Also identify any privileged operations that your assembly needs to perform, again
so that you know which code access permissions your code requires at runtime.

Identify the Trust Level of Your Target Environment

The target environment that your assembly is installed in is important because code
access security policy may constrain what your assembly is allowed to do. If, for
example, your assembly depends on the use of OLE DB, it will fail in anything less
than a full trust environment.

Full Trust Environments

Full trust means that code has an unrestricted set of code access security permissions,
which allows the code to access all resource types and perform privileged operations,
subject to operating system security. A full trust environment is the default
environment for a Web application and supporting assemblies installed on a Web
server, although this can be altered by configuring the <trust> element of the
application.

Partial Trust Environment

A partial trust environment is anything less than full trust. The NET Framework has
several predefined trust levels that you can use directly or customize to meet your
specific security requirements. The trust level may also be diminished by the origin of
the code. For example, code on a network share is trusted less than code on the local
computer and as a result is limited in its ability to perform privileged operations.

152

Part lll: Building Secure Web Applications

Supporting Partial Trust Callers

The risk of a security compromise increases significantly if your assembly supports
partial trust callers (that is, code that you do not fully trust.) Code access security has
additional safeguards to help mitigate the risk. For additional guidelines that apply
to assemblies that support partial trust callers, see Chapter 8, “Code Access Security
in Practice.” Without additional programming, your code supports partial trust
callers in the following two situations:

® Your assembly does not have a strong name.

® Your assembly has a strong name and includes the
AllowPartiallyTrustedCallersAttribute (APTCA) assembly level attribute.

Why Worry About the Target Environment?

The trust environment that your assembly runs in is important for the following
reasons:

® A partial trust assembly can only gain access to a restricted set of resources and
perform a restricted set of operations, depending upon which code access security
permissions it is granted by code access security policy.

® A partial trust assembly cannot call a strong named assembly unless it includes
AllowPartiallyTrustedCallersAttribute.

® Other partial trust assemblies may not be able to call your assembly because they
do not have the necessary permissions. The permissions that a calling assembly
must be able to call your assembly are determined by:

® The types of resources your assembly accesses
® The types of privileged operation your assembly performs

Sandbox Highly Privileged Code

To avoid granting powerful permissions to a whole application just to satisfy the
needs of a few methods that perform privileged operations, sandbox privileged code
and put it in a separate assembly. This allows an administrator to configure code
access security policy to grant the extended permissions to the code in the specific
assembly and not to the whole application.

For example, if your application needs to call unmanaged code, sandbox the
unmanaged calls in a wrapper assembly, so that an administrator can grant the
UnmanagedCodePermission to the wrapper assembly and not the whole
application.

Note Sandboxing entails using a separate assembly and asserting security permissions to prevent
full stack walks.

Chapter 7: Building Secure Assemblies 153

For more information about sandboxing unmanaged API calls, see “Unmanaged
Code” in Chapter 8, “Code Access Security in Practice.”

Design Your Public Interface

Think carefully about which types and members form part of your assembly’s public
interface. Limit the assembly’s attack surface by minimizing the number of entry
points and using a well designed, minimal public interface.

Class Design Considerations

In addition to using a well defined and minimal public interface, you can further
reduce your assembly’s attack surface by designing secure classes. Secure classes
conform to solid object oriented design principles, prevent inheritance where it is not
required, limit who can call them, and which code can call them. The following
recommendations help you design secure classes:

® Restrict class and member visibility

® Seal non base classes

® Restrict which users can call your code
® Expose fields using properties

Restrict Class and Member Visibility

Use the public access modifier only for types and members that form part of the
assembly’s public interface. This immediately reduces the attack surface because only
public types are accessible by code outside the assembly. All other types and
members should be as restricted as possible. Use the private access modifier
wherever possible. Use protected only if the member should be accessible to derived
classes and use internal only if the member should be accessible to other classes in
the same assembly.

Note C# also allows you to combine protected and internal to create a protected internal member
to limit access to the current assembly or derived types.

Seal Non-Base Classes

If a class is not designed as a base class, prevent inheritance using the sealed
keyword as shown in the following code sample.

public sealed class NobodyDerivesFromMe

{1

154

Part lll: Building Secure Web Applications

For base classes, you can restrict which other code is allowed to derive from your
class by using code access security inheritance demands. For more information, see
“Authorizing Code” in Chapter 8, “Code Access Security in Practice.”

Restrict Which Users Can Call Your Code

Annotate classes and methods with declarative principal permission demands to
control which users can call your classes and class members. In the following
example, only members of the specified Windows group can access the Orders class.
A class level attribute like this applies to all class members. Declarative principal
permission demands can also be used on individual methods. Method level attributes
override class level attributes.

[PrincipalPermission(SecurityAction.Demand,
Role=@"DomainName\WindowsGroup")]

public sealed class Orders()

{

}

Expose Fields Using Properties

Make all fields private. To make a field value accessible to external types, use a read
only or a read /write property. Properties allow you to add additional constraints,
such as input validation or permission demands, as shown in the following code
sample.

public sealed class MyClass
{
private string field; // field is private
// Only members of the specified group are able to
// access this public property
[PrincipalPermission(SecurityAction.Demand,
RoTe=@"DomainName\WindowsGroup")]
public string Field
{
get {
return field;
}
3
}

Chapter 7: Building Secure Assemblies 155

Strong Names

An assembly strong name consists of a text name, a version number, optionally a
culture, a public key (which often represents your development organization), and a
digital signature. You can see the various components of the strong name by looking
into Machine.config and seeing how a strong named assembly is referenced.

The following example shows how the System.Web assembly is referenced in
Machine.config. In this example, the assembly attribute shows the text name, version,
culture and public key token, which is a shortened form of the public key.

<add assembly="System.Web, Version=1.0.5000.0, Culture=neutral,
Pub1icKeyToken=b03f5f7f11d50a3a" />

Whether or not you should strong name an assembly depends on the way in which
you intend it to be used. The main reasons for wanting to add a strong name to an
assembly include:

® You want to ensure that partially trusted code is not able to call your assembly.

The common language runtime prevents partially trusted code from calling a
strong named assembly, by adding link demands for the FullTrust permission set.
You can override this behavior by using AllowPartiallyTrustedCallersAttribute
(APTCA) although you should do so with caution.

For more information about APTCA, see APTCA in Chapter 8, “Code Access
Security in Practice.”

® The assembly is designed to be shared among multiple applications.

In this case, the assembly should be installed in the global assembly cache. This
requires a strong name. The global assembly cache supports side-by-side
versioning which allows different applications to bind to different versions of the
same assembly.

® You want to use the strong name as security evidence.

The public key portion of the strong name gives cryptographically strong evidence
for code access security. You can use the strong name to uniquely identify the
assembly when you configure code access security policy to grant the assembly
specific code access permissions. Other forms of cryptographically strong
evidence include the Authenticode signature (if you have used X.509 certificates to
sign the assembly) and an assembly’s hash.

Note Authenticode evidence is not loaded by the ASP.NET host, which means you cannot use it
to establish security policy for ASP.NET Web applications.

For more information about evidence types and code access security, see
Chapter 8, “Code Access Security in Practice.”

156

Part lll: Building Secure Web Applications

Security Benefits of Strong Names

Strong names provide a number of security advantages in addition to versioning
benefits:

Strong named assemblies are signed with a digital signature. This protects the
assembly from modification. Any tampering causes the verification process that
occurs at assembly load time to fail. An exception is generated and the assembly is
not loaded.

Strong named assemblies cannot be called by partially trusted code, unless you
specifically add AllowPartiallyTrustedCallersAttribute (APTCA.)

Note If you do use APTCA, make sure you read Chapter 8, “Code Access Security in Practice,”
for additional guidelines to further improve the security of your assemblies.

Strong names provide cryptographically strong evidence for code access security
policy evaluation. This allows administrators to grant permissions to specific
assemblies. It also allows developers to use a StrongNameldentityPermission to
restrict which code can call a public member or derive from a non-sealed class.

Using Strong Names

The .NET Framework includes the Sn.exe utility to help you strong name assemblies.
You do not need an X.509 certificate to add a strong name to an assembly.

To strong name an assembly

1. Generate the key file in the assembly’s project directory by using the following

command.

sn.exe -k keypair.snk

2. Add an AssemblyKeyFile attribute to Assemblyinfo.cs to reference the generated

key file, as shown in the following code sample.

// The keypair file 1is usually placed in the project directory
[assembly: AssemblyKeyFile(@"..\..\keypair.snk")]

Chapter 7: Building Secure Assemblies 157

Delay Signing

It is good security practice to delay sign your assemblies during application
development. This results in the public key being placed in the assembly, which
means that it is available as evidence to code access security policy, but the assembly
is not signed, and as a result is not yet tamper proof. From a security perspective,
delay signing has two main advantages:

The private key used to sign the assembly and create its digital signature is held
securely in a central location. The key is only accessible by a few trusted
personnel. As a result, the chance of the private key being compromised is
significantly reduced.

A single public key, which can be used to represent the development organization
or publisher of the software, is used by all members of the development team,
instead of each developer using his or her own public, private key pair, typically
generated by the sn -k command.

» To create a public key file for delay signing

This procedure is performed by the signing authority to create a public key file that
developers can use to delay sign their assemblies.

1.

Create a key pair for your organization.

sn.exe -k keypair.snk

. Extract the public key from the key pair file.

sn -p keypair.snk publickey.snk

. Secure Keypair.snk, which contains both the private and public keys. For example,

put it on a floppy or CD and physically secure it.

. Make Publickey.snk available to all developers. For example, put it on a network

share.

» To delay sign an assembly

This procedure is performed by developers.

1.

Add an assembly level attribute to reference the key file that contains only the
public key.

// The keypair file 1is usually placed in the project directory
[assembly: AssemblyKeyFile(@"..\..\publickey.snk")]

. Add the following attribute to indicate delay signing.

[assembly: AssemblyDelaySign(true)]

158 Part llI: Building Secure Web Applications

3. The delay signing process and the absence of an assembly signature means that
the assembly will fail verification at load time. To work around this, use the
following commands on development and test computers.

® To disable verification for a specific assembly, use the following command.

sn -Vr assembly.d1]

® To disable verification for all assemblies with a particular public key, use the
following command.

sn -Vr *,publickeytoken

® To extract the public key and key token (a truncated hash of the public key),
use the following command.

sn -Tp assembly.d11

Note Use a capital -T switch.

4. To fully complete the signing process and create a digital signature to make the
assembly tamper proof, execute the following command. This requires the private
key and as a result the operation is normally performed as part of the formal
build/release process.

sn -r assembly.d11 keypair.snk

ASP.NET and Strong Names

At the time of this writing, it is not possible to use a strong name for an ASP.NET Web
page assembly because of the way it is dynamically compiled. Even if you use a code-
behind file to create a precompiled assembly that contains your page class
implementation code, ASP.NET dynamically creates and compiles a class that
contains your page’s visual elements. This class derives from your page class, which
again means that you cannot use strong names.

Note You can strong name any other assembly that is called by your Web page code, for example
an assembly that contains resource access, data access or business logic code, although the
assembly must be placed in the global assembly cache.

Chapter 7: Building Secure Assemblies 159

Global Assembly Cache Requirements

Any strong named assembly called by an ASPNET Web application configured for
partial trust should be installed in the global assembly cache. This is because the
ASP.NET host loads all strong-named assemblies as domain-neutral.

The code of a domain-neutral assembly is shared by all application domains in the
ASP.NET process. This creates problems if a single strong named assembly is used by
multiple Web applications and each application grants it varying permissions or if
the permission grant varies between application domain restarts. In this situation,
you may see the following error message: “Assembly <assembly>.dll security
permission grant set is incompatible between appdomains.”

To avoid this error, you must place strong named assemblies in the global assembly
cache and not in the application’s private \bin directory.

Authenticode vs. Strong Names

Authenticode and strong names provide two different ways to digitally sign an
assembly. Authenticode enables you to sign an assembly using an X.509 certificate. To
do so, you use the Signcode.exe utility, which adds the public key part of a full X.509
certificate to the assembly. This ensures trust through certificate chains and certificate
authorities. With Authenticode (unlike strong names,) the implementation of
publisher trust is complex and involves network communication during the
verification of publisher identity.

Authenticode signatures and strong names were developed to solve separate
problems and you should not confuse them. Specifically:

® A strong name uniquely identifies an assembly.
® An Authenticode signature uniquely identifies a code publisher.

Authenticode signatures should be used for mobile code, such as controls and
executables downloaded via Internet Explorer, to provide publisher trust and
integrity.

You can configure code access security (CAS) policy using both strong names and
Authenticode signatures in order to grant permissions to specific assemblies.
However, the Publisher evidence object, obtained from an Authenticode signature is
only created by the Internet Explorer host and not by the ASP.NET host. Therefore, on
the server side, you cannot use an Authenticode signature to identify a specific
assembly (through a code group.) Use strong names instead.

For more information about CAS, CAS policy and code groups, see Chapter 8, “Code
Access Security in Practice.”

160 Part llI: Building Secure Web Applications

Table 7.1 compares the features of strong names and Authenticode signatures.

Table 7.1 A Comparison of Strong Names and Authenticode Signatures

Feature Strong Name Authenticode
Unique identification of Yes No

assembly

Unique identification of Not necessarily. Yes

publisher

Depends on assembly developer using
a public key to represent the publisher

The public key of the publisher No Yes
can be revoked

Versioning Yes No
Namespace and type name Yes No
unigueness

Integrity (checks assembly has | Yes Yes

not been tampered with)

Evidence used as input to CAS Yes IE host—Yes
policy ASP.NET host— No
User input required for trust No Yes (pop-up dialog box)
decision

Authorization

There are two types of authorization that you can use in your assemblies to control
access to classes and class members:

® Role-based authorization to authorize access based on user identity and
role-membership. When you use role-based authorization in assemblies that are
part of an ASP.NET Web application or Web service, you authorize the identity
that is represented by an IPrincipal object attached to the current Web request and
available through Thread.CurrentPrincipal and HttpContext.Current.User. This
identity is either the authenticated end user identity or the anonymous Internet
user identity. For more information about using principal-based authorization in
Web applications, see “Authorization” in Chapter 10, “Building Secure ASPNET
Pages and Controls.”

® Code access security to authorize calling code, based on evidence, such as
an assembly’s strong name or location. For more information, see the
“Authorization” section in Chapter 8, “Code Access Security in Practice.”

Chapter 7: Building Secure Assemblies 161

Exception Management

Do not reveal implementation details about your application in exception messages
returned to the client. This information can help malicious users plan attacks on your
application. To provide proper exception management:

Use structured exception handling.

Do not log sensitive data.

Do not reveal system or sensitive application information.
Consider exception filter issues.

Consider an exception management framework.

Use Structured Exception Handling

Microsoft Visual C# and Microsoft Visual Basic .NET provide structured exception
handling constructs. C# provides the try / catch and finally construct. Protect code by
placing it inside try blocks and implement catch blocks to log and process exceptions.
Also use the finally construct to ensure that critical system resources such as
connections are closed irrespective of whether an exception condition occurs.

try

}

// Code that could throw an exception

catch (SomeExceptionType ex)

{

}

// Code to handle the exception and log details to aid
// problem diagnosis

finally

{

}

// This code is always run, regardless of whether or not
// an exception occurred. Place clean up code in finally
// blocks to ensure that resources are closed and/or released.

Use structured exception handling instead of returning error codes from methods
because it is easy to forget to check a return code and as a result fail to an insecure
mode.

162

Part lll: Building Secure Web Applications

Do Not Log Sensitive Data

The rich exception details included in Exception objects are valuable to developers
and attackers alike. Log details on the server by writing them to the event log to aid
problem diagnosis. Avoid logging sensitive or private data such as user passwords.
Also make sure that exception details are not allowed to propagate beyond the
application boundary to the client as described in the next topic.

Do Not Reveal Sensitive System or Application Information

Do not reveal too much information to the caller. Exception details can include
operating system and .NET Framework version numbers, method names, computer
names, SQL command statements, connection strings, and other details that are very
useful to attackers. Log detailed error messages at the server and return generic error
messages to the end user.

In the context of an ASP.NET Web application or Web service, this can be done with
the appropriate configuration of the <customErrors> element. For more information,
see Chapter 10, “Building Secure ASPNET Web Pages and Controls.”

Consider Exception Filter Issues

If your code uses exception filters, your code is potentially vulnerable to security
issues because code in a filter higher up the call stack can run before code in a finally
block. Make sure you do not rely on state changes in the finally block because the
state change will not occur before the exception filter executes. For example, consider
the following code:

// Place this code into a C# class Tibrary project
public class SomeClass
{
pubTlic void SomeMethod()
{
try
{
// (1) Generate an exception
Console.WriteLine("1> About to encounter an exception condition");
// Simulate an exception
throw new Exception("Some Exception");
}
// (3) The finally block
finally
{
Console.WriteLine("3> Finally");
}
}
3

Chapter 7: Building Secure Assemblies 163

(continued)

// Place this code into a Visual Basic.NET console application project and
// reference the above class library code
Sub Main(Q)
Dim c¢ As New SomeClass
Try
c.SomeMethod()
Catch ex As Exception When Filter()
' (4) The exception is handled
Console.WriteLine("4> Main: Catch ex as Exception)
End Try
End Sub

' (2) The exception filter

Public Function Filter() As Boolean
' Malicious code could do something here if you are relying on a state
' change in the Finally block in SomeClass in order to provide security
Console.WriteLine("2> Filter")
Return True ' Indicate that the exception is handled

End Function

In the above example, Visual Basic .NET is used to call the C# class library code
because Visual Basic .NET supports exception filters, unlike C#.

If you create two projects and then run the code, the output produced is shown
below:

1> About to encounter an exception condition
2> Filter

3> Finally

4> Main: Catch ex as Exception

From this output, you can see that the exception filter executes before the code in the
finally block. If your code sets state that affects a security decision in the finally
block, malicious code that calls your code could add an exception filter to exploit this
vulnerability.

Consider an Exception Management Framework

A formalized exception management system can help improve system supportability
and maintainability and ensure that you detect, log, and process exceptions in a
consistent manner.

For information about how to create an exception management framework and
about best practice exception management for .NET applications, see “Exception
Management in .NET” in the MSDN Library at http://msdn.microsoft.com/library
Jen-us/dnbda/html/