

Improving Web
Application Security
Threats and Countermeasures

Forewords by Mark Curphey, Joel Scambray,
and Erik Olson

Improving Web
Application Security

Threats and Countermeasures

patterns & practices

J.D. Meier, Microsoft Corporation

Alex Mackman, Content Master

Srinath Vasireddy, Microsoft Corporation

Michael Dunner, Microsoft Corporation

Ray Escamilla, Microsoft Corporation

Anandha Murukan, Satyam Computer Services

Information in this document, including URL and other Internet Web site references,
is subject to change without notice. Unless otherwise noted, the example companies,
organizations, products, domain names, e-mail addresses, logos, people, places and
events depicted herein are fictitious, and no association with any real company,
organization, product, domain name, e-mail address, logo, person, place or event is
intended or should be inferred. Complying with all applicable copyright laws is the
responsibility of the user. Without limiting the rights under copyright, no part of this
document may be reproduced, stored in or introduced into a retrieval system, or
transmitted in any form or by any means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, without the express written permission
of Microsoft Corporation.

Microsoft, MS-DOS, Windows, Windows NT, Active Directory, BizTalk, IntelliSense,
MSDN, Visual Basic, Visual C#, Visual C++, and Visual Studio are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or
other countries.

© 2003 Microsoft Corporation. All rights reserved.

Version 1.0

6/30/2003

The names of actual companies and products mentioned herein may be the
trademarks of their respective owners.

Contents

Forewords xliii
Foreword by Mark Curphey ...xliii
Foreword by Joel Scambray ...xlv
Foreword by Erik Olson .. xlvi

Introduction xlix
Why We Wrote This Guide .. xlix
What Is a Hack-Resilient Application? ...l
Scope of This Guide ... li

Securing the Network, Host, and Application .. li
Technologies in Scope... lii

Who Should Read This Guide ... lii
How to Use This Guide ... liii

Applying the Guidance to Your Role ... liii
Applying the Guidance to Your Product Life Cycle .. liv
Microsoft Solutions Framework .. lv

Organization of This Guide ... lv
Solutions at a Glance.. lv
Fast Track... lv
Parts... lvi
Checklists ...lvii
“How To” Articles.. lviii

Approach Used in This Guide ... lviii
Secure Your Network, Host, and Application .. lviii
Focus on Threats ... lix
Follow a Principle-Based Approach.. lx

Positioning of This Guide ... lx
Volume I, Building Secure ASP.NET Applications .. lx
Volume II, Improving Web Application Security .. lxi

Feedback and Support ...lxii
Feedback on the Guide...lxii
Technical Support ..lxii
Community and Newsgroup Support ..lxii

The Team Who Brought You This Guide ... lxiii
Contributors and Reviewers ... lxiii

Tell Us About Your Success.. lxiv
Summary ... lxiv

vi Improving Web Application Security: Threats and Countermeasures

Solutions at a Glance lxv
Architecture and Design Solutions...lxv
Development Solutions ... lxvi
Administration Solutions...lxx

Fast Track — How To Implement the Guidance lxxv
Goal and Scope ... lxxv
The Holistic Approach...lxxvi
Securing Your Network...lxxvii
Securing Your Host..lxxvii
Securing Your Application ... lxxviii
Identify Threats..lxxix
Applying the Guidance to Your Product Life Cycle ..lxxxi
Implementing the Guidance ...lxxxii
Who Does What? ... lxxxiii

RACI Chart .. lxxxiii
Summary .. lxxxiv

Part I
Introduction to Threats and Countermeasures 1

Chapter 1
Web Application Security Fundamentals 3

We Are Secure — We Have a Firewall .. 3
What Do We Mean By Security? ... 4

The Foundations of Security... 4
Threats, Vulnerabilities, and Attacks Defined... 5
How Do You Build a Secure Web Application?.. 5
Secure Your Network, Host, and Application .. 6
Securing Your Network... 7

Network Component Categories ... 7
Securing Your Host.. 7

Host Configuration Categories.. 8
Securing Your Application .. 9

Application Vulnerability Categories .. 9
Security Principles... 11
Summary ... 12
Additional Resources .. 12

Chapter 2
Threats and Countermeasures 13

In This Chapter ... 13
Overview .. 13

 Contents vii

How to Use This Chapter ... 14
Anatomy of an Attack .. 14

Survey and Assess ... 15
Exploit and Penetrate .. 15
Escalate Privileges.. 15
Maintain Access ... 16
Deny Service .. 16

Understanding Threat Categories ... 16
STRIDE .. 16
STRIDE Threats and Countermeasures ... 17

Network Threats and Countermeasures .. 18
Information Gathering.. 18
Sniffing .. 19
Spoofing .. 19
Session Hijacking ... 19
Denial of Service .. 20

Host Threats and Countermeasures ... 20
Viruses, Trojan Horses, and Worms .. 21
Footprinting .. 21
Password Cracking.. 22
Denial of Service .. 22
Arbitrary Code Execution.. 23
Unauthorized Access... 23

Application Threats and Countermeasures .. 23
Input Validation... 24

Buffer Overflows ... 25
Cross-Site Scripting... 26
SQL Injection .. 27
Canonicalization ... 28

Authentication .. 29
Network Eavesdropping ... 29
Brute Force Attacks... 30
Dictionary Attacks... 30
Cookie Replay Attacks... 31
Credential Theft .. 31

Authorization .. 31
Elevation of Privilege ... 32
Disclosure of Confidential Data.. 32
Data Tampering... 32
Luring Attacks... 33

Configuration Management .. 33
Unauthorized Access to Administration Interfaces ... 33
Unauthorized Access to Configuration Stores .. 34
Retrieval of Plaintext Configuration Secrets ... 34
Lack of Individual Accountability ... 34
Over-privileged Application and Service Accounts... 34

viii Improving Web Application Security: Threats and Countermeasures

Sensitive Data .. 35
Access to Sensitive Data in Storage... 35
Network Eavesdropping ... 35
Data Tampering... 35

Session Management ... 36
Session Hijacking ... 36
Session Replay... 36
Man in the Middle Attacks ... 37

Cryptography .. 37
Poor Key Generation or Key Management.. 38
Weak or Custom Encryption ... 38
Checksum Spoofing .. 38

Parameter Manipulation .. 39
Query String Manipulation ... 39
Form Field Manipulation .. 40
Cookie Manipulation ... 40
HTTP Header Manipulation... 40

Exception Management ... 40
Attacker Reveals Implementation Details .. 41
Denial of Service .. 41

Auditing and Logging ... 41
User Denies Performing an Operation ... 42
Attackers Exploit an Application Without Leaving a Trace .. 42
Attackers Cover Their Tracks .. 42

Summary ... 42
Additional Resources .. 43

Chapter 3
Threat Modeling 45

In This Chapter ... 45
Overview .. 45
Before You Begin .. 45
How to Use This Chapter ... 46
Threat Modeling Principles... 47

The Process ... 47
The Output ... 48

Step 1. Identify Assets .. 49
Step 2. Create an Architecture Overview ... 49

Identify What the Application Does ... 50
Create an Architecture Diagram.. 50
Identify the Technologies ... 51

 Contents ix

Step 3. Decompose the Application.. 52
Identify Trust Boundaries ... 53
Identify Data Flow ... 53
Identify Entry Points .. 54
Identify Privileged Code ... 54
Document the Security Profile .. 55

Step 4. Identify the Threats ... 56
Identify Network Threats.. 57
Identify Host Threats ... 58
Identify Application Threats.. 58
Using Attack Trees and Attack Patterns... 59

Step 5. Document the Threats ... 62
Step 6. Rate the Threats ... 62

Risk = Probability * Damage Potential .. 63
High, Medium, and Low Ratings ... 63
DREAD... 63

What Comes After Threat Modeling?... 65
Generating a Work Item Report .. 66

Summary ... 66
Additional Resources .. 66

Part II
Designing Secure Web Applications 67

Chapter 4
Design Guidelines for Secure Web Applications 69

In This Chapter ... 69
Overview .. 69
How to Use This Chapter ... 70
Architecture and Design Issues for Web Applications ... 70
Deployment Considerations ... 72

Security Policies and Procedures.. 73
Network Infrastructure Components ... 73
Deployment Topologies.. 73
Intranet, Extranet, and Internet... 74

Input Validation... 74
Assume All Input Is Malicious .. 75
Centralize Your Approach ... 75
Do Not Rely on Client-Side Validation.. 76
Be Careful with Canonicalization Issues.. 76
Constrain, Reject, and Sanitize Your Input ... 77
In Practice .. 79

x Improving Web Application Security: Threats and Countermeasures

Authentication .. 80
Separate Public and Restricted Areas... 81
Use Account Lockout Policies for End-User Accounts ... 81
Support Password Expiration Periods.. 81
Be Able to Disable Accounts .. 82
Do Not Store Passwords in User Stores.. 82
Require Strong Passwords... 82
Do Not Send Passwords Over the Wire in Plaintext .. 82
Protect Authentication Cookies .. 82

Authorization .. 83
Use Multiple Gatekeepers ... 83
Restrict User Access to System Level Resources .. 83
Consider Authorization Granularity .. 83

Configuration Management .. 86
Secure Your Administration Interfaces .. 86
Secure Your Configuration Stores ... 86
Separate Administration Privileges ... 87
Use Least Privileged Process and Service Accounts... 87

Sensitive Data .. 87
Secrets .. 87
Sensitive Per User Data... 89

Session Management ... 90
Use SSL to Protect Session Authentication Cookies .. 90
Encrypt the Contents of the Authentication Cookies... 90
Limit Session Lifetime... 91
Protect Session State from Unauthorized Access .. 91

Cryptography .. 91
Do Not Develop Your Own Cryptography .. 92
Keep Unencrypted Data Close to the Algorithm ... 92
Use the Correct Algorithm and Correct Key Size... 92
Secure Your Encryption Keys.. 92

Parameter Manipulation .. 93
Encrypt Sensitive Cookie State .. 93
Make Sure that Users Do Not Bypass Your Checks.. 93
Validate All Values Sent from the Client .. 94
Do Not Trust HTTP Header Information.. 94

Exception Management ... 94
Do Not Leak Information to the Client... 94
Log Detailed Error Messages ... 95
Catch Exceptions .. 95

Auditing and Logging ... 95
Audit and Log Access Across Application Tiers .. 95
Consider Identity Flow ... 96
Log Key Events ... 96
Secure Log Files ... 96
Back Up and Analyze Log Files Regularly... 96

 Contents xi

Design Guidelines Summary .. 97
Summary ... 98
Additional Resources .. 98

Chapter 5
Architecture and Design Review for Security 99

In This Chapter ... 99
Overview .. 99
How to Use This Chapter ... 100
Architecture and Design Review Process... 100
Deployment and Infrastructure Considerations .. 101

Does the Network Provide Secure Communication? ... 102
Does Your Deployment Topology Include an Internal Firewall? 102
Does Your Deployment Topology Include a Remote Application Server? 102
What Restrictions Does Infrastructure Security Impose? .. 103
Have You Considered Web Farm Issues?... 104
What Trust Levels Does the Target Environment Support? 104

Input Validation... 105
How Do You Validate Input? ... 106
What Do You Do with the Input? ... 107

Authentication .. 107
Do You Separate Public and Restricted Access?.. 108
Have You Identified Service Account Requirements? .. 108
How Do You Authenticate the Caller?.. 109
How Do You Authenticate with the Database? ... 109
Do You Enforce Strong Account Management Practices? .. 111

Authorization .. 111
How Do You Authorize End Users?.. 112
How Do You Authorize the Application in the Database?... 113
How Do You Restrict Access to System-Level Resources? 113

Configuration Management .. 114
Do You Support Remote Administration? .. 114
Do You Secure Configuration Stores? ... 115
Do You Separate Administrator Privileges?.. 115

Sensitive Data .. 115
Do You Store Secrets? .. 116
How Do You Store Sensitive Data? ... 117
Do You Pass Sensitive Data Over the Network? ... 117
Do You Log Sensitive Data?... 117

Session Management ... 117
How Are Session Identifiers Exchanged?... 118
Do You Restrict Session Lifetime?.. 118
How Is the Session State Store Secured?... 118

xii Improving Web Application Security: Threats and Countermeasures

Cryptography .. 119
Why Do You Use Particular Algorithms?... 119
How Do You Secure Encryption Keys?... 120

Parameter Manipulation .. 120
Do You Validate All Input Parameters? .. 121
Do You Pass Sensitive Data in Parameters?.. 121
Do You Use HTTP Header Data for Security? ... 121

Exception Management ... 122
Do You Use Structured Exception Handling?.. 122
Do You Reveal Too Much Information to the Client? ... 122

Auditing and Logging ... 123
Have You Identified Key Activities to Audit? ... 123
Have You Considered How to Flow Original Caller Identity? 124
Have You Considered Secure Log File Management Policies? 124

Summary ... 124
Additional Resources .. 125

Part III
Building Secure Web Applications 127

Chapter 6
.NET Security Overview 129

In This Chapter ... 129
Overview .. 129
How to Use This Chapter ... 130
Managed Code Benefits .. 130
User vs. Code Security .. 131

Role-Based Security .. 131
Code Access Security.. 132

.NET Framework Role-Based Security.. 133
Principals and Identities .. 134
PrincipalPermission Objects... 134
Role-Based Security Checks... 137
URL Authorization ... 138

.NET Framework Security Namespaces ... 139
System.Security.. 140
System.Web.Security... 141
System.Security.Cryptography .. 141
System.Security.Principal... 141
System.Security.Policy ... 142
System.Security.Permissions ... 142

Summary ... 144
Additional Resources .. 144

 Contents xiii

Chapter 7
Building Secure Assemblies 145

In This Chapter ... 145
Overview .. 145
How to Use This Chapter ... 146
Threats and Countermeasures ... 146

Unauthorized Access or Privilege Elevation, or both.. 147
Code Injection .. 147
Information Disclosure .. 148
Tampering .. 149

Privileged Code... 149
Privileged Resources ... 150
Privileged Operations .. 150

Assembly Design Considerations ... 150
Identify Privileged Code ... 150
Identify the Trust Level of Your Target Environment... 151
Sandbox Highly Privileged Code.. 152
Design Your Public Interface... 153

Class Design Considerations ... 153
Restrict Class and Member Visibility... 153
Seal Non-Base Classes ... 153
Restrict Which Users Can Call Your Code.. 154
Expose Fields Using Properties .. 154

Strong Names .. 155
Security Benefits of Strong Names ... 156
Using Strong Names ... 156
Delay Signing.. 157
ASP.NET and Strong Names... 158
Authenticode vs. Strong Names ... 159

Authorization .. 160
Exception Management ... 161

Use Structured Exception Handling... 161
Do Not Log Sensitive Data... 162
Do Not Reveal Sensitive System or Application Information 162
Consider Exception Filter Issues .. 162
Consider an Exception Management Framework .. 163

File I/O .. 164
Avoid Untrusted Input for File Names.. 164
Do Not Trust Environment Variables.. 164
Validate Input File Names.. 164
Constrain File I/O Within Your Application’s Context... 165

Event Log ... 165

xiv Improving Web Application Security: Threats and Countermeasures

Registry ... 166
HKEY_LOCAL_MACHINE... 166
HKEY_CURRENT_USER.. 166
Reading from the Registry ... 167

Data Access ... 167
Unmanaged Code ... 168

Validate Input and Output String Parameters ... 168
Validate Array Bounds ... 169
Check File Path Lengths .. 169
Compile Unmanaged Code With the /GS Switch .. 169
Inspect Unmanaged Code for Dangerous APIs... 169

Delegates... 169
Do Not Accept Delegates from Untrusted Sources... 169

Serialization ... 170
Do Not Serialize Sensitive Data.. 170
Validate Serialized Data Streams ... 170
Partial Trust Considerations ... 171

Threading ... 171
Do Not Cache the Results of Security Checks ... 171
Consider Impersonation Tokens ... 172
Synchronize Static Class Constructors.. 172
Synchronize Dispose Methods ... 172

Reflection... 172
Obfuscation.. 173
Cryptography .. 174

Use Platform-provided Cryptographic Services ... 174
Key Generation ... 174
Key Storage.. 176
Key Exchange ... 178
Key Maintenance .. 178

Summary ... 179
Additional Resources .. 179

Chapter 8
Code Access Security in Practice 181

In This Chapter ... 181
Overview .. 181
How to Use This Chapter ... 182
Code Access Security Explained... 182

Code.. 183
Evidence .. 183
Permissions ... 184
Assert, Deny, and PermitOnly Methods.. 185
Policy ... 185
Code Groups .. 186

 Contents xv

Code Access Security Explained (continued)
How Does It Work?.. 186
How Is Policy Evaluated? ... 187

APTCA.. 191
Avoid Using APTCA .. 191
Diagnosing APTCA Issues .. 192

Privileged Code... 193
Privileged Resources ... 193
Privileged Operations .. 194

Requesting Permissions .. 194
RequestMinimum.. 195
RequestOptional ... 195
RequestRefused ... 195
Implications of Using RequestOptional or RequestRefuse 196

Authorizing Code... 196
Restrict Which Code Can Call Your Code ... 197
Restrict Inheritance... 198
Consider Protecting Cached Data ... 199
Protect Custom Resources with Custom Permissions .. 199

Link Demands .. 199
Luring Attacks... 200
Performance and Link Demands... 201
Calling Methods with Link Demands ... 201
Mixing Class and Method Level Link Demands .. 201
Interfaces and Link Demands .. 202
Structures and Link Demands.. 202
Virtual Methods and Link Demands.. 203

Assert and RevertAssert.. 203
Use the Demand / Assert Pattern .. 204
Reduce the Assert Duration... 204

Constraining Code... 204
Using Policy Permission Grants .. 205
Using Stack Walk Modifiers ... 205

File I/O .. 205
Constraining File I/O within your Application’s Context ... 205
Requesting FileIOPermission.. 207

Event Log ... 207
Constraining Event Logging Code ... 208
Requesting EventLogPermission... 208

Registry ... 208
Constraining Registry Access... 209
Requesting RegistryPermission .. 209

Data Access ... 209
Directory Services... 210

Constraining Directory Service Access.. 210
Requesting DirectoryServicesPermission .. 211

xvi Improving Web Application Security: Threats and Countermeasures

Environment Variables ... 211
Constraining Environment Variable Access .. 211
Requesting EnvironmentPermission.. 211

Web Services ... 212
Constraining Web Service Connections ... 212

Sockets and DNS.. 213
Constraining Socket Access... 213
Requesting SocketPermission and DnsPermission... 214

Unmanaged Code ... 214
Use Naming Conventions to Indicate Risk ... 214
Request the Unmanaged Code Permission.. 215
Sandbox Unmanaged API Calls... 215
Use SuppressUnmanagedCodeSecurity with Caution ... 216

Delegates... 217
Serialization ... 218

Restricting Serialization ... 218
Summary ... 219
Additional Resources .. 219

Chapter 9
Using Code Access Security with ASP.NET 221

In This Chapter ... 221
Overview .. 221
How to Use This Chapter ... 223
Resource Access .. 223
Full Trust and Partial Trust ... 224
Configuring Code Access Security in ASP.NET ... 225

Configuring Trust Levels... 225
Locking the Trust Level .. 226

ASP.NET Policy Files.. 227
ASP.NET Policy ... 227

Inside an ASP.NET Policy File ... 228
Permission State and Unrestricted Permissions .. 229
The ASP.NET Named Permission Set .. 229
Substitution Parameters .. 230

Developing Partial Trust Web Applications ... 231
Why Partial Trust? ... 231
Problems You Might Encounter... 231

Trust Levels .. 232
Approaches for Partial Trust Web Applications ... 234
Customize Policy... 235
Sandbox Privileged Code ... 236

A Sandboxing Pattern .. 236

 Contents xvii

Deciding Which Approach to Take ... 238
Customizing Policy .. 238
Sandboxing .. 238

Medium Trust ... 239
Reduced Attack Surface .. 239
Application Isolation.. 239

Medium Trust Restrictions ... 240
OLE DB .. 240
Event Log ... 244
Web Services ... 248
Registry ... 250

Summary ... 252
Additional Resources .. 252

Chapter 10
Building Secure ASP.NET Pages and Controls 253

In This Chapter ... 253
Overview .. 253
How to Use This Chapter ... 254
Threats and Countermeasures ... 254

Code Injection .. 255
Session Hijacking ... 256
Identity Spoofing... 257
Parameter Manipulation .. 258
Network Eavesdropping ... 259
Information Disclosure .. 259

Design Considerations .. 260
Use Server-Side Input Validation .. 260
Partition Your Web Site .. 261
Consider the Identity That Is Used for Resource Access... 262
Protect Credentials and Authentication Tickets.. 262
Fail Securely ... 262
Consider Authorization Granularity .. 263
Place Web Controls and User Controls in Separate Assemblies 263
Place Resource Access Code in a Separate Assembly ... 263

Input Validation... 263
Constrain, Then Sanitize.. 264
Regular Expressions.. 264
String Fields ... 265
Date Fields... 267
Numeric Fields.. 267
Sanitizing Input... 269
Validating HTML Controls... 269
Validating Input Used for Data Access .. 270
Validating Input Used For File I/O ... 270
Common Regular Expressions.. 271

xviii Improving Web Application Security: Threats and Countermeasures

Cross-Site Scripting... 272
Validate Input ... 273
Encode Output.. 273
Defense in Depth Countermeasures... 274

Authentication .. 277
Forms Authentication .. 277
Partition Your Web Site .. 278
Secure Restricted Pages with SSL.. 279
Use URL Authorization... 279
Secure the Authentication Cookie... 280
Use Absolute URLs for Navigation .. 282
Use Secure Credential Management... 283

Authorization .. 284
Use URL Authorization for Page and Directory Access Control................................. 284
Use File Authorization with Windows Authentication ... 284
Use Principal Demands on Classes and Methods .. 284
Use Explicit Role Checks for Fine-Grained Authorization ... 285

Impersonation .. 286
Using Programmatic Impersonation .. 286

Sensitive Data .. 288
Do not Pass Sensitive Data from Page to Page.. 288
Avoid Plaintext Passwords in Configuration Files.. 288
Use DPAPI to Avoid Key Management ... 288
Do Not Cache Sensitive Data... 288

Session Management ... 289
Require Authentication for Sensitive Pages ... 289
Do Not Rely on Client-Side State Management Options .. 289
Do Not Mix Session Tokens and Authentication Tokens .. 290
Use SSL Effectively ... 290
Secure the Session Data... 290

Parameter Manipulation .. 291
Protect View State with MACs .. 291
Use Page.ViewStateUserKey to Counter One-Click Attacks...................................... 292
Maintain Sensitive Data on the Server.. 292
Validate Input Parameters.. 293

Exception Management ... 293
Return Generic Error Pages to the Client ... 293
Implement Page-Level or Application-Level Error Handlers....................................... 294

Auditing and Logging ... 295
EventLogPermission .. 296

Summary ... 296
Additional Resources .. 297

 Contents xix

Chapter 11
Building Secure Serviced Components 299

In This Chapter ... 299
Overview .. 299
How to Use This Chapter ... 300
Threats and Countermeasures ... 300

Network Eavesdropping ... 301
Unauthorized Access... 301
Unconstrained Delegation.. 301
Disclosure of Configuration Data .. 302
Repudiation.. 302

Design Considerations .. 302
Role-Based Authorization ... 302
Sensitive Data Protection .. 302
Audit Requirements... 303
Application Activation Type... 303
Transactions... 303
Code Access Security.. 303

Authentication .. 304
Use (At Least) Call Level Authentication.. 304

Authorization .. 304
Enable Role-Based Security ... 304
Enable Component Level Access Checks .. 305
Enforce Component Level Access Checks ... 305

Configuration Management .. 305
Use Least Privileged Run-As Accounts .. 306
Avoid Storing Secrets in Object Constructor Strings ... 306
Avoid Unconstrained Delegation ... 306

Sensitive Data .. 307
Auditing and Logging ... 308

Audit User Transactions... 308
Building a Secure Serviced Component .. 309

Assembly Implementation.. 310
Serviced Component Class Implementation .. 311

Code Access Security Considerations ... 313
Deployment Considerations ... 314

Firewall Restrictions .. 314
Summary ... 316
Additional Resources .. 317

Chapter 12
Building Secure Web Services 319

In This Chapter ... 319
Overview .. 319
How to Use This Chapter ... 320

xx Improving Web Application Security: Threats and Countermeasures

Threats and Countermeasures ... 320
Unauthorized Access... 321
Parameter Manipulation .. 322
Network Eavesdropping ... 322
Disclosure of Configuration Data .. 323
Message Replay ... 323

Design Considerations .. 325
Authentication Requirements ... 325
Privacy and Integrity Requirements ... 325
Resource Access Identities.. 325
Code Access Security.. 326

Input Validation... 326
Strongly Typed Parameters... 326
Loosely Typed Parameters ... 328
XML Data ... 328
SQL Injection .. 331
Cross-Site Scripting... 331

Authentication .. 332
Platform Level Authentication... 332
Message Level Authentication.. 333
Application Level Authentication ... 335

Authorization .. 335
Web Service Endpoint Authorization.. 336
Web Method Authorization ... 336
Programmatic Authorization ... 336

Sensitive Data .. 337
XML Encryption... 337
Encrypting Parts of a Message... 338

Parameter Manipulation .. 339
Exception Management ... 339

Using SoapExceptions... 340
Application Level Error Handling in Global.asax.. 341

Auditing and Logging ... 341
Proxy Considerations... 341
Code Access Security Considerations ... 342
Deployment Considerations ... 343

Intranet Deployment.. 343
Extranet Deployment ... 343
Internet Deployment.. 344

Summary ... 345
Additional Resources .. 345

 Contents xxi

Chapter 13
Building Secure Remoted Components 347

In This Chapter ... 347
Overview .. 347
How to Use This Chapter ... 348
Threats and Countermeasures ... 349

Unauthorized Access... 349
Network Eavesdropping ... 350
Parameter Manipulation .. 351
Serialization ... 351

Design Considerations .. 352
Do Not Expose Remoted Objects to the Internet.. 352
Use the HttpChannel to Take Advantage of ASP.NET Security 352
Use the TcpChannel Only in Trusted Server Scenarios.. 352

Input Validation... 354
Serialization Attacks.. 354
MarshalByRefObject Attacks .. 354

Authentication .. 355
ASP.NET Hosting... 355
Custom Process Hosting ... 358

Authorization .. 359
Use IPSec for Machine Level Access Control ... 359
Enable File Authorization for User Access Control .. 359
Authorize Users with Principal-Based Role Checks ... 360
Consider Limiting Remote Access .. 360

Sensitive Data .. 361
Using IPSec.. 361
Using SSL .. 361
Using a Custom Encryption Sink... 361

Denial of Service .. 364
Exception Management ... 364

Using a Custom Channel Sink.. 365
Auditing and Logging ... 365

Using a Custom Channel Sink.. 365
Code Access Security (CAS) Considerations .. 365
Summary ... 365
Additional Resources .. 366

Chapter 14
Building Secure Data Access 367

In this Chapter.. 367
Overview .. 367
How to Use This Chapter ... 368

xxii Improving Web Application Security: Threats and Countermeasures

Threats and Countermeasures ... 368
SQL Injection .. 369
Disclosure of Configuration Data .. 370
Disclosure of Sensitive Application Data ... 370
Disclosure of Database Schema and Connection Details 371
Unauthorized Access... 371
Network Eavesdropping ... 372

Design Considerations .. 372
Use Windows Authentication.. 373
Use Least Privileged Accounts ... 373
Use Stored Procedures.. 373
Protect Sensitive Data in Storage... 374
Use Separate Data Access Assemblies .. 375

Input Validation... 376
SQL Injection .. 376

Preventing SQL Injection.. 376
Constrain Input ... 376
Use Type Safe SQL Parameters .. 377
Using Parameter Batching.. 378
Using Filter Routines ... 378
Using LIKE Clauses... 378

Authentication .. 379
Use Windows Authentication.. 379
Protect the Credentials for SQL Authentication .. 380
Connect Using a Least Privileged Account... 380

Authorization .. 380
Restrict Unauthorized Callers... 382
Restrict Unauthorized Code ... 383
Restrict the Application in the Database ... 383

Configuration Management .. 384
Use Window Authentication.. 384
Secure Your Connection Strings ... 384
Secure UDL Files with Restricted ACLs ... 386

Sensitive Data .. 386
Encrypt Sensitive Data if You Need to Store It ... 386
Secure Sensitive Data Over the Network... 387
Store Password Hashes with Salt... 388

Exception Management ... 389
Trap and Log ADO.NET Exceptions .. 389
Ensure Database Connections Are Closed .. 391
Use a Generic Error Page in Your ASP.NET Applications.. 392

Building a Secure Data Access Component... 393
Code Access Security Considerations ... 396

 Contents xxiii

Deployment Considerations ... 397
Firewall Restrictions .. 397
Connection String Management ... 398
Login Account Configuration... 398
Logon Auditing.. 398
Data Privacy and Integrity on the Network ... 399

Summary ... 399
Additional Resources .. 399

Part IV
Securing Your Network, Host, and Application 401

Chapter 15
Securing Your Network 403

In This Chapter ... 403
Overview .. 403
How to Use This Chapter ... 404
Threats and Countermeasures ... 405

Information Gathering.. 405
Sniffing .. 406
Spoofing .. 406
Session Hijacking ... 407
Denial of Service .. 407

Methodology... 408
Router.. 408
Firewall .. 409
Switch.. 409

Router Considerations... 409
Patches and Updates .. 409
Protocols.. 410
Administrative Access ... 412
Services... 412
Auditing and Logging ... 413
Intrusion Detection ... 413

Firewall Considerations ... 413
Patches and Updates .. 413
Filters .. 414
Logging and Auditing ... 415
Perimeter Networks... 415

Switch Considerations... 416
Patches and Updates .. 416
VLANs.. 417
Insecure Defaults.. 417
Services... 417
Encryption .. 417

xxiv Improving Web Application Security: Threats and Countermeasures

Additional Considerations .. 417
Snapshot of a Secure Network... 418
Summary ... 419
Additional Resources .. 420

Chapter 16
Securing Your Web Server 421

In This Chapter ... 421
Overview .. 421
How to Use This Chapter ... 422
Threats and Countermeasures ... 422

Profiling.. 423
Denial of Service .. 424
Unauthorized Access... 424
Arbitrary Code Execution.. 425
Elevation of Privileges ... 425
Viruses, Worms, and Trojan Horses .. 426

Methodology for Securing Your Web Server ... 426
Configuration Categories ... 427

IIS and .NET Framework Installation Considerations... 430
What Does IIS Install?... 430
What Does the .NET Framework Install?.. 431

Installation Recommendations... 432
IIS Installation Recommendations .. 432
.NET Framework Installation Recommendations... 432
Including Service Packs with a Base Installation.. 433

Steps for Securing Your Web Server ... 433
Step 1. Patches and Updates .. 434

Detect and Install Patches and Updates ... 434
Update the .NET Framework... 435

Step 2. IISLockdown ... 435
Install and Run IISLockdown .. 435
Install and Configure URLScan ... 437

Step 3. Services ... 438
Disable Unnecessary Services ... 439
Disable FTP, SMTP, and NNTP Unless You Require Them.. 439
Disable the ASP.NET State Service Unless You Require It 440

Step 4. Protocols .. 440
Disable or Secure WebDAV .. 440
Harden the TCP/IP Stack... 440
Disable NetBIOS and SMB... 441

 Contents xxv

Step 5. Accounts .. 442
Delete or Disable Unused Accounts.. 442
Disable the Guest Account .. 443
Rename the Administrator Account... 443
Disable the IUSR Account .. 443
Create a Custom Anonymous Web Account ... 443
Enforce Strong Password Policies... 444
Restrict Remote Logons .. 444
Disable Null Sessions (Anonymous Logons) .. 445

Step 6. Files and Directories.. 446
Restrict the Everyone Group .. 446
Restrict Access to the IIS Anonymous Account .. 446
Secure or Remove Tools, Utilities and SDKs.. 447
Remove Sample Files.. 447
Additional Considerations .. 447

Step 7. Shares ... 448
Remove Unnecessary Shares .. 448
Restrict Access to Required Shares.. 448
Additional Considerations .. 448

Step 8. Ports.. 449
Restrict Internet-Facing Ports to TCP 80 and 443 .. 449
Encrypt or Restrict Intranet Traffic .. 449

Step 9. Registry.. 449
Restrict Remote Administration of the Registry.. 450
Secure the SAM (Stand-alone Servers Only) .. 450

Step 10. Auditing and Logging ... 451
Log All Failed Logon Attempts .. 451
Log All Failed Actions Across the File System .. 451
Relocate and Secure the IIS Log Files .. 452
Archive Log Files for Offline Analysis... 452
Audit Access to the Metabase.bin File .. 452
Additional Considerations .. 453

Step 11. Sites and Virtual Directories .. 453
Move Your Web site to a Non-System Volume .. 453
Disable the Parent Paths Setting.. 453
Remove Potentially Dangerous Virtual Directories.. 454
Remove or Secure RDS ... 454
Set Web Permissions .. 455
Remove or Secure FrontPage Server Extensions .. 456

Step 12. Script Mappings .. 456
Map IIS File Extensions ... 457
Map .NET Framework File Extensions.. 458

Step 13. ISAPI Filters .. 459
Remove Unused ISAPI Filters ... 459

xxvi Improving Web Application Security: Threats and Countermeasures

Step 14. IIS Metabase .. 460
Restrict Access to the Metabase Using NTFS Permissions 460
Restrict Banner Information Returned by IIS .. 460

Step 15. Server Certificates .. 461
Step 16. Machine.Config ... 462

Map Protected Resources to HttpForbiddenHandler ... 462
Verify That Tracing Is Disabled.. 463
Verify That Debug Compiles Are Disabled.. 463
Verify That ASP.NET Errors Are Not Returned to Clients .. 464
Verify Session State Settings ... 464

Step 17. Code Access Security .. 464
Remove All Permissions for the Local Intranet Zone... 465
Remove All Permissions for the Internet Zone ... 465

Snapshot of a Secure Web Server .. 466
Staying Secure.. 469

Audit Group Membership ... 469
Monitor Audit Logs .. 469
Stay Current With Service Packs and Patches.. 470
Perform Security Assessments... 470
Use Security Notification Services .. 470

Remote Administration .. 471
Securing Terminal Services .. 472

Simplifying and Automating Security ... 473
Summary ... 474
Additional Resources .. 474

Chapter 17
Securing Your Application Server 475

In This Chapter ... 475
Overview .. 475
How to Use This Chapter ... 476
Threats and Countermeasures ... 477

Network Eavesdropping ... 477
Unauthorized Access... 478
Viruses, Worms, and Trojan Horses .. 479

Methodology... 480
Communication Channel Considerations... 480

Enterprise Services... 480
.NET Remoting.. 481
Web Services ... 481
SQL Server... 481

Firewall Considerations ... 482
Enterprise Services... 482
.NET Remoting.. 484
Web Services ... 485
SQL Server... 485

 Contents xxvii

.NET Remoting Security Considerations .. 486
Hosting in a Windows Service (TCP Channel)... 486
Hosting in IIS (HTTP Channel) .. 486

Enterprise Services (COM+) Security Considerations ... 487
Secure the Component Services Infrastructure.. 487
Secure Enterprise Services Applications ... 493

Summary ... 499
Additional Resources .. 499

Chapter 18
Securing Your Database Server 501

In This Chapter ... 501
Overview .. 501
How to Use This Chapter ... 502
Threats and Countermeasures ... 502

SQL Injection .. 503
Network Eavesdropping ... 504
Unauthorized Server Access .. 504
Password Cracking.. 505

Methodology for Securing Your Server... 506
Configuration Categories ... 506

SQL Server Installation Considerations... 509
What Does SQL Server Install? .. 509

SQL Server Installation Recommendations.. 509
Before Running SQL Server Setup .. 510
Installing SQL Server... 510

Steps for Securing Your Database Server.. 511
Step 1. Patches and Updates .. 511

Detect Missing Service Packs and Updates .. 511
Patching MSDE ... 512

Step 2. Services ... 512
Disable Unused SQL Server Services ... 513
Disable the Microsoft DTC (if not required).. 513

Step 3. Protocols .. 513
Restrict SQL Server to TCP/IP.. 514
Harden the TCP/IP Stack... 514
Additional Considerations .. 514

Step 4. Accounts .. 515
Secure the SQL Server Service Account.. 515
Delete or Disable Unused Accounts.. 516
Disable the Windows Guest Account... 516
Rename the Administrator Account... 516
Enforce Strong Password Policy.. 516
Restrict Remote Logons .. 517
Disable Null Sessions (Anonymous Logons) .. 517
Additional Considerations .. 518

xxviii Improving Web Application Security: Threats and Countermeasures

Step 5. Files and Directories.. 519
Verify Permissions on SQL Server Install Directories .. 519
Verify Everyone Group Does Not Have Permissions for SQL Server Files 520
Secure Setup Log Files.. 520
Secure or Remove Tools, Utilities, and SDKs ... 520
Additional Considerations .. 520

Step 6. Shares ... 521
Remove Unnecessary Shares .. 521
Restrict Access to Required Shares.. 521
Additional Considerations .. 521

Step 7. Ports.. 522
Restrict Access to the SQL Server Port ... 522
Configure Named Instances to Listen on the Same Port... 522
Configure the Firewall to Support DTC Traffic (if necessary) 523
Additional Considerations .. 523

Step 8. Registry.. 523
Verify Permissions for the SQL Server Registry Keys .. 524
Secure the SAM (Stand-alone Servers Only) .. 524

Step 9. Auditing and Logging ... 525
Log All Failed Windows Logon Attempts .. 525
Log All Failed Actions Across the File System .. 525
Enable SQL Server Login Auditing... 526
Additional Considerations .. 526

Step 10. SQL Server Security... 527
Set SQL Server Authentication to Windows Only .. 527
Set SQL Server Audit Level to Failure or All ... 528
Run SQL Server Using a Least Privileged Account.. 528

Step 11. SQL Server Logins, Users, and Roles.. 529
Use a Strong sa (System Administrator) Password... 530
Remove the SQL Guest User Account ... 530
Remove the BUILTIN\Administrators Server Login.. 530
Do Not Grant Permissions for the Public Role.. 531
Additional Considerations .. 531

Step 12. SQL Server Database Objects .. 532
Remove the Sample Databases ... 532
Secure Stored Procedures ... 532
Secure Extended Stored Procedures... 532
Restrict cmdExec Access to the sysadmin Role ... 532

Snapshot of a Secure Database Server .. 533
Additional Considerations .. 536
Staying Secure.. 536

Perform Regular Backups .. 537
Audit Group Membership ... 537
Monitor Audit Logs .. 537
Stay Current with Service Packs and Patches .. 537

 Contents xxix

Staying Secure (continued)
Perform Security Assessments... 538
Use Security Notification Services .. 538

Remote Administration .. 539
Securing Terminal Services .. 539

Summary ... 540
Additional Resources .. 541

Chapter 19
Securing Your ASP.NET Application and Web Services 543

In This Chapter ... 543
Overview .. 543
How to Use This Chapter ... 544
Methodology... 544
What You Must Know .. 545

ASP.NET Process Model .. 545
ASP.NET Account .. 545
Aspnet_setreg.exe and Process, Session, and Identity... 546
Impersonation is Not the Default.. 546
HttpForbiddenHandler, Urlscan, and the 404.dll... 547
AppSettings.. 547

Machine.Config and Web.Config Explained .. 548
Hierarchical Policy Evaluation... 550
<location>.. 551

Machine.Config and Web.Config Guidelines... 553
ACLs and Permissions... 554

Trust Levels in ASP.NET... 555
<trust> .. 556

Process Identity for ASP.NET.. 556
<processModel>... 556

Impersonation .. 558
<identity>... 558

Authentication .. 560
<authentication> .. 560
Forms Authentication Guidelines .. 560

Authorization .. 563
File Authorization .. 563
URL Authorization ... 564

Session State... 565
<sessionState> .. 565
Securing a SQL Server Session State Store .. 565
Securing the Out-of-Process State Service .. 568

View State.. 569
<pages> .. 569

xxx Improving Web Application Security: Threats and Countermeasures

Machine Key... 570
Use Unique Encryption Keys with Multiple Applications .. 570
Set validation=“SHA1” .. 570
Generate Keys Manually For Web Farms.. 571

Debugging .. 571
<compilation> .. 571

Tracing ... 571
<trace>.. 572

Exception Management ... 572
<customErrors>.. 572

Remoting ... 573
Web Services ... 573

Disable Web Services if They Are Not Required ... 573
Disable Unused Protocols.. 574
Disable the Automatic Generation of WSDL... 574

Forbidden Resources... 575
Map Protected Resources to HttpForbiddenHandler ... 575

Bin Directory... 576
Secure the Bin Directory.. 576

Event Log ... 576
File Access... 577
ACLs and Permissions... 577
Registry ... 579
Data Access ... 579

Configuring Data Access for Your ASP.NET Application ... 579
UNC Shares.. 581

Accessing Files on UNC Shares.. 581
Hosting Applications on UNC Shares .. 581

COM/DCOM Resources... 583
Denial of Service Considerations.. 583

<httpRuntime> ... 583
Web Farm Considerations .. 584

Session State... 584
Encryption and Verification... 584
DPAPI... 584

Snapshot of a Secure ASP.NET Application ... 585
Summary ... 588
Additional Resources .. 588

Chapter 20
Hosting Multiple Web Applications 589

In This Chapter ... 589
Overview .. 589
ASP.NET Architecture on Windows 2000... 591

 Contents xxxi

ASP.NET Architecture on Windows Server 2003 .. 592
Configuring ACLs for Network Service ... 593

Isolating Applications by Identity .. 594
Anonymous Account Impersonation .. 595
Fixed Identity Impersonation .. 597

Isolating Applications with Application Pools ... 599
Isolating Applications with Code Access Security ... 600
Forms Authentication Issues.. 601
UNC Share Hosting ... 601
Summary ... 602

Part V
Assessing Your Security 603

Chapter 21
Code Review 605

In This Chapter ... 605
Overview .. 605
FxCop .. 606
Performing Text Searches .. 606

Search for Hard-Coded Strings ... 606
ILDASM.. 607

Cross-Site Scripting (XSS).. 608
Identify Code That Outputs Input .. 609
Identify Potentially Dangerous HTML Tags and Attributes.. 610
Identify Code That Handles URLs ... 611
Check That Output Is Encoded ... 612
Check for Correct Character Encoding... 612
Check the validateRequest Attribute... 612
Check the HttpOnly Cookie Option.. 613
Check the <frame> Security Attribute ... 613
Check the Use of the innerText and innerHTML Properties...................................... 613
More Information .. 613

SQL Injection .. 614
Buffer Overflows ... 615
Managed Code ... 616

Is Your Class Design Secure? .. 617
Do You Create Threads? .. 617
Do You Use Serialization?.. 618
Do You Use Reflection? ... 619
Do You Handle Exceptions? ... 619
Do You Use Cryptography?... 620
Do You Store Secrets? .. 621
Do You Use Delegates?... 622

xxxii Improving Web Application Security: Threats and Countermeasures

Code Access Security.. 622
Do You Support Partial-Trust Callers? ... 622
Do You Restrict Access to Public Types and Members? .. 623
Do You Use Declarative Security Attributes?.. 624
Do You Call Assert? .. 624
Do You Use Permission Demands When You Should? .. 625
Do You Use Link Demands?... 625
Do You Use Potentially Dangerous Permissions? ... 627
Do You Compile With the /unsafe Option? .. 627

Unmanaged Code ... 628
ASP.NET Pages and Controls ... 630

Do You Disable Detailed Error Messages? .. 630
Do You Disable Tracing? .. 630
Do You Validate Form Field Input? .. 631
Are You Vulnerable to XSS Attacks?.. 632
Do You Validate Query String and Cookie Input? .. 632
Do You Secure View State?.. 633
Are Your Global.asax Event Handlers Secure? ... 633
Do You Provide Adequate Authorization? ... 634

Web Services ... 634
Do You Expose Restricted Operations or Data? ... 635
How Do You Authorize Callers?... 635
Do You Constrain Privileged Operations?... 635
Do You Use Custom Authentication?... 635
Do You Validate All Input?.. 635
Do You Validate SOAP Headers? .. 635

Serviced Components ... 636
Do You Use Assembly Level Metadata? .. 636
Do You Prevent Anonymous Access? .. 636
Do You Use a Restricted Impersonation Level?.. 636
Do You Use Role-Based Security?... 637
Do You Use Object Constructor Strings? ... 638
Do You Audit in the Middle Tier .. 638

Remoting ... 638
Do You Pass Objects as Parameters? ... 639
Do You Use Custom Authentication and Principal Objects?..................................... 639
How Do You Configure Proxy Credentials? ... 639

Data Access Code... 640
Do You Prevent SQL Injection? ... 640
Do You Use Windows Authentication?... 640
Do You Secure Database Connection Strings?... 640
How Do You Restrict Unauthorized Code? ... 641
How Do You Secure Sensitive Data in the Database? .. 641
Do You Handle ADO .NET Exceptions? .. 641
Do You Close Database Connections? .. 642

 Contents xxxiii

Summary ... 642
Additional Resource .. 642

Chapter 22
Deployment Review 643

In This Chapter ... 643
Overview .. 643
Web Server Configuration .. 644

Patches and Updates .. 645
Services... 645
Protocols.. 646
Accounts .. 647
Files and Directories ... 648
Shares... 649
Ports.. 649
Registry ... 651
Auditing and Logging ... 651

IIS Configuration ... 652
IISLockdown ... 652
URLScan .. 652
Sites and Virtual Directories .. 653
ISAPI Filters.. 655
IIS Metabase.. 656
Server Certificates .. 656

Machine.Config... 657
<trace>.. 657
<httpRunTime>... 657
<compilation> .. 657
<pages> .. 658
<customErrors>.. 658
<authentication> .. 658
<identity>... 660
<authorization> .. 660
<machineKey>.. 661
<trust> .. 661
<sessionState> .. 662
<httpHandlers> .. 662
<processModel>... 663

Web Services ... 663
Enterprise Services... 664

Accounts .. 665
Files and Directories ... 665
Authentication .. 666
Authorization .. 667
Remote Serviced Components ... 668

xxxiv Improving Web Application Security: Threats and Countermeasures

Remoting ... 668
Port Considerations .. 668
Hosting in ASP.NET with the HttpChannel ... 669
Hosting in a Custom Process with the TcpChannel .. 670

Database Server Configuration .. 670
Patches and Updates .. 671
Services... 671
Protocols.. 671
Accounts .. 672
Files and Directories ... 673
Shares... 673
Ports.. 674
Registry ... 674
Auditing and Logging ... 675
SQL Server Security .. 675
SQL Server Logins, Users, and Roles.. 676
SQL Server Database Objects .. 677

Network Configuration ... 677
Router.. 678
Firewall .. 679
Switch.. 679

Summary ... 680

Related Security Resources 681
Related Microsoft patterns & practices Guidance .. 681
Security-Related Web Sites .. 681

Microsoft Security-Related Web Sites ... 681
Third-Party, Security-Related Web Sites ... 682

Microsoft Security Services ... 682
Partners and Service Providers .. 682
Communities and Newsgroups... 683

Newsgroup Home Pages.. 683
Patches and Updates .. 683

Service Packs... 683
Alerts and Notification... 684

Microsoft Security Notification Services .. 684
Third Party Security Notification Services .. 684

Additional Resources .. 684
Checklists and Assessment Guidelines .. 684
Common Criteria... 685
Reference Hub.. 685
Security Knowledge in Practice... 685
Vulnerabilities... 685
World Wide Web Security FAQ... 685

 Contents xxxv

Index of Checklists 687
Overview .. 687
Designing Checklist... 687
Building Checklists.. 687
Securing Checklists... 688
Assessing Checklist .. 688

Checklist:
Architecture and Design Review 689

How to Use This Checklist ... 689
Deployment and Infrastructure Considerations .. 689
Application Architecture and Design Considerations... 690

Input Validation... 690
Authentication .. 690
Authorization .. 691
Configuration Management .. 692
Sensitive Data .. 692
Session Management ... 692
Cryptography .. 693
Parameter Manipulation .. 693
Exception Management ... 693
Auditing and Logging ... 694

Checklist
Securing ASP.NET 695

How to Use This Checklist ... 695
Design Considerations .. 695
Application Categories Considerations.. 696

Input Validation... 696
Authentication .. 696
Authorization .. 697
Configuration Management .. 697
Sensitive Data .. 698
Session Management ... 698
Parameter Manipulation .. 698
Exception Management ... 699
Auditing and Logging ... 699

Configuration File Settings... 699
Web Farm Considerations .. 702
Hosting Multiple Applications... 703
ACLs and Permissions... 703
Application Bin Directory.. 704

xxxvi Improving Web Application Security: Threats and Countermeasures

Checklist
Securing Web Services 705

How to Use This Checklist ... 705
Design Considerations .. 705
Development Considerations ... 705

Input Validation... 705
Authentication .. 706
Authorization .. 706
Sensitive Data .. 706
Parameter Manipulation .. 706
Exception Management ... 707
Auditing and Logging ... 707
Proxy Considerations... 707

Administration Considerations ... 707

Checklist
Securing Enterprise Services 709

How to Use This Checklist ... 709
Developer Checks ... 709

Authentication .. 709
Authorization .. 709
Configuration Management .. 710
Sensitive Data .. 710
Auditing and Logging ... 710
Deployment Considerations ... 710
Impersonation .. 711

Administrator Checklist ... 711

Checklist
Securing Remoting 713

How to Use This Checklist ... 713
Design Considerations .. 713
Input Validation... 713
Authentication .. 714
Authorization .. 714
Configuration Management .. 714
Sensitive Data .. 715
Exception Management ... 715
Auditing and Logging ... 715

 Contents xxxvii

Checklist
Securing Data Access 717

How to Use This Checklist ... 717
SQL Injection Checks .. 717
Authentication .. 717
Authorization .. 718
Configuration Management .. 718
Sensitive Data .. 718
Exception Management ... 719
Deployment Considerations ... 719

Checklist
Securing Your Network 721

How to Use This Checklist ... 721
Router Considerations... 721
Firewall Considerations ... 722
Switch Considerations... 722

Checklist
Securing Your Web Server 723

How to Use This Checklist ... 723
Patches and Updates .. 723
IISLockdown ... 723
Services... 723
Protocols.. 724
Accounts .. 724
Files and Directories ... 725
Shares... 725
Ports.. 725
Registry ... 725
Auditing and Logging ... 726
Sites and Virtual Directories .. 726
Script Mappings.. 726
ISAPI Filters.. 727
IIS Metabase.. 727
Server Certificates .. 727
Machine.config ... 727
Code Access Security.. 727
Other Check Points ... 728

Dos and Don’ts... 728

xxxviii Improving Web Application Security: Threats and Countermeasures

Checklist
Securing Your Database Server 729

How to Use This Checklist ... 729
Installation Considerations for Production Servers... 729
Patches and Updates .. 729
Services... 730
Protocols.. 730
Accounts .. 730
Files and Directories ... 731
Shares... 731
Ports.. 731
Registry ... 731
Auditing and Logging ... 732
SQL Server Security .. 732
SQL Server Logins, Users, and Roles.. 732
SQL Server Database Objects .. 733
Additional Considerations .. 733
Staying Secure.. 733

Checklist
Security Review for Managed Code 735

How to Use This Checklist ... 735
General Code Review Guidelines .. 735
Managed Code Review Guidelines .. 735

Assembly-Level Checks ... 735
Class-Level Checks ... 736
Cryptography .. 736
Secrets .. 737
Exception Management ... 737
Delegates... 737
Serialization ... 737
Threading ... 738
Reflection... 738
Unmanaged Code Access .. 738

Resource Access Considerations ... 739
File I/O .. 739
Event Log ... 739
Registry ... 739
Environment Variables ... 740

Code Access Security Considerations ... 740

 Contents xxxix

How To
Index 743

How To
Implement Patch Management 745

Applies To .. 745
Summary ... 745
What You Must Know .. 745

The Patch Management Process .. 745
The Role of MBSA in Patch Management .. 746
Backups and Patch Management ... 746

Before You Begin .. 747
Tools You Will Need... 747

Contents .. 747
Detecting ... 748

MBSA Output Explained... 749
Assessing .. 751
Acquiring .. 751
Testing ... 752

Methods for Testing Security Patches ... 752
Confirming the Installation of a Patch ... 752
Uninstalling a Security Patch.. 752

Deploying ... 753
Using Software Update Services (SUS) ... 753
Using Systems Management Server (SMS) ... 753

Maintaining .. 753
Performing Security Assessments .. 753
Using Security Notification Services ... 754

Additional Considerations .. 754
Additional Resources .. 754

How To
Harden the TCP/IP Stack 755

Applies To .. 755
Summary ... 755
What You Must Know .. 755
Contents .. 756
Protect Against SYN Attacks .. 756

Enable SYN Attack Protection .. 756
Set SYN Protection Thresholds .. 757
Set Additional Protections.. 757

Protect Against ICMP Attacks... 759
Protect Against SNMP Attacks.. 759

xl Improving Web Application Security: Threats and Countermeasures

AFD.SYS Protections ... 760
Additional Protections ... 761

Protect Screened Network Details .. 761
Avoid Accepting Fragmented Packets .. 761
Do Not Forward Packets Destined for Multiple Hosts.. 762
Only Firewalls Forward Packets Between Networks... 762
Mask Network Topology Details.. 762

Pitfalls ... 763
Additional Resources .. 763

How To
Secure Your Developer Workstation 765

Applies To .. 765
Summary ... 765
Before You Begin .. 765
Steps to Secure Your Developer Workstation... 766
Run Using a Least-Privileged Account ... 766

Running Privileged Commands ... 767
More Information .. 768

Patch and Update ... 768
Using Windows Update.. 768
Using MBSA ... 768
Using Automatic Updates .. 769

Secure IIS .. 770
Install and Run IISLockdown .. 770
Configure URLScan ... 771

Secure SQL Server and MSDE ... 772
Apply Patches for Each Instance of SQL Server and MSDE 773
Analyze SQL Server and MSDE Security Configuration.. 773

Evaluate Your Configuration Categories... 774
Stay Secure.. 775

How To
Use IPSec for Filtering Ports and Authentication 777

Applies To .. 777
Summary ... 777
Contents .. 777
What You Must Know .. 778

Identify Your Protocol and Port Requirements .. 778
IPSec Does Not Secure All Communication ... 778
Firewalls and IPSec ... 778
Filters, Filter Actions, and Rules ... 778

Restricting Web Server Communication .. 779
Summary of What You Just Did .. 782

Restricting Database Server Communication... 783

 Contents xli

Restricting Server-to-Server Communication .. 784
Using IPSec Tools ... 785

Netdiag.exe .. 785
IPSecpol.exe... 785

Additional Resources .. 786

How To
Use the Microsoft Baseline Security Analyzer 787

Applies To .. 787
Summary ... 787
Contents .. 788
Before You Begin .. 788
What You Must Know .. 789
Scanning for Security Updates and Patches .. 789

Using the Graphical Interface ... 789
Using the Command Line (Mbsacli.exe) .. 790
Analyzing the Output ... 790

Scanning Multiple Systems for Updates and Patches... 790
SQL Server and MSDE Specifics .. 791
Scanning for Secure Configuration.. 791

Performing the Scan.. 791
Analyzing the Scan.. 792
Correcting Issues Found .. 792

Additional Information ... 792
False Positives From Security Update Checks.. 792
Requirements for Performing Remote Scans ... 792
Password Scans ... 793
Differences Between Mbsa.exe and Mbsacli.exe ... 793

Additional Resources .. 793

How To
Use IISLockdown.exe 795

Applies To .. 795
Summary ... 795
What Does IISLockdown Do? ... 795
Installing IISLockdown... 796
Running IISLockdown .. 797
Log Files .. 798
Undoing IISLockdown Changes... 798
Unattended Execution ... 798
Pitfalls ... 799

xlii Improving Web Application Security: Threats and Countermeasures

How To
Use URLScan 801

Applies To .. 801
Summary ... 801
Contents .. 801
Installing URLScan.. 801
Log Files .. 802
Removing URLScan ... 802
Configuring URLScan... 802
Throttling Request Sizes with URLScan... 803
Debugging VS .NET with URLScan Installed... 803
Masking Content Headers (Banners) .. 804
Pitfalls ... 804
References... 804

How To
Create a Custom Encryption Permission 805

Applies To .. 805
Summary ... 805
Before You Begin .. 805
Summary of Steps .. 806

Step 1. Create the EncryptionPermission Class... 807
Step 2. Create the EncryptionPermissionAttribute Class .. 815
Step 3. Install the Permission Assembly in the GAC... 817
Step 4. Update the DPAPI Managed Wrapper Code .. 817
Step 5. Call DPAPI from a Medium Trust Web Application 819

How To
Use Code Access Security Policy to Constrain an Assembly 823

Applies To .. 823
Summary ... 823
Before You Begin .. 824
Summary of Steps .. 825
Step 1. Create an Assembly That Performs File I/O ... 825
Step 2. Create a Web Application ... 827
Step 3. Test File I/O with No Code Access Security Constraints.................................. 827
Step 4. Configure Code Access Security Policy to Constrain File I/O 828
Step 5. Test File I/O With Code Access Security Constraints 830

Additional Resources 833

Forewords

Foreword by Mark Curphey
When the public talks about the Internet, in most cases they are actually talking about
the Web. The reality of the Web today never seizes to amaze me, and the tremendous
potential for what we can do on the Web is awe-inspiring. But, at the same time, one
of the greatest fears for many who want to embrace the Web — the one thing that is
often responsible for holding back the rate of change — is the security of Web
technology. With the constant barrage of high profile news stories about hackers
exposing credit card databases here and finding cunning ways into secret systems
there, it’s hardly surprising that in a recent survey almost all users who chose not to
use Internet banking cited security as the reason. Putting your business online is no
longer optional today, but is an essential part of every business strategy. For this
reason alone, it is crucial that users have the confidence to embrace the new era.

As with any new technology, there is a delay from the time it is introduced to the
market to the time it is really understood by the industry. The breakneck speed at
which Web technologies were adopted has widened that window. The security
industry as a whole has not kept pace with these changes and has not developed
the necessary skills and thought processes to tackle the problem. To fully understand
Web security, you must be a developer, a security person, and a process manager.
While many security professionals can examine and evaluate the security of a
Windows configuration, far fewer have access to the workings of an Internet bank
or an online book store, or can fully understand the level of security that an online
business requires.

Until a few years ago, the platform choices for building secure Web applications
were somewhat limited. Secure Web application development was the exclusive
playground of the highly experienced and highly skilled developer (and they were
more than happy to let you know that). The .NET Framework and ASP.NET in
particular are an exciting and extremely important evolution in the Web technology
world and are of particular interest to the security community. With this flexible
and extensible security model and a wealth of security features, almost anything is
possible in less time and with less effort than on many other platforms. The .NET
Framework and ASP.NET are an excellent choice for building highly secure,
feature-rich Web sites.

xliv Improving Web Application Security: Threats and Countermeasures

With that array of feature choices comes a corresponding array of decisions, and
with each and every decision in the process of designing, developing, deploying,
and maintaining a site can have significant security impact and implications.

Improving Web Applications Security: Threats and Countermeasures provides an excellent
and comprehensive approach to building highly secure and feature-rich applications
using the .NET Framework. It accurately sets the context — that security
considerations and issues must be addressed with application design, development,
deployment, and maintenance in view, not during any one of these phases in
isolation. It cleverly walks you through a process, prescribing actions and making
suggestions along the way. By following the guide from start to finish you will learn
how to design a secure application by understanding what’s important to you, who
will attack you, and what they will likely look for, and build countermeasures to
protect yourself. The guide provides frameworks, checklists, and expert tips for
threat modeling, design and architecture reviews, and implantation reviews to help
you avoid common mistakes and be secure from the start. It then delves into the
.NET security technology in painstaking detail, leading you through decisions you
will need to make, examining security components and things you should be aware
of, and focusing on issues that you cannot ignore.

This is the most comprehensive and well-written guide to building secure Web
applications that I have seen, and is a must read for anyone building a secure Web
site or considering using ASP.NET to provide security for their online business
presence.

Mark Curphey
Mark Curphey has a Masters degree in Information Security and runs the Open Web
Application Security Project. He moderates the sister security mailing list to Bugtraq
called webappsec that specializes in Web application security. He is a former Director
of Information Security for Charles Schwab, consulting manager for Internet Security
Systems, and veteran of more banks and consulting clients than he cares to
remember. He now works for a company called Watchfire. He is also a former
Java UNIX bigot now turned C#, ASP.NET fan.

 Forewords xlv

Foreword by Joel Scambray
I have been privileged to contribute to Improving Web Application Security: Threats
and Countermeasures, and its companion volume, Building Secure ASP.NET Web
Applications. As someone who encounters many such threats and relies on many
of these countermeasures every day at Microsoft’s largest Internet-facing online
properties, I can say that this guide is a necessary component of any Web-facing
business strategy. I’m quite excited to see this knowledge shared widely with
Microsoft’s customers, and I look forward to applying it in my daily work.

There is an increasing amount of information being published about Internet security,
and keeping up with it is a challenge. One of the first questions I ask when a new
work like this gets published is: “Does the quality of the information justify my
time to read it?” In the case of Improving Web Application Security: Threats and
Countermeasures, I can answer an unqualified yes. J.D. Meier and team have
assembled a comprehensive reference on Microsoft Web application security, and
put it in a modular framework that makes it readily accessible to Web application
architects, developers, testers, technical managers, operations engineers, and yes,
even security professionals. The bulk of information contained in this work can
be intimidating, but it is well-organized around key milestones in the product
lifecycle — design, development, testing, deployment, and maintenance. It also
adheres to a security principles-based approach, so that each section is consistent
with common security themes.

Perhaps my favorite aspect of this guide is the thorough testing that went into each
page. During several discussions with the guide’s development team, I always came
away impressed with their willingness to actually deploy the technologies discussed
herein to ensure that the theory portrayed aligned with practical reality. They also
freely sought out expertise internal and external to Microsoft to keep the contents
useful and practical.

Some other key features that I found very useful include the concise, well-organized,
and comprehensive threat modeling chapter, the abundant tips and guidelines on
.NET Framework security (especially code access security), and the hands-on
checklists for each topic discussed.

Improving Web Application Security: Threats and Countermeasures will get any
organization out ahead of the Internet security curve by showing them how to
bake security into applications, rather than bolting it on as an afterthought. I highly
recommend this guide to those organizations who have developed or deployed
Internet-facing applications and to those organizations who are considering such
an endeavor.

Joel Scambray
Senior Director of Security, MSN
Co-Author, Hacking Exposed Fourth Edition, Windows, and Web Applications

xlvi Improving Web Application Security: Threats and Countermeasures

Foreword by Erik Olson
For many years, application security has been a craft learned by apprenticeship.
Unfortunately, the stakes are high and the lessons hard. Most agree that a better
approach is needed: we must understand threats, use these hard lessons to develop
sound practices, and use solid research practices to provide layers of defense.

Web applications are the portals to many corporate secrets. Whether they sit on
the edge of the lawless Internet frontier or safeguard the corporate payroll, these
applications are a popular target for all sorts of mischief. Web application developers
cannot afford to be uncertain about the risks to their applications or the remedies that
mitigate these risks. The potential for damage and the variety of threats is staggering,
both from within and without. However, while many threats exist, the remedies can
be crystallized into a tractable set of practices and procedures that can mitigate
known threats and help to guard against the next unknown threat.

The .NET Framework and the Common Language Runtime were designed and built
with these threats in mind. They provide a powerful platform for writing secure
applications and a rich set of tools for validating and securing application assets.
Note, however, that even powerful tools must be guided by careful hands.

This guide presents a clear and structured approach to dealing with Web application
security. In it, you will find the building blocks that enable you to build and deploy
secure Web applications using ASP.NET and the .NET Framework.

The guide begins with a vocabulary for understanding the jargon-rich language of
security spoken by programmers and security professionals. It includes a catalog of
threats faced by Web applications and a model for identifying threats relevant to a
given scenario. A formal model is described for identifying, classifying, and
understanding threats so that sound designs and solid business decisions can be
made.

The text provides a set of guidelines and recommended design and programming
practices. These guidelines are the collective wisdom that comes from a deep analysis
of both mistakes that have been made and mistakes that have been successfully
avoided.

The tools of the craft provided by ASP.NET and the .NET Framework are introduced,
with detailed guidance on how to use them. Proven patterns and practices for writing
secure code, using data, and building Web applications and services are all
documented.

Sometimes the desired solution is not the easiest path. To make it faster and easier to
end up in the right place, the authors have carefully condensed relevant sample code
from real-world applications into building blocks.

 Forewords xlvii

Finally, techniques for assessing application security are provided. The guide
contains a set of detailed checklists that can be used as guidelines for new
applications or tools to evaluate existing projects.

Whether you’re just starting on your apprenticeship in Web application security
or have already mastered many of the techniques, you’ll find this guide to be an
indispensable aid that will help you build more secure Web applications.

Erik Olson
Program Manager, ASP.NET Product Team
Microsoft Corp.

Introduction

This guide gives you a solid foundation for designing, building, and configuring
secure ASP.NET Web applications. Whether you have existing applications or are
building new ones, you can apply the guidance to help you make sure that your
Web applications are hack-resilient.

The information in this guide is based on proven practices for improving your
Web application’s security. The guidance is task-based and presented in parts that
correspond to product life cycles, tasks, and roles.
● Part I, “Introduction to Threats and Countermeasures,” identifies and illustrates

the various threats facing the network, host, and application layers. The process of
threat modeling helps you to identify those threats that can harm your application.
By understanding these threats, you can identify and prioritize effective
countermeasures.

● Part II, “Designing Secure Web Applications,” gives you the guidance you
require to design secure Web applications. Even if you have deployed your
application, we recommend that you examine and evaluate the concepts,
principles, and techniques outlined in this part.

● Part III, “Building Secure Web Applications,” allows you to apply the secure
design practices introduced in Part II to create secure implementations. You will
learn defensive coding techniques that make your code and application resilient
to attack.

● Part IV, “Securing Your Network, Host, and Application,” describes how you
will apply security configuration settings to secure these three interrelated levels.
Instead of applying security randomly, you will learn the rationale behind the
security recommendations.

● Part V, “Assessing Your Security,” provides the tools you require to evaluate the
success of your security efforts. Starting with the application, you’ll take an inside-
out approach to evaluating your code and design. You’ll follow this with an
outside-in view of the security risks that challenge your network, host and
application.

Why We Wrote This Guide
Traditionally, security has been considered a network issue, where the firewall is the
primary defense (the fortress model) or something that system administrators handle
by locking down the host computers. Application architects and developers have
traditionally treated security as an afterthought or as a feature to be considered as
time permits — usually after performance considerations are addressed.

l Improving Web Application Security: Threats and Countermeasures

The problem with the firewall, or fortress model, is that attacks can pass through
network defenses directly to the application. A typical firewall helps to restrict traffic
to HTTP, but the HTTP traffic can contain commands that exploit application
vulnerabilities. Relying entirely on locking down your hosts is another unsuccessful
approach. While several threats can be effectively countered at the host level,
application attacks represent a serious and increasing security issue.

Another area where security problems occur is deployment. A familiar scenario
is when an application fails when it is deployed in a locked-down production
environment, which forces the administrator to loosen security settings. This often
leads to new security vulnerabilities. In addition, a lack of security policy or
application requirements that are inconsistent with policy can compromise security.
One of the goals of this guide is to help bridge this gap between development and
operations.

Random security is not enough. To make your application hack-resilient, you need
a holistic and systematic approach to securing your network, host, and application.
The responsibility spans phases and roles across the product life cycle. Security is not
a destination; it is a journey. This guide will help you on your way.

What Is a Hack-Resilient Application?
This guide helps you build hack-resilient applications. A hack-resilient application is
one that reduces the likelihood of a successful attack and mitigates the extent of
damage if an attack occurs. A hack-resilient application resides on a secure host
(server) in a secure network and is developed using secure design and development
guidelines.

In 2002, eWeek sponsored its fourth Open Hack challenge, which proved that
hack-resilient applications can be built using .NET technologies on servers running
the Microsoft® Windows® 2000 operating system. The Open Hack team built an
ASP.NET Web application using Microsoft Windows 2000 Advanced Server,
Internet Information Services (IIS) 5.0, Microsoft SQL Server™ 2000, and the
.NET Framework. It successfully withstood more than 82,500 attempted attacks
and emerged from the competition unscathed.

This guide shares the methodology and experience used to secure Web applications
including the Open Hack application. In addition, the guide includes proven
practices that are used to secure networks and Web servers around the world.
These methodologies and best practices are condensed and offered here as practical
guidance.

 Introduction li

Scope of This Guide
Web application security must be addressed across the tiers and at multiple layers.
A weakness in any tier or layer makes your application vulnerable to attack.

Securing the Network, Host, and Application
Figure 1 shows the scope of the guide and the three-layered approach that it uses:
securing the network, securing the host, and securing the application. It also shows
the process called threat modeling, which provides a structure and rationale for the
security process and allows you to evaluate security threats and identify appropriate
countermeasures. If you do not know your threats, how can you secure your system?

Database

Web
Server

Application
Server

Database
Server

F
ire

w
al

l Apps

F
ire

w
al

l
Input validation
Authentication
Authorization
Configuration Management
Sensitive Data

Apps

Securing the Application

Host Host

Patches and
Updates
Services
Protocols

Accounts
Files and Directories
Shares

Securing the Host

Host

Router
Firewall
Switch

Securing the
Network

Session Management
Cryptography
Parameter Manipulation
Exception Management
Auditing and Logging

Ports
Registry
Auditing and Logging

Threats and Countermeasures

Figure 1
The scope of Improving Web Application Security: Threats and Countermeasures

lii Improving Web Application Security: Threats and Countermeasures

The guide addresses security across the three physical tiers shown in Figure 1.
It covers the Web server, remote application server, and database server. At each tier,
security is addressed at the network layer, host layer, and application layer. Figure 1
also shows the configuration categories that the guide uses to organize the various
security configuration settings that apply to the host and network, and the
application vulnerability categories used to structure application security
considerations.

Technologies in Scope
While much of the information in this guide is technology agnostic, the guide
focuses on Web applications built with the .NET Framework and deployed on the
Windows 2000 Server family of operating systems. The guide also pays special
attention to .NET Framework code access security, particularly in relation to the use
of code access security with ASP.NET. Where appropriate, new features provided by
Windows Server 2003 are highlighted. Table 1 shows the products and technologies
that this guidance is based on.

Table 1 Primary Technologies Addressed by This Guide

Area Product/Technology
Platforms .NET Framework 1.1

Windows 2000 Server family

Windows Server 2003 security features are also highlighted.

Web Server IIS 5.0 (included with Windows 2000 Server)

Application Server Windows 2000 Server with .NET Framework 1.1

Database Server SQL Server 2000

Middleware Technologies ASP.NET, Enterprise Services, XML Web Services, .NET Remoting

Data Access ADO.NET

Who Should Read This Guide
This guide is for anyone concerned with planning, building, deploying, or operating
Web applications. The guide contains essential information for designers, developers,
system administrators, and security analysts.

Designers will learn how to avoid costly security mistakes and how to make
appropriate design choices early in the product development life cycle. Developers
will learn how to implement defensive coding techniques and build secure code.
System administrators will learn how to methodically secure servers and networks,
and security analysts will learn how to perform security assessments.

 Introduction liii

How to Use This Guide
Each chapter in the guide is modular. The guidance is task-based, and is presented
in parts which correspond to the various stages of the product development life cycle
and to the people and roles involved during the life cycle including architects,
developers, system administrators, and security analysts.

Applying the Guidance to Your Role
Each person, regardless of role, who works on the design, development, deployment,
or maintenance of Web applications and their underlying infrastructure should read
Part I of this guide. Part I, “Introduction to Threats and Countermeasures,” highlights
and explains the primary threats to Web applications at the network, host, and
application layers. It also shows you how to create threat models to help you identify
and prioritize those threats that are most relevant to your particular application.
A solid understanding of threats and associated countermeasures is essential for
anyone who is interested in securing Web applications.

If you are responsible for or are involved in the design of a new or existing Web
application, you should read Part II, “Designing Secure Web Applications.” Part II
helps you identify potential vulnerabilities in your application design.

If you are a developer, you should read Part III, “Building Secure Web Applications.”
The information in this part helps you to develop secure code and components,
including Web pages and controls, Web services, remoting components, and data
access code. As a developer, you should also read Part IV, “Securing Your Network,
Host, and Application” to gain a better understanding of the type of secure
environment that your code is likely to be deployed in. If you understand more about
your target environment, the risk of issues and security vulnerabilities appearing at
deployment time is reduced significantly.

If you are a system administrator, you should read Part IV, “Securing Your Network,
Host, and Application.” The information in this part helps you create a secure
network and server infrastructure — one that is tuned to support .NET Web
applications and Web services.

Anyone who is responsible for reviewing product security should read Part V,
“Assessing Your Security”. This helps you identify vulnerabilities caused by insecure
coding techniques or deployment configurations.

liv Improving Web Application Security: Threats and Countermeasures

Applying the Guidance to Your Product Life Cycle
Different parts of the guide apply to the different phases of the product development
life cycle. The sequence of chapters in the guide mirrors the typical phases of the life
cycle. Figure 2 shows how the parts and chapters correspond to the phases of a classic
product development life cycle.

Requirements
Gathering

Design

Development

Testing

Deployment

Part III, Building Secure
Web Applications

Maintenance

Threat Modeling and
Part II, Designing Secure
Web Applications

Part IV, Securing
Your Network, Host
and Application

Part V, Assessing
Your Security

Code Review

Deployment
Review

Architecture and
Design Review

Figure 2
Improving Web Application Security: Threats and Countermeasures as it relates to product lifecycle

 Introduction lv

Microsoft Solutions Framework
If you use and are more familiar with the Microsoft Solutions Framework (MSF),
Figure 3 shows a similar life cycle mapping, this time in relation to the MSF Process
Model.

Envisioning

Planning

Developing

Stabilizing

Deploying

Threat Modeling
and
Part II, Designing
Secure Web
Applications

Part III, Building Secure
Web Applications

Part IV, Securing Your
Network, Host and
Application

Part IV, Assessing
Your Security

Code Review

Architecture and
Design Review

Deployment
Review

Figure 3
Improving Web Application Security: Threats and Countermeasures as it relates to MSF

Organization of This Guide
You can read this guide from end to end, or you can read the chapters you need for
your job. For a quick overview of the guide, refer to the “Fast Track” section.

Solutions at a Glance
The “Solutions at a Glance” section provides a problem index for the guide,
highlighting key areas of concern and where to go for more detail.

Fast Track
The “Fast Track” section in the front of the guide helps you implement the
recommendations and guidance quickly and easily.

lvi Improving Web Application Security: Threats and Countermeasures

Parts
This guide is divided into five parts:
● Part I, Introduction to Threats and Countermeasures
● Part II, Designing Secure Web Applications
● Part III, Building Secure Web Applications
● Part IV, Securing Your Network, Host, and Application
● Part V, Assessing Your Security

Part I, Introduction to Threats and Countermeasures
This part identifies and illustrates the various threats facing the network, host, and
application layers. By using the threat modeling process, you can identify the threats
that are relevant to your application. This sets the stage for identifying effective
countermeasures. This part includes:
● Chapter 1, “Web Application Security Fundamentals”
● Chapter 2, “Threats and Countermeasures”
● Chapter 3, “Threat Modeling”

Part II, Designing Secure Web Applications
This part provides the guidance you need to design your Web applications securely.
Even if you have an existing application, you should review this section and then
revisit the concepts, principles, and techniques that you used during your application
design. This part includes:
● Chapter 4, “Design Guidelines for Secure Web Applications”
● Chapter 5, “Architecture and Design Review for Security”

Part III, Building Secure Web Applications
This part helps you to apply the secure design practices and principles covered in
the previous part to create a solid and secure implementation. You’ll learn defensive
coding techniques that make your code and application resilient to attack. Chapter 6
presents an overview of the .NET Framework security landscape so that you are
aware of the numerous defensive options and tools that are at your disposal. Part III
includes:
● Chapter 6, “.NET Security Fundamentals”
● Chapter 7, “Building Secure Assemblies”
● Chapter 8, “Code Access Security in Practice”
● Chapter 9, “Using Code Access Security with ASP.NET”
● Chapter 10, “Building Secure ASP.NET Pages and Controls”
● Chapter 11, “Building Secure Serviced Components”

 Introduction lvii

● Chapter 12, “Building Secure Web Services”
● Chapter 13, “Building Secure Remoted Components”
● Chapter 14, “Building Secure Data Access”

Part IV, Securing Your Network, Host, and Application
This part shows you how to apply security configuration settings to secure the
interrelated network, host, and application levels. Rather than applying security
randomly, you’ll learn the reasons for the security recommendations. Part IV
includes:
● Chapter 15, “Securing Your Network”
● Chapter 16, “Securing Your Web Server”
● Chapter 17, “Securing Your Application Server”
● Chapter 18, “Securing Your Database Server”
● Chapter 19, “Securing Your ASP.NET Application and Web Services”
● Chapter 20, “Hosting Multiple Web Applications”

Part V, Assessing Your Security
This part provides you with the tools you need to evaluate the success of your
security efforts. It shows you how to evaluate your code and design and also how
to review your deployed application, to identify potential vulnerabilities.
● Chapter 21, “Code Review”
● Chapter 22, “Deployment Review”

Checklists
This section contains printable, task-based checklists, which are quick reference
sheets to help you turn information into action. This section includes the following
checklists:
● Checklist: Architecture and Design Review
● Checklist: Securing ASP.NET
● Checklist: Securing Web Services
● Checklist: Securing Enterprise Services
● Checklist: Securing Remoting
● Checklist: Securing Data Access
● Checklist: Securing Your Network
● Checklist: Securing Your Web Server
● Checklist: Securing Your Database Server
● Checklist: Security Review for Managed Code

lviii Improving Web Application Security: Threats and Countermeasures

“How To” Articles
This section contains “How To” articles, which provide step-by-step procedures for
key tasks. This section includes the following articles:
● How To: Implement Patch Management
● How To: Harden the TCP/IP Stack
● How To: Secure Your Developer Workstation
● How To: Use IPSec for Filtering Ports and Authentication
● How To: Use the Microsoft Baseline Security Analyzer
● How To: Use IISLockdown.exe
● How To: Use URLScan
● How To: Create a Custom Encryption Permission
● How To: Use Code Access Security Policy to Constrain an Assembly

Approach Used in This Guide
If your goal is a hack-resilient application, how do you get there? The approach used
in this guide is as follows:
● Secure your network, host, and application
● Focus on threats
● Follow a principle-based approach

Secure Your Network, Host, and Application
Security must be addressed at three levels: network, host, and application. A
weakness at any layer can be exploited by an attacker. This guide takes a holistic
approach to application security and applies it at all three levels. The holistic
approach to security is shown in Figure 4.

 Introduction lix

Runtime Services and Components

Operating System

Platform Services and Components

Secure the Network

Secure the Host

Secure the Application

Presentation
Logic

Business
Logic

Data Access
Logic

Figure 4
A holistic approach to security

Figure 4 shows the multiple layers covered by the guide, including the network,
host, and application. The host layer covers the operating system, platform services
and components, and run-time services and components. Platform services and
components include SQL Server and Enterprise Services. Run-time services and
components include ASP.NET and .NET code access security among others.

Focus on Threats
Your application’s security measures can become useless, or even counter productive,
if those measures are applied without knowing the threats that the security measures
are designed to mitigate.

Threats can be external, such as attacker on the Internet, or internal, for example, a
disgruntled employee or administrator. This guide helps you identify threats in two
ways:
● It enumerates the top threats that affect Web applications at the network, host, and

application levels.
● It helps you to identify which threats are relevant to your application through

a process called threat modeling.

lx Improving Web Application Security: Threats and Countermeasures

Follow a Principle-Based Approach
Recommendations used throughout this guide are based on security principles that
have proven themselves over time. The analysis and consideration of threats prior
to product implementation or deployment lends itself to a principle-based approach
where core principles can be applied, regardless of implementation technology or
application scenario.

Positioning of This Guide
This is Volume II in a series dedicated to helping customers plan, build, deploy, and
operate secure Web applications: Volume I, Building Secure ASP.NET Applications:
Authentication, Authorization, and Secure Communication, and Volume II, Improving Web
Application Security: Threats and Countermeasures.

Volume I, Building Secure ASP.NET Applications
Building Secure ASP.NET Applications helps you to build a robust authentication and
authorization mechanism for your application. It focuses on identity management
through the tiers of a distributed Web application. By developing a solid
authentication and authorization strategy early in the design, you can eliminate a
high percentage of application security issues. The primary audience for Volume I
is architects and lead developers.

Figure 5 shows the scope of Volume I. The guide addresses authentication,
authorization, and secure communication across the tiers of a distributed Web
application. The technologies that are covered are the same as the current guide and
include Windows 2000 Server, IIS, ASP.NET Web applications and Web services,
Enterprise Services, .NET Remoting, SQL Server, and ADO.NET.

 Introduction lxi

Web Server

IIS
ASP. NET

Web
Services

Enterprise
Services
(COM+)

IIS
ASP. NET

.NET
Remoting

IIS

ASP. NET

Database
Server

SQL Server

A
ut

he
nt

ic
at

io
n,

 A
ut

ho
riz

at
io

n
an

d
S

ec
ur

e
C

om
m

u
ni

ca
tio

n

Clients

Figure 5
Scope of Volume I, Building Secure ASP.NET Applications

Volume II, Improving Web Application Security
This guide helps you build and maintain hack-resilient applications. It takes a
broader look at security across the tiers, focusing on threats and countermeasures at
the network, host, and application levels. The intended audience is broader and the
guidance can be applied throughout the product life cycle.

For additional related work, see the “Resources” chapter provided at the end of the
guide.

lxii Improving Web Application Security: Threats and Countermeasures

Feedback and Support
We have made every effort to ensure the accuracy of this guide and its companion
content.

Feedback on the Guide
If you have comments on this guide, send e-mail to secguide@microsoft.com. We are
particularly interested in feedback regarding the following:
● Technical issues specific to recommendations
● Usefulness and usability issues
● Writing and editing issues

Technical Support
Technical support for the Microsoft products and technologies referenced in
this guide is provided by Microsoft Product Support Services (PSS). For product
support information, please visit the Microsoft Product Support Web site at
http://support.microsoft.com.

Community and Newsgroup Support
MSDN Newsgroups: http://msdn.microsoft.com/newsgroups/default.asp

Table 2 Newsgroups

Newsgroup Address
.NET Framework Security microsoft.public.dotnet.security

ASP.NET Security microsoft.public.dotnet.framework.aspnet.security

Enterprise Services microsoft.public.dotnet.framework_component_services

Web Services microsoft.public.dotnet.framework.aspnet.webservices

Remoting microsoft.public.dotnet.framework.remoting

ADO.NET microsoft.public.dotnet.framework.adonet

SQL Server Security microsoft.public.sqlserver.security

MBSA microsoft.public.security.baseline_analyzer

Virus microsoft.public.security.virus

IIS Security microsoft.public.inetserver.iis.security

http://support.microsoft.com/
http://msdn.microsoft.com/newsgroups/default.asp

 Introduction lxiii

The Team Who Brought You This Guide
This guide was produced by the following .NET development specialists:
● J.D. Meier, Microsoft, Program Manager, Prescriptive Architecture

Guidance (PAG)
● Alex Mackman, Content Master Ltd, Founding member and Principal

Technologist
● Srinath Vasireddy, Microsoft, Developer Support Engineer, PSS
● Michael Dunner, Microsoft, Developer Support Engineer, PSS
● Ray Escamilla, Microsoft, Developer Support Engineer, PSS
● Anandha Murukan, Satyam Computer Services

Contributors and Reviewers
Many thanks to the following contributors and reviewers:
● Thanks to external reviewers: Mark Curphey, Open Web Application Security

Project and Watchfire; Andy Eunson (extensive review); Anil John (code access
security and hosting scenarios); Paul Hudson and Stuart Bonell, Attenda Ltd.
(extensive review of the Securing series); Scott Stanfield and James Walters,
Vertigo Software; Lloyd Andrew Hubbard; Matthew Levine; Lakshmi Narasimhan
Vyasarajan, Satyam Computer Services; Nick Smith, Senior Security Architect,
American Airlines (extensive review of the Securing series); Ron Nelson; Senthil
Rajan Alaguvel, Infosys Technologies Limited; Roger Abell, Engineering Technical
Services, Arizona State University; and Doug Thews.

● Microsoft Product Group: Michael Howard (Threat Modeling, Code Review, and
Deployment Review); Matt Lyons (demystifying code access security); Caesar
Samsi; Erik Olson (extensive validation and recommendations on ASP.NET);
Andres De Vivanco (securing SQL Server); Riyaz Pishori (Enterprise Services);
Alan Shi; Carlos Garcia Jurado Suarez; Raja Krishnaswamy, CLR Development
Lead; Christopher Brown; Dennis Angeline; Ivan Medvedev (code access security);
Jeffrey Cooperstein (Threat Modeling); Frank Swiderski; Manish Prabhu (.NET
Remoting); Michael Edwards, MSDE; Pranish Kumar, (VC++ PM); Richard
Waymire (SQL Security); Sebastian Lange; Greg Singleton; Thomas Deml (IIS Lead
PM); Wade Hilmo (IIS); Steven Pratschner; Willis Johnson (SQL Server); and Girish
Chander (SQL Server).

lxiv Improving Web Application Security: Threats and Countermeasures

● Microsoft Consulting Services and Product Support Services (PSS): Ilia Fortunov
(Senior Architect) for providing continuous and diligent feedback; Aaron Margosis
(extensive review, script injection, and SQL Injection); Jacquelyn Schmidt; Kenny
Jones; Wade Mascia (Web Services and Enterprise services); Aaron Barth; Jackie
Richards; Aaron Turner; Andy Erlandson (Director of PSS Security); Jayaprakasam
Siddian Thirunavukkarasu (SQL Server security); Jeremy Bostron; Jerry Bryant;
Mike Leuzinger; Robert Hensing (reviewing the Securing series); Gene Ferioli;
David Lawler; Jon Wall (threat modeling); Martin Born; Michael Thomassy;
Michael Royster; Phil McMillan; and Steven Ramirez.

● Thanks to Joel Scambray; Rich Benack; Alisson Sol; Tavi Siochi (IT Audit); Don
Willits (raising the quality bar); Jay Nanduri (Microsoft.com) for reviewing and
sharing real world experience; Devendra Tiwari and Peter Dampier, for extensive
review and sharing best IT practices; Denny Dayton; Carlos Lyons; Eric Rachner;
Justin Clarke; Shawn Welch (IT Audit); Rick DeJarnette; Kent Sharkey (Hosting
scenarios); Andy Oakley; Vijay Rajagopalan (Dev Lead MS Operations); Gordon
Ritchie, Content Master Ltd; Chase Carpenter (Threat Modeling); Matt Powell
(for Web Services security); Joel Yoker; Juhan Lee [MSN Operations]; Lori Woehler;
Mike Sherrill; Mike Kass; Nilesh Bhide; Rebecca Hulse; Rob Oikawa (Architect);
Scott Greene; Shawn Nandi; Steve Riley; Mark Mortimore; Matt Priestley; and
David Ross.

● Thanks to our editors: Sharon Smith; Kathleen Hartman (S&T OnSite); Tina
Burden (Entirenet); Cindy Riskin (S&T OnSite); and Pat Collins (Entirenet) for
helping to ensure a quality experience for the reader.

● Finally, thanks to Naveen Yajaman; Philip Teale; Scott Densmore; Ron Jacobs;
Jason Hogg; Per Vonge Nielsen; Andrew Mason; Edward Jezierski; Michael Kropp;
Sandy Khaund; Shaun Hayes; Mohammad Al-Sabt; Edward Lafferty; Ken
Perilman; and Sanjeev Garg (Satyam Computer Services).

Tell Us About Your Success
If this guide helps you, we would like to know. Tell us by writing a short summary
of the problems you faced and how this guide helped you out. Submit your
summary to:

MyStory@Microsoft.com.

Summary
In this introduction, you were shown the structure of the guide and the basic
approach used by the guide to secure Web applications. You were also shown how
to apply the guidance to your role or to specific phases of your product development
life cycle.

Solutions at a Glance

This document roadmap summarizes the solutions presented in Improving Web
Application Security: Threats and Countermeasures. It provides links to the appropriate
material in the guide so that you can easily locate the information you need and find
solutions to specific problems.

Architecture and Design Solutions
For architects, the guide provides the following solutions to help you design secure
Web applications:
● How to identify and evaluate threats

Use threat modeling to systematically identify threats rather than applying
security in a haphazard manner. Next, rate the threats based on the risk of an
attack or occurrence of a security compromise and the potential damage that could
result. This allows you to tackle threats in the appropriate order.
For more information about creating a threat model and evaluating threat risks,
see Chapter 3, “Threat Modeling.”

● How to create secure designs
Use tried and tested design principles. Focus on the critical areas where the correct
approach is essential and where mistakes are often made. This guide refers to
these as application vulnerability categories. They include input validation,
authentication, authorization, configuration management, sensitive data
protection, session management, cryptography, parameter manipulation,
exception management, and auditing and logging considerations. Pay serious
attention to deployment issues including topologies, network infrastructure,
security policies, and procedures.
For more information, see Chapter 4, “Design Guidelines for Secure Web
Applications.”

● How to perform an architecture and design review
Review your application’s design in relation to the target deployment
environment and associated security policies. Consider the restrictions imposed
by the underlying infrastructure layer security, including perimeter networks,
firewalls, remote application servers, and so on. Use application vulnerability
categories to help partition your application, and analyze the approach taken for
each area.
For more information, see Chapter 5, “Architecture and Design Review for
Security.”

lxvi Improving Web Application Security: Threats and Countermeasures

Development Solutions
For developers, this guide provides the following solutions:
● What is .NET Framework security?

The .NET Framework provides user and code security models that allow you to
restrict what users can do and what code can do. To program role-based security
and code access security, use types from the System.Security namespace. The
.NET Framework also provides the System.Security.Cryptography namespace,
which exposes symmetric and asymmetric encryption and decryption, hashing,
random number generation, support for digital signatures, and more.
To understand the .NET Framework security landscape, see Chapter 6, “.NET
Security Overview.”

● How to write secure managed code
Use strong names to digitally sign your assemblies and to make them
tamperproof. At the same time you need to be aware of strong name issues when
you use strong name assemblies with ASP.NET. Reduce your assembly attack
profile by adhering to solid object oriented design principles, and then use code
access security to further restrict which code can call your code. Use structured
exception handling to prevent sensitive information from propagating beyond
your current trust boundary and to develop more robust code. Avoid
canonicalization issues, particularly with input file names and URLs.
For information about how to improve the security of your managed code, see
Chapter 7, “Building Secure Assemblies.” For more information about how to
use code access security effectively to further improve security, see Chapter 8,
“Code Access Security in Practice.” For information about performing managed
code reviews, see Chapter 21, “Code Review.”

● How to handle exceptions securely
Do not reveal internal system or application details, such as stack traces,
SQL statement fragments, and so on. Ensure that this type of information is not
allowed to propagate to the end user or beyond your current trust boundary.
Fail securely in the event of an exception, and make sure your application denies
access and is not left in an insecure state. Do not log sensitive or private data such
as passwords, which could be compromised. When you log or report exceptions,
if user input is included in exception messages, validate it or sanitize it. For
example, if you return an HTML error message, you should encode the output
to avoid script injection.
For more information, see the “Exception Management” sections in Chapter 7,
“Building Secure Assemblies,” and in Chapter 10, “Building Secure ASP.NET
Pages and Controls.”

 Solutions at a Glance lxvii

● How to perform security reviews of managed code
Use analysis tools such as FxCop to analyze binary assemblies and to ensure
that they conform to the .NET Framework design guidelines. Fix any security
vulnerabilities identified by your analysis tools. Use a text search facility to scan
your source code base for hard-coded secrets such as passwords. Then, review
specific elements of your application including Web pages and controls, data
access code, Web services, serviced components, and so on. Pay particular
attention to SQL injection and cross-site scripting vulnerabilities.
Also review the use of sensitive code access security techniques such as link
demands and asserts. For more information, see Chapter 21, “Code Review.”

● How to secure a developer workstation
You can apply a methodology when securing your workstation. Secure your
accounts, protocols, ports, services, shares, files and directories, and registry.
Most importantly, keep your workstation current with the latest patches and
updates. If you run Internet Information Services (IIS) on Microsoft Windows® XP
or Windows 2000, then run IISLockdown. IISLockdown applies secures IIS
configurations and installs the URLScan Internet Security Application
Programming Interface (ISAPI) filter, which detects and rejects potentially
malicious HTTP requests. You may need to modify the default URLScan
configuration, for example, so you can debug Web applications during
development and testing.
For more information, see “How To: Secure Your Developer Workstation,” in the
“How To” section of this guide.

● How to use code access security with ASP.NET
With.NET Framework version 1.1, you can set ASP.NET trust levels either in
Machine.config or Web.config. These trust levels use code access security to
restrict the resources that ASP.NET applications can access, such as the file system,
registry, network, databases, and so on. In addition, they provide application
isolation.
For more information about using code access security from ASP.NET, developing
partial trust Web applications, and sandboxing privileged code, see Chapter 9,
“Using Code Access Security with ASP.NET.”
For more information about code access security fundamentals, see Chapter 8,
“Code Access Security in Practice.”
For more information about the code access security issues that you need to
consider when developing managed code, see the “Code Access Security
Considerations” sections in Chapter 11, “Building Secure Serviced Components,”
Chapter 12, “Building Secure Web Services,” “Building Secure Remoted
Components,” and Chapter 14, “Building Secure Data Access.”

lxviii Improving Web Application Security: Threats and Countermeasures

● How to write least privileged code
You can restrict what code can do regardless of the account used to run the code.
You can use code access security to constrain the resources and operations that
your code is allowed to access, either by configuring policy or how you write your
code. If your code does not need to access a resource or perform a sensitive
operation such as calling unmanaged code, you can use declarative security
attributes to ensure that your code cannot be granted this permission by an
administrator.
For more information, see Chapter 8, “Code Access Security in Practice.”

● How to constrain file I/O
You can use code access security to constrain an assembly’s ability to access areas
of the file system and perform file I/O. For example, you can constrain a Web
application so that it can only perform file I/O beneath its virtual directory
hierarchy. You can also constrain file I/O to specific directories. You can do this
programmatically or by configuring code access security policy.
For more information, see “File I/O” in Chapter 8, “Code Access Security in
Practice” and “Medium Trust” in Chapter 9, “Using Code Access Security with
ASP.NET.” For more information about configuring code access security policy,
see “How To: Use Code Access Security Policy to Constrain an Assembly” in the
“How To” section of this guide.

● How to prevent SQL injection
Use parameterized stored procedures for data access. The use of parameters
ensures that input values are checked for type and length. Parameters are also
treated as safe literal values and not executable code within the database. If you
cannot use stored procedures, use SQL statements with parameters. Do not build
SQL statements by concatenating input values with SQL commands. Also, ensure
that your application uses a least privileged database login to constrain its
capabilities in the database.
For more information about SQL injection and for further countermeasures, see
“SQL Injection” in Chapter 14, “Building Secure Data Access.”

● How to prevent cross-site scripting
Validate input for type, length, format, and range, and encode output. Encode
output if it includes input, including Web input. For example, encode form fields,
query string parameters, cookies and so on, and encode input read from a
database (especially a shared database) where you cannot assume the data is safe.
For free format input fields that you need to return to the client as HTML, encode
the output and then selectively remove the encoding on permitted elements such
as the or <i> tags for formatting.
For more information, see “Cross-Site Scripting” in Chapter 10, “Building
ASP.NET Pages and Controls.”

 Solutions at a Glance lxix

● How to manage secrets
Look for alternate approaches to avoid storing secrets in the first place. If you
must store them, do not store them in clear text in source code or in configuration
files. Encrypt secrets with the Data Protection Application Programming Interface
(DPAPI) to avoid key management issues.
For more information, see “Sensitive Data” in Chapter 10, “Building Secure
ASP.NET Pages and Controls,” “Cryptography” in Chapter 7, “Building Secure
Assemblies,” and “Aspnet_setreg.exe and Process, Session, and Identity” in
Chapter 19, “ Securing Your ASP.NET Application and Web Services.”

● How to call unmanaged code securely
Pay particular attention to the parameters passed to and from unmanaged APIs,
and guard against potential buffer overflows. Validate the lengths of input and
output string parameters, check array bounds, and be particularly careful with file
path lengths. Use custom permission demands to protect access to unmanaged
resources before asserting the unmanaged code permission. Use caution if you use
SuppressUnmanagedCodeSecurityAttribute to improve performance.
For more information, see the “Unmanaged Code” sections in Chapter 7,
“Building Secure Assemblies,” and Chapter 8, “Code Access Security in Practice.”

● How to perform secure input validation
Constrain, reject, and sanitize your input because it is much easier to validate data
for known valid types, patterns, and ranges than it is to validate data by looking
for known bad characters. Validate data for type, length, format, and range. For
string input, use regular expressions. To perform type checks, use the .NET
Framework type system. On occasion, you may need to sanitize input. An
example is encoding data to make it safe.
For input validation design strategies, see “Input Validation” in Chapter 4,
“Design Guidelines for Secure Web Applications.” For implementation details,
see the “Input Validation” sections in Chapter 10, “Building Secure ASP.NET
Pages and Controls,” Chapter 12, “Building Secure Web Services,” Chapter 13,
“Building Secure Remoted Components,” and Chapter 14, “Building Secure
Data Access.”

● How to secure Forms authentication
Partition your Web site to separate publicly accessible pages available to
anonymous users and restricted pages which require authenticated access.
Use Secure Sockets Layer (SSL) to protect the forms authentication credentials
and the forms authentication cookie. Limit session lifetime and ensure that the
authentication cookie is passed over HTTPS only. Encrypt the authentication
cookie, do not persist it on the client computer, and do not use it for
personalization purposes; use a separate cookie for personalization.
For more information, see the “Authentication” sections in Chapter 19, “Securing
Your ASP.NET Application and Web Services,” and Chapter 10, “Building Secure
ASP.NET Pages and Controls.”

lxx Improving Web Application Security: Threats and Countermeasures

Administration Solutions
For administrators, this guide provides the following solutions:
● How to implement patch management

Use the Microsoft Baseline Security Analyzer (MBSA) to detect the patches and
updates that may be missing from your current installation. Run this on a regular
basis, and keep your servers current with the latest patches and updates. Back
up servers prior to applying patches, and test patches on test servers prior to
installing them on a production server. Also, use the security notification services
provided by Microsoft, and subscribe to receive security bulletins via e-mail.
For more information, see “How To: Implement Patch Management” in the
“How To” section of this guide.

● How to make the settings in Machine.config and Web.config more secure
Do not store passwords or sensitive data in plaintext. For example, use the
Aspnet_setreg.exe utility to encrypt the values for <processModel>, <identity>,
and <sessionState>. Do not reveal exception details to the client. For example do
not use mode=“Off” for <customErrors> in ASP.NET because it causes detailed
error pages that contain system-level information to be returned to the client.
Restrict who has access to configuration files and settings. Lock configuration
settings if necessary, using the <location> tag and the allowOverride element.
For more information on improving the security of Machine.config and
Web.config for your scenario, see Chapter 19, “Securing Your ASP.NET
Application and Web Services.” For more information on the <location> tag,
see “Machine.Config and Web.Config” explained in Chapter 19, “Securing
Your ASP.NET Application and Web Services.” For more information on
Aspnet_setreg.exe, see “Aspnet_setreg.exe and Process, Session, and Identity”
in Chapter 19, “Securing Your ASP.NET Application and Web Services.”

● How to secure a Web server running the .NET Framework
Apply a methodology to systematically configure the security of your Web server.
Secure your accounts, protocols, ports, services, shares, files and directories, and
registry. You can use IISLockdown to help automate some of the security
configuration. Use a hardened Machine.config configuration to apply stringent
security to all .NET Framework applications installed on the server. Most
importantly, keep your server current with the latest patches and updates.
For more information, see Chapter 16, “Securing Your Web Server.”

 Solutions at a Glance lxxi

● How to secure a database server
Apply a common methodology to evaluate accounts, protocols, ports, services,
shares, files and directories, and the registry. Also evaluate SQL Server™ security
settings such as the authentication mode and auditing configuration. Evaluate
your authorization approach and use of SQL Server logins, users, and roles. Make
sure you have the latest service pack and regular monitor for operating system
and SQL Server patches and updates.
For more information, see Chapter 18, “Securing Your Database Server.”

● How to secure an application server
Evaluate accounts, protocols, ports, services, shares, files and directories, and the
registry. Use Internet Protocol Security (IPSec) or SSL to secure the communication
channel between the Web server and the application server, and between the
application server and the database server. Review the security of your Enterprise
Services applications, Web services, and remoting applications. Restrict the range
of ports with which clients can connect to the application server, and consider
using IPSec restrictions to limit the range of clients.
For more information, see Chapter 17, “Securing Your Application Server.”

● How to host multiple ASP.NET applications securely
Use separate identities to allow you to configure access control lists (ACLs)
on secure resources to control which applications have access to them. On the
Microsoft Windows Server 2003 operating system, use separate process identities
with IIS 6 application pools. On Windows 2000 Server, use multiple anonymous
Internet user accounts and enable impersonation. With the .NET Framework
version 1.1 on both platforms, you can use partial trust levels and use code access
security to provide further application isolation. For example, you can use these
methods to prevent applications from accessing each other’s virtual directories
and critical system resources.
For more information, see Chapter 20, “Hosting Multiple ASP.NET Applications.”

● How to secure Web services
In cross-platform scenarios and where you do not control both endpoints, use the
Web Services Enhancements 1.0 for Microsoft .NET (WSE) to implement message
level security solutions that conform to the emerging WS-Security standard. Pass
authentication tokens in Simple Object Access Protocol (SOAP) headers. Use XML
encryption to ensure that sensitive data remains private. Use digital signatures for
message integrity. Within the enterprise where you control both endpoints, you
can use the authentication, authorization, and secure communication features
provided by the operating system and IIS.
For more information, see Chapter 17, “Securing Your Application Server,”
Chapter 19, “Securing Your ASP.NET Application and Web Services.” For
information about developing secure Web services, see Chapter 12, “Building
Secure Web Services.”

lxxii Improving Web Application Security: Threats and Countermeasures

● How to secure Enterprise Services
Configure server applications to run using least privileged accounts. Enable
COM+ role-based security, and enforce component-level access checks. At the
minimum, use call-level authentication to prevent anonymous access. To secure
the traffic passed to remote serviced components, use IPSec encrypted channels or
use remote procedure call (RPC) encryption. Restrict the range of ports that
Distributed COM (DCOM) dynamically allocates or use static endpoint mapping
to limit the port range to specific ports. Regularly monitor for Quick Fix Engineer
(QFE) updates to the COM+ runtime.
For more information, see Chapter 17, “Securing Your Application Server.”

● How to secure Microsoft .NET Remoting
Disable remoting on Internet-facing Web servers by mapping .rem and
.soap extensions to the ASP.NET HttpForbiddenHandler HTTP module in
Machine.config. Host in ASP.NET and use the HttpChannel type name to benefit
from ASP.NET and IIS authentication and authorization services. If you need to
use the TcpChannel type name, host your remote components in a Windows
service and use IPSec to restrict which clients can connect to your server. Use this
approach only in a trusted server situation, where the remoting client (for example
a Web application) authenticates and authorizes the original callers.
For more information, see Chapter 17, “Securing Your Application Server.”

● How to secure session state
You need to protect session state while in transit across the network and while in
the state store. If you use a remote state store, secure the communication channel
to the state store using SSL or IPSec. Also encrypt the connection string in
Machine.config. If you use a SQL Server state store, use Windows authentication
when you connect to the state store, and limit the application login in the
database. If you use the ASP.NET state service, use a least privileged account to
run the service, and consider changing the default port that the service listens to.
If you do not need the state service, disable it.
For more information, see “Session State” in Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

● How to manage application configuration securely
Remote administration should be limited or avoided. Strong authentication
should be required for administrative interfaces. Restrict access to configuration
stores through ACLs and permissions. Make sure you have the granularity of
authorization required to support separation of duties.
For general considerations for secure configuration management, see Chapter 4,
“Design Guidelines for Secure Web Applications.” To verify the secure defaults
and ensure that you apply secure machine-wide settings and secure application
specific settings, see Chapter 19, “Securing Your ASP.NET Application and Web
Services.”

 Solutions at a Glance lxxiii

● How to secure against denial of service attacks
Make sure the TCP/IP stack configuration on your server is hardened to protect
against attacks such as SYN floods. Configure ASP.NET to limit the size of
accepted POST requests and to place limits on request execution times.
For more information about hardening TCP/IP, see “How To: Harden the TCP/IP
Stack” in the “How To” section of this guide. For more information about
ASP.NET settings used to help prevent denial of service, see Chapter 19, “Securing
Your ASP.NET Application and Web Services.”

● How to constrain file I/O
You can configure code access security policy to ensure that individual assemblies
or entire Web applications are limited in their ability to access the file system. For
example, by configuring a Web application to run at the Medium trust level, you
prevent the application from being able to access files outside of its virtual
directory hierarchy.
Also, by granting a restricted file I/O permission to a particular assembly you can
control precisely which files it is able to access and how it should be able to access
them.
For more information, see Chapter 9, “Using Code Access Security with ASP.NET”
and “How To: Use Code Access Security Policy to Constrain an Assembly” in the
“How To” section of this guide.

● How to perform remote administration
Terminal Services provides a proprietary protocol (RDP.) This supports
authentication and can provide encryption. If you need a file transfer facility,
you can install the File Copy utility from the Windows 2000 Server resource kit.
The use of IIS Web administration is not recommended and this option is removed
if you run IISLockdown. You should consider providing an encrypted channel of
communication and using IPSec to limit the computers that can be used to
remotely administer your server. You should also limit the number of
administration accounts.
For more information, see the “Remote Administration” sections in Chapter 16,
“Securing Your Web Server” and Chapter 18, “Securing Your Database Server.”

Fast Track — How To Implement
the Guidance

Goal and Scope
This guide helps you to design, build, and configure hack-resilient Web applications.
These applications reduce the likelihood of successful attacks and mitigate the extent
of damage should an attack occur. Figure 1 shows the scope of the guide and its
three-layered approach: securing the network, securing the host, and securing the
application.

Database

Web
Server

Application
Server

Database
Server

F
ire

w
al

l Apps

F
ire

w
al

l

Input validation
Authentication
Authorization
Configuration Management
Sensitive Data

Apps

Securing the Application

Host Host

Patches and
Updates
Services
Protocols

Accounts
Files and Directories
Shares

Securing the Host

Host

Router
Firewall
Switch

Securing the
Network

Session Management
Cryptography
Parameter Manipulation
Exception Management
Auditing and Logging

Ports
Registry
Auditing and Logging

Threats and Countermeasures

Figure 1
The scope of the guide

lxxvi Improving Web Application Security: Threats and Countermeasures

The guide addresses security across the three physical tiers shown in Figure 1.
It covers the Web server, remote application server, and database server. At each tier,
security is addressed at the network layer, host layer, and application layer. Figure 1
also shows the configuration categories that the guide uses to organize the various
security configuration settings that apply to the host and network, and the
application vulnerability categories, which are used to structure application security
considerations.

The Holistic Approach
Web application security must be addressed across application tiers and at multiple
layers. An attacker can exploit weaknesses at any layer. For this reason, the guide
takes a holistic approach to application security and applies it at all three layers.
This holistic approach to security is shown in Figure 2.

Runtime Services and Components

Operating System

Platform Services and Components

Secure the Network

Secure the Host

Secure the Application

Presentation
Logic

Business
Logic

Data Access
Logic

Figure 2
A holistic approach to security

 Fast Track — How To Implement the Guidance lxxvii

Figure 2 shows the multiple layers covered by the guide, including the network,
host, and application. The host layer covers the operating system, platform services
and components, and run-time services and components. Platform services and
components include Microsoft® SQL Server™ 2000 and Enterprise Services. Run-time
services and components include ASP.NET and .NET code access security among
others.

Securing Your Network
The three core elements of a secure network are the router, firewall, and switch. The
guide covers all three elements. Table 1 provides a brief description of each element.

Table 1 Network Security Elements

Element Description
Router Routers are your outermost network ring. They direct packets to the ports and

protocols that you have prepared your applications to work with. Insecure TCP/IP
protocols are blocked at this ring.

Firewall The firewall blocks those protocols and ports that the application does not use.
Additionally, firewalls enforce secure network traffic by providing application-
specific filtering to block malicious communications.

Switch Switches are used to separate network segments. They are frequently overlooked
or over trusted.

Securing Your Host
The host includes the operating system and .NET Framework, together with
associated services and components. Whether the host is a Web server running IIS,
an application server running Enterprise Services, or a database server running SQL
Server, the guide adheres to a general security methodology that is common across
the various server roles and types.

The guide organizes the precautions you must take and the settings you must
configure into categories. By using these configuration categories, you can
systematically walk through the securing process from top to bottom or pick
a particular category and complete specific steps.

lxxviii Improving Web Application Security: Threats and Countermeasures

Figure 3 shows the configuration categories used throughout Part IV of this guide,
“Securing Your Network, Host, and Application.”

P
a

tc
he

s
a

nd
 U

pd
at

es

Shares
Auditing and

Logging

Services
Files and

Directories

Registry

Protocols Ports

O
pe

ra
tin

g
S

ys
te

m
N

e
tw

o
rk

Accounts

Figure 3
Host security categories

Securing Your Application
The guide defines a set of application vulnerability categories to help you design
and build secure Web applications and evaluate the security of existing applications.
These are common categories that span multiple technologies and components in a
layered architecture. These categories are the focus for discussion through the
designing, building, and security assessment chapters in this guide.

Table 2 Application Vulnerability Categories

Category Description
Input Validation How do you know that the input your application receives is valid and

safe? Input validation refers to how your application filters, scrubs, or
rejects input before additional processing.

Authentication Who are you? Authentication is the process that an entity uses to
identify another entity, typically through credentials such as a user name
and password.

Authorization What can you do? Authorization is the process that an application uses
to control access to resources and operations.

Configuration
Management

Who does your application run as? Which databases does it connect to?
How is your application administered? How are these settings secured?
Configuration management refers to how your application handles these
operational issues.

 Fast Track — How To Implement the Guidance lxxix

Table 2 Application Vulnerability Categories (continued)
Category Description
Sensitive Data Sensitive data is information that must be protected either in memory,

over the wire, or in persistent stores. Your application must have a
process for handling sensitive data.

Session Management A session refers to a series of related interactions between a user and
your Web application. Session management refers to how your
application handles and protects these interactions.

Cryptography How are you protecting secret information (confidentiality)? How are you
tamperproofing your data or libraries (integrity)? How are you providing
seeds for random values that must be cryptographically strong?
Cryptography refers to how your application enforces confidentiality and
integrity.

Parameter Manipulation Form fields, query string arguments, and cookie values are frequently
used as parameters for your application. Parameter manipulation refers
to both how your application safeguards tampering of these values and
how your application processes input parameters.

Exception Management When a method call in your application fails, what does your application
do? How much does it reveal about the failure condition? Do you return
friendly error information to end users? Do you pass valuable exception
information back to the caller? Does your application fail gracefully?

Auditing and Logging Who did what and when? Auditing and logging refer to how your
application records security-related events.

Identify Threats
You need to know your threats before you can successfully apply security measures.
Threats can be external, such as from an attacker on the Internet, or internal — for
example, from a disgruntled employee or administrator. This guide helps you to
identify threats in two ways:
● It lists the top threats that affect Web applications at the network, host, and

application layers.
● It presents a threat modeling process to help you identify which threats are

relevant to your application.

lxxx Improving Web Application Security: Threats and Countermeasures

An outline of the threat modeling process covered in the guide is shown in Figure 4.

2. Create an Architecture Overview

Threat Modeling Process

1. Identify Assets

3. Decompose the Application

4. Identify the Threats

6. Rate the Threats

5. Document the Threats

Figure 4
The Threat Modeling Process

The steps shown in Figure 4 are described below:
1. Identify assets.

Identify the assets of value that your systems must protect.
2. Create an architecture overview.

Use simple diagrams and tables to document the architecture of your application,
including subsystems, trust boundaries, and data flow.

3. Decompose the application.
Decompose the architecture of your application, including the underlying network
and host infrastructure design, to create a security profile for the application. The
aim of the security profile is to uncover vulnerabilities in the design,
implementation, or deployment configuration of your application.

4. Identify the threats.
Keeping an attacker’s goals in mind, and with knowledge of your application’s
architecture and potential vulnerabilities, you identify the threats that could
impact the application.

5. Document the threats.
Document each threat using a common threat template that defines a core set of
attributes that you should capture for each threat.

 Fast Track — How To Implement the Guidance lxxxi

6. Rate the threats.
Rate the threats to prioritize and address the most significant threats first. These
threats are the ones that present the biggest risk. The rating process weighs the
probability of the threat against the damage that could result should an attack
occur. It might turn out that certain threats do not warrant any action when you
compare the risk posed by the threat with the resulting mitigation costs.

Applying the Guidance to Your Product Life Cycle
Different parts of the guide apply to the different phases of the product development
life cycle. The sequence of chapters in the guide mirrors the typical phases of the life
cycle. The chapter-to-role relationship is shown in Figure 5.

Requirements
Gathering

Design

Development

Testing

Deployment

Part III, Building Secure
Web Applications

Maintenance

Threat Modeling and
Part II, Designing Secure
Web Applications

Part IV, Securing
Your Network, Host
and Application

Part V, Assessing
Your Security

Code Review

Deployment
Review

Architecture and
Design Review

Figure 5
Relationship of chapter to product life cycle

Note Threat modeling and security assessment (specifically the code review and deployment review
chapters) apply when you build new Web applications or when you review existing applications.

lxxxii Improving Web Application Security: Threats and Countermeasures

Implementing the Guidance
The guidance throughout the guide is task-based and modular, and each chapter
relates to the various stages of the product development life cycle and the various
roles involved. These roles include architects, developers, system administrators,
and security professionals. You can pick specific chapters to perform a particular
task or use a series of chapters for a phase of the product development life cycle.

The checklist shown in Table 3 highlights the areas covered by this guide that are
required to secure your network, host, and application.

Table 3 Security Checklist

Check Description
 Educate your teams about the threats that affect the network, host, and application

layers. Identify common vulnerabilities and attacks, and learn countermeasures. For more
information, see Chapter 2, “Threats and Countermeasures.”

 Create threat models for your Web applications. For more information, see Chapter 3,
“Threat Modeling.”

 Review and implement your company’s security policies. If you do not have security
policies in place, create them. For more information about creating security policies, see
“Security Policy Issues” at the SANS Info Sec Reading Room at http://www.sans.org
/rr/catindex.php?cat_id=50.

 Review your network security. For more information, see Chapter 15, “Securing Your
Network.”

 Patch and update your servers. Review your server security settings and compare them
with the snapshot of a secure server. For more information, see “Snapshot of a Secure
Web Server” in Chapter 16, “Securing Your Web Server.”

 Educate your architects and developers about Web application security design guidelines
and principles. For more information, see Chapter 4, “Design Guidelines for Secure Web
Applications.”

 Educate your architects and developers about writing secure managed code. For more
information, see Chapter 7, “Building Secure Assemblies” and Chapter 8, “Code Access
Security in Practice.”

 Secure your developer workstations. For more information, see “How To: Secure Your
Developer Workstation” in the “How To” section of this guide.

 Review the designs of new Web applications and of existing applications. For more
information, see Chapter 5, “Architecture and Design Review for Security.”

 Educate developers about how to perform code reviews. Perform code reviews for
applications in development. For more information, see Chapter 21, “Code Review.”

 Perform deployment reviews of your applications to identify potential security
vulnerabilities. For more information, see Chapter 22, “Deployment Review.”

http://www.sans.org/rr/catindex.php?cat_id=50
http://www.sans.org/rr/catindex.php?cat_id=50

 Fast Track — How To Implement the Guidance lxxxiii

Who Does What?
Designing and building secure applications is a collaborative effort involving
multiple roles. This guide is structured to address each role and the relevant security
factors to be considered by each role. The categorization and the issues addressed are
outlined below.

RACI Chart
RACI stands for:
● Responsible (the role responsible for performing the task)
● Accountable (the role with overall responsibility for the task)
● Consulted (people who provide input to help perform the task)
● Keep Informed (people with a vested interest who should be kept informed)

You can use a RACI chart at the beginning of your project to identify the key security
related tasks together with the roles that should execute each task.

Table 4 illustrates a simple RACI chart for this guide. (The heading row lists the roles;
the first column lists tasks, and the remaining columns delineate levels of
accountability for each task according to role.)

Table 4 RACI Chart

Tasks

Architect

System
Administrator

Developer

Tester

Security
Professional

Security Policies R I A

Threat Modeling A I I R

Security Design
Principles

A I I C

Security Architecture A C R

Architecture and
Design Review

R A

Code Development A R

Technology Specific
Threats

 A R

Code Review R I A

Security Testing C I A C

Network Security C R A

Host Security C A I R

Application Security C I A R

Deployment Review C R I I A

lxxxiv Improving Web Application Security: Threats and Countermeasures

Summary
This fast track has highlighted the basic approach taken by the guide to help you
design and develop hack-resilient Web applications, and to evaluate the security of
existing applications. It has also shown you how to apply the guidance depending on
your specific role in the project life cycle.

Part I
Introduction to Threats and
Countermeasures

In This Part:
● Web Application Security Fundamentals
● Threats and Countermeasures
● Threat Modeling

1
Web Application Security
Fundamentals

When you hear talk about Web application security, there is a tendency to
immediately think about attackers defacing Web sites, stealing credit card numbers,
and bombarding Web sites with denial of service attacks. You might also think about
viruses, Trojan horses, and worms. These are the types of problems that receive the
most press because they represent some of the most significant threats faced by
today’s Web applications.

These are only some of the problems. Other significant problems are frequently
overlooked. Internal threats posed by rogue administrators, disgruntled employees,
and the casual user who mistakenly stumbles across sensitive data pose significant
risk. The biggest problem of all may be ignorance.

The solution to Web application security is more than technology. It is an ongoing
process involving people and practices.

We Are Secure — We Have a Firewall
This is a common misconception; it depends on the threat. For example, a firewall
may not detect malicious input sent to your Web application. Also, consider the
scenario where a rogue administrator has direct access to your application.

Do firewalls have their place? Of course they do. Firewalls are great at blocking ports.
Some firewall applications examine communications and can provide very advanced
protection. Firewalls are an integral part of your security, but they are not a complete
solution by themselves.

The same holds true for Secure Sockets Layer (SSL). SSL is great at encrypting traffic
over the network. However, it does not validate your application’s input or protect
you from a poorly configured server.

4 Part I: Introduction to Threats and Countermeasures

What Do We Mean By Security?
Security is fundamentally about protecting assets. Assets may be tangible items, such
as a Web page or your customer database — or they may be less tangible, such as
your company’s reputation.

Security is a path, not a destination. As you analyze your infrastructure and
applications, you identify potential threats and understand that each threat presents a
degree of risk. Security is about risk management and implementing effective
countermeasures.

The Foundations of Security
Security relies on the following elements:
● Authentication

Authentication addresses the question: who are you? It is the process of uniquely
identifying the clients of your applications and services. These might be end users,
other services, processes, or computers. In security parlance, authenticated clients
are referred to as principals.

● Authorization
Authorization addresses the question: what can you do? It is the process that
governs the resources and operations that the authenticated client is permitted to
access. Resources include files, databases, tables, rows, and so on, together with
system-level resources such as registry keys and configuration data. Operations
include performing transactions such as purchasing a product, transferring money
from one account to another, or increasing a customer’s credit rating.

● Auditing
Effective auditing and logging is the key to non-repudiation. Non-repudiation
guarantees that a user cannot deny performing an operation or initiating a
transaction. For example, in an e-commerce system, non-repudiation mechanisms
are required to make sure that a consumer cannot deny ordering 100 copies of a
particular book.

● Confidentiality
Confidentiality, also referred to as privacy, is the process of making sure that data
remains private and confidential, and that it cannot be viewed by unauthorized
users or eavesdroppers who monitor the flow of traffic across a network.
Encryption is frequently used to enforce confidentiality. Access control lists (ACLs)
are another means of enforcing confidentiality.

 Chapter 1: Web Application Security Fundamentals 5

● Integrity
Integrity is the guarantee that data is protected from accidental or deliberate
(malicious) modification. Like privacy, integrity is a key concern, particularly for
data passed across networks. Integrity for data in transit is typically provided by
using hashing techniques and message authentication codes.

● Availability
From a security perspective, availability means that systems remain available for
legitimate users. The goal for many attackers with denial of service attacks is to
crash an application or to make sure that it is sufficiently overwhelmed so that
other users cannot access the application.

Threats, Vulnerabilities, and Attacks Defined
A threat is any potential occurrence, malicious or otherwise, that could harm an asset.
In other words, a threat is any bad thing that can happen to your assets.

A vulnerability is a weakness that makes a threat possible. This may be because of
poor design, configuration mistakes, or inappropriate and insecure coding
techniques. Weak input validation is an example of an application layer vulnerability,
which can result in input attacks.

An attack is an action that exploits a vulnerability or enacts a threat. Examples of
attacks include sending malicious input to an application or flooding a network in an
attempt to deny service.

To summarize, a threat is a potential event that can adversely affect an asset, whereas
a successful attack exploits vulnerabilities in your system.

How Do You Build a Secure Web Application?
It is not possible to design and build a secure Web application until you know your
threats. An increasingly important discipline and one that is recommended to form
part of your application’s design phase is threat modeling. The purpose of threat
modeling is to analyze your application’s architecture and design and identify
potentially vulnerable areas that may allow a user, perhaps mistakenly, or an attacker
with malicious intent, to compromise your system’s security.

After you know your threats, design with security in mind by applying timeworn
and proven security principles. As developers, you must follow secure coding
techniques to develop secure, robust, and hack-resilient solutions. The design and
development of application layer software must be supported by a secure network,
host, and application configuration on the servers where the application software is
to be deployed.

6 Part I: Introduction to Threats and Countermeasures

Secure Your Network, Host, and Application
“A vulnerability in a network will allow a malicious user to exploit a host or an application.
A vulnerability in a host will allow a malicious user to exploit a network or an application.
A vulnerability in an application will allow a malicious user to exploit a network or a host.”

 — Carlos Lyons, Corporate Security, Microsoft

To build secure Web applications, a holistic approach to application security is
required and security must be applied at all three layers. This approach is shown in
Figure 1.1.

Runtime Services and Components

Operating System

Platform Services and Components

Secure the Network

Secure the Host

Secure the Application

Presentation
Logic

Business
Logic

Data Access
Logic

Figure 1.1
A holistic approach to security

 Chapter 1: Web Application Security Fundamentals 7

Securing Your Network
A secure Web application relies upon a secure network infrastructure. The network
infrastructure consists of routers, firewalls, and switches. The role of the secure
network is not only to protect itself from TCP/IP-based attacks, but also to
implement countermeasures such as secure administrative interfaces and strong
passwords. The secure network is also responsible for ensuring the integrity of the
traffic that it is forwarding. If you know at the network layer about ports, protocols,
or communication that may be harmful, counter those potential threats at that layer.

Network Component Categories
This guide divides network security into separate component categories as shown in
Table 1.1.

Table 1.1: Network Component Categories

Component Description
Router Routers are your outermost network ring. They channel packets to ports and protocols

that your application needs. Common TCP/IP vulnerabilities are blocked at this ring.

Firewall The firewall blocks those protocols and ports that the application does not use.
Additionally, firewalls enforce secure network traffic by providing application-specific
filtering to block malicious communications.

Switch Switches are used to separate network segments. They are frequently overlooked or
overtrusted.

Securing Your Host
When you secure a host, whether it is your Web server, application server, or
database server, this guide breaks down the various secure configuration settings into
separate categories. With this approach, you can focus on a specific category and
review security, or apply security settings that relate to that specific category. When
you install new software on your servers with this approach, you can evaluate the
impact on your security settings. For example, you may address the following
questions: Does the software create new accounts? Does the software add any default
services? Who are the services running as? Are any new script mappings created?

8 Part I: Introduction to Threats and Countermeasures

Host Configuration Categories
Figure 1.2 shows the various categories used in Part IV of this guide, “Securing Your
Network, Host, and Application.”

P
a

tc
he

s
a

nd
 U

pd
at

es

Shares
Auditing and

Logging

Services
Files and

Directories

Registry

Protocols Ports

O
pe

ra
tin

g
S

ys
te

m
N

e
tw

o
rk

Accounts

Figure 1.2
Host security categories

With the framework that these categories provide, you can systematically evaluate or
secure your server’s configuration instead of applying security settings on an ad-hoc
basis. The rationale for these particular categories is shown in Table 1.2.

Table 1.2: Rationale for Host Configuration Categories

Category Description
Patches and Updates Many top security risks exist because of vulnerabilities that are widely

published and well known. When new vulnerabilities are discovered, exploit
code is frequently posted on Internet bulletin boards within hours of the
first successful attack. Patching and updating your server’s software is the
first step toward securing the server. If you do not patch and update your
server, you are providing more potential opportunities for attackers and
malicious code.

Services The service set is determined by the server role and the applications it
hosts. By disabling unnecessary and unused services, you quickly and
easily reduce the attack surface area.

Protocols To reduce the attack surface area and the avenues open to attackers,
disable any unnecessary or unused network protocols.

Accounts The number of accounts accessible from a server should be restricted to
the necessary set of service and user accounts. Additionally, you should
enforce appropriate account policies, such as mandating strong passwords.

 Chapter 1: Web Application Security Fundamentals 9

Table 1.2: Rationale for Host Configuration Categories (continued)
Category Description
Files and Directories Files and directories should be secured with restricted NTFS permissions

that allow access only to the necessary Microsoft Windows service and
user accounts.

Shares All unnecessary file shares, including the default administration shares if
they are not required, should be removed. Secure the remaining shares
with restricted NTFS permissions.

Ports Services running on a server listen on specific ports to serve incoming
requests. Open ports on a server must be known and audited regularly to
make sure that an insecure service is not listening and available for
communication. In the worst-case scenario, a listening port is detected that
was not opened by an administrator.

Auditing and Logging Auditing is a vital aid in identifying intruders or attacks in progress. Logging
proves particularly useful as forensic information when determining how an
intrusion or attack was performed.

Registry Many security related settings are maintained in the registry. Secure the
registry itself by applying restricted Windows ACLs and blocking remote
registry administration.

Securing Your Application
If you were to review and analyze the top security issues across many Web
applications, you would see a pattern of problems. By organizing these problems into
categories, you can systematically tackle them. These problem areas are your
application’s vulnerability categories.

Application Vulnerability Categories
What better way to measure the security of a system than to evaluate its potential
weak points? To measure the security resilience of your application, you can evaluate
the application vulnerability categories. When you do this, you can create application
security profiles, and then use these profiles to determine the security strength of an
application.

These categories are used as a framework throughout this guide. Because the
categories represent the areas where security mistakes are most frequently made,
they are used to illustrate guidance for application developers and architects. The
categories are also used as a framework when evaluating the security of a Web
application. With these categories, you can focus consistently on the key design and
implementation choices that most affect your application’s security. Application
vulnerability categories are described in Table 1.3.

10 Part I: Introduction to Threats and Countermeasures

Table 1.3: Application Vulnerability Categories

Category Description
Input Validation How do you know that the input that your application receives is valid and

safe? Input validation refers to how your application filters, scrubs, or
rejects input before additional processing.

Authentication “Who are you?” Authentication is the process where an entity proves the
identity of another entity, typically through credentials, such as a user
name and password.

Authorization “What can you do?” Authorization is how your application provides access
controls for resources and operations.

Configuration
Management

Who does your application run as? Which databases does it connect to?
How is your application administered? How are these settings secured?
Configuration management refers to how your application handles these
operational issues.

Sensitive Data Sensitive data refers to how your application handles any data that must
be protected either in memory, over the wire, or in persistent stores.

Session Management A session refers to a series of related interactions between a user and
your Web application. Session management refers to how your application
handles and protects these interactions.

Cryptography How are you keeping secrets, secret (confidentiality)? How are you
tamperproofing your data or libraries (integrity)? How are you providing
seeds for random values that must be cryptographically strong?
Cryptography refers to how your application enforces confidentiality and
integrity.

Parameter Manipulation Form fields, query string arguments, and cookie values are frequently
used as parameters for your application. Parameter manipulation refers
to both how your application safeguards tampering of these values and
how your application processes input parameters.

Exception Management When a method call in your application fails, what does your application
do? How much do you reveal? Do you return friendly error information to
end users? Do you pass valuable exception information back to the
caller? Does your application fail gracefully?

Auditing and Logging Who did what and when? Auditing and logging refer to how your
application records security-related events.

 Chapter 1: Web Application Security Fundamentals 11

Security Principles
Recommendations used throughout this guide are based on security principles that
have proven themselves over time. Security, like many aspects of software
engineering, lends itself to a principle-based approach, where core principles can be
applied regardless of implementation technology or application scenario. The major
security principles used throughout this guide are summarized in Table 1.4.

Table 1.4: Summary of Core Security Principles

Principle Concepts
Compartmentalize Reduce the surface area of attack. Ask yourself how you will contain a

problem. If an attacker takes over your application, what resources can he
or she access? Can an attacker access network resources? How are you
restricting potential damage? Firewalls, least privileged accounts, and least
privileged code are examples of compartmentalizing.

Use least privilege By running processes using accounts with minimal privileges and access
rights, you significantly reduce the capabilities of an attacker if the attacker
manages to compromise security and run code.

Apply defense in depth Use multiple gatekeepers to keep attackers at bay. Defense in depth
means you do not rely on a single layer of security, or you consider that one
of your layers may be bypassed or compromised.

Do not trust user input Your application’s user input is the attacker’s primary weapon when
targeting your application. Assume all input is malicious until proven
otherwise, and apply a defense in depth strategy to input validation, taking
particular precautions to make sure that input is validated whenever a trust
boundary in your application is crossed.

Check at the gate Authenticate and authorize callers early — at the first gate.

Fail securely If an application fails, do not leave sensitive data accessible. Return
friendly errors to end users that do not expose internal system details. Do
not include details that may help an attacker exploit vulnerabilities in your
application.

Secure the weakest
link

Is there a vulnerability at the network layer that an attacker can exploit?
What about the host? Is your application secure? Any weak link in the chain
is an opportunity for breached security.

Create secure defaults Is the default account set up with least privilege? Is the default account
disabled by default and then explicitly enabled when required? Does the
configuration use a password in plaintext? When an error occurs, does
sensitive information leak back to the client to be used potentially against
the system?

Reduce your attack
surface

If you do not use it, remove it or disable it. Reduce the surface area of
attack by disabling or removing unused services, protocols, and
functionality. Does your server need all those services and ports? Does
your application need all those features?

12 Part I: Introduction to Threats and Countermeasures

Summary
An ever-increasing number of attacks target your application. They pass straight
through your environment’s front door using HTTP. The conventional fortress model
and the reliance on firewall and host defenses are not sufficient when used in
isolation. Securing your application involves applying security at three layers: the
network layer, host layer, and the application layer. A secure network and host
platform infrastructure is a must. Additionally, your applications must be designed
and built using secure design and development guidelines following timeworn
security principles.

Additional Resources
For more information, see the following resources:
● For more information on the Open Hack Web application, see the MSDN article,

“Open Hack: Building and Configuring More Secure Web Sites,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/openhack.asp.

● This is Volume II in a series dedicated to helping customers improve Web
application security. For more information on designing and implementing
authentication, authorization, and secure communication across the tiers of a
distributed Web application, see “Microsoft patterns & practices Volume I, Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

2
Threats and Countermeasures

In This Chapter
● An explanation of attacker methodology
● Descriptions of common attacks
● How to categorize threats
● How to identify and counter threats at the network, host, and application levels

Overview
When you incorporate security features into your application’s design,
implementation, and deployment, it helps to have a good understanding of how
attackers think. By thinking like attackers and being aware of their likely tactics, you
can be more effective when applying countermeasures. This chapter describes the
classic attacker methodology and profiles the anatomy of a typical attack.

This chapter analyzes Web application security from the perspectives of threats,
countermeasures, vulnerabilities, and attacks. The following set of core terms are
defined to avoid confusion and to ensure they are used in the correct context.
● Asset. A resource of value such as the data in a database or on the file system, or a

system resource
● Threat. A potential occurrence — malicious or otherwise — that may harm an asset
● Vulnerability. A weakness that makes a threat possible
● Attack (or exploit). An action taken to harm an asset
● Countermeasure. A safeguard that addresses a threat and mitigates risk

14 Part I: Introduction to Threats and Countermeasures

This chapter also identifies a set of common network, host, and application level
threats, and the recommended countermeasures to address each one. The chapter
does not contain an exhaustive list of threats, but it does highlight many top threats.
With this information and knowledge of how an attacker works, you will be able to
identify additional threats. You need to know the threats that are most likely to
impact your system to be able to build effective threat models. These threat models
are the subject of Chapter 3, “Threat Modeling.”

How to Use This Chapter
The following are recommendations on how to use this chapter:
● Become familiar with specific threats that affect the network host and

application. The threats are unique for the various parts of your system, although
the attacker’s goals may be the same.

● Use the threats to identify risk. Then create a plan to counter those threats.
● Apply countermeasures to address vulnerabilities. Countermeasures are

summarized in this chapter. Use Part III, “Building Secure Web Applications,” and
Part IV, “Securing Your Network, Host, and Application,” of this guide for
countermeasure implementation details.

● When you design, build, and secure new systems, keep the threats in this
chapter in mind. The threats exist regardless of the platform or technologies that
you use.

Anatomy of an Attack
By understanding the basic approach used by attackers to target your Web
application, you will be better equipped to take defensive measures because you will
know what you are up against. The basic steps in attacker methodology are
summarized below and illustrated in Figure 2.1:
● Survey and assess
● Exploit and penetrate
● Escalate privileges
● Maintain access
● Deny service

 Chapter 2: Threats and Countermeasures 15

Survey and
Assess

Exploit and
Penetrate

Escalate Privileges

Maintain Access Deny Service

Figure 2.1
Basic steps for attacking methodology

Survey and Assess
Surveying and assessing the potential target are done in tandem. The first step an
attacker usually takes is to survey the potential target to identify and assess its
characteristics. These characteristics may include its supported services and protocols
together with potential vulnerabilities and entry points. The attacker uses the
information gathered in the survey and assess phase to plan an initial attack.

For example, an attacker can detect a cross-site scripting (XSS) vulnerability by
testing to see if any controls in a Web page echo back output.

Exploit and Penetrate
Having surveyed a potential target, the next step is to exploit and penetrate. If the
network and host are fully secured, your application (the front gate) becomes the next
channel for attack.

For an attacker, the easiest way into an application is through the same entrance that
legitimate users use — for example, through the application’s logon page or a page
that does not require authentication.

Escalate Privileges
After attackers manage to compromise an application or network, perhaps by
injecting code into an application or creating an authenticated session with the
Microsoft Windows 2000 operating system, they immediately attempt to escalate
privileges. Specifically, they look for administration privileges provided by accounts
that are members of the Administrators group. They also seek out the high level of
privileges offered by the local system account.

16 Part I: Introduction to Threats and Countermeasures

Using least privileged service accounts throughout your application is a primary
defense against privilege escalation attacks. Also, many network level privilege
escalation attacks require an interactive logon session.

Maintain Access
Having gained access to a system, an attacker takes steps to make future access easier
and to cover his or her tracks. Common approaches for making future access easier
include planting back-door programs or using an existing account that lacks strong
protection. Covering tracks typically involves clearing logs and hiding tools. As such,
audit logs are a primary target for the attacker.

Log files should be secured, and they should be analyzed on a regular basis. Log file
analysis can often uncover the early signs of an attempted break-in before damage is
done.

Deny Service
Attackers who cannot gain access often mount a denial of service attack to prevent
others from using the application. For other attackers, the denial of service option is
their goal from the outset. An example is the SYN flood attack, where the attacker
uses a program to send a flood of TCP SYN requests to fill the pending connection
queue on the server. This prevents other users from establishing network
connections.

Understanding Threat Categories
While there are many variations of specific attacks and attack techniques, it is useful
to think about threats in terms of what the attacker is trying to achieve. This changes
your focus from the identification of every specific attack — which is really just a
means to an end — to focusing on the end results of possible attacks.

STRIDE
Threats faced by the application can be categorized based on the goals and purposes
of the attacks. A working knowledge of these categories of threats can help you
organize a security strategy so that you have planned responses to threats. STRIDE is
the acronym used at Microsoft to categorize different threat types. STRIDE stands for:
● Spoofing. Spoofing is attempting to gain access to a system by using a false

identity. This can be accomplished using stolen user credentials or a false IP
address. After the attacker successfully gains access as a legitimate user or host,
elevation of privileges or abuse using authorization can begin.

● Tampering. Tampering is the unauthorized modification of data, for example as it
flows over a network between two computers.

 Chapter 2: Threats and Countermeasures 17

● Repudiation. Repudiation is the ability of users (legitimate or otherwise) to deny
that they performed specific actions or transactions. Without adequate auditing,
repudiation attacks are difficult to prove.

● Information disclosure. Information disclosure is the unwanted exposure of private
data. For example, a user views the contents of a table or file he or she is not
authorized to open, or monitors data passed in plaintext over a network. Some
examples of information disclosure vulnerabilities include the use of hidden form
fields, comments embedded in Web pages that contain database connection strings
and connection details, and weak exception handling that can lead to internal
system level details being revealed to the client. Any of this information can be
very useful to the attacker.

● Denial of service. Denial of service is the process of making a system or application
unavailable. For example, a denial of service attack might be accomplished by
bombarding a server with requests to consume all available system resources or
by passing it malformed input data that can crash an application process.

● Elevation of privilege. Elevation of privilege occurs when a user with limited
privileges assumes the identity of a privileged user to gain privileged access to an
application. For example, an attacker with limited privileges might elevate his or
her privilege level to compromise and take control of a highly privileged and
trusted process or account.

STRIDE Threats and Countermeasures
Each threat category described by STRIDE has a corresponding set of countermeasure
techniques that should be used to reduce risk. These are summarized in Table 2.1. The
appropriate countermeasure depends upon the specific attack. More threats, attacks,
and countermeasures that apply at the network, host, and application levels are
presented later in this chapter.

Table 2.1 STRIDE Threats and Countermeasures

Threat Countermeasures
Spoofing user identity Use strong authentication.

Do not store secrets (for example, passwords) in plaintext.

Do not pass credentials in plaintext over the wire.

Protect authentication cookies with Secure Sockets Layer (SSL).

Tampering with data Use data hashing and signing.

Use digital signatures.

Use strong authorization.

Use tamper-resistant protocols across communication links.

Secure communication links with protocols that provide message
integrity.

(continued)

18 Part I: Introduction to Threats and Countermeasures

Table 2.1 STRIDE Threats and Countermeasures (continued)
Threat Countermeasures
Repudiation Create secure audit trails.

Use digital signatures.

Information disclosure Use strong authorization.

Use strong encryption.

Secure communication links with protocols that provide message
confidentiality.

Do not store secrets (for example, passwords) in plaintext.

Denial of service Use resource and bandwidth throttling techniques.

Validate and filter input.

Elevation of privilege Follow the principle of least privilege and use least privileged service
accounts to run processes and access resources.

Network Threats and Countermeasures
The primary components that make up your network infrastructure are routers,
firewalls, and switches. They act as the gatekeepers guarding your servers and
applications from attacks and intrusions. An attacker may exploit poorly configured
network devices. Common vulnerabilities include weak default installation settings,
wide open access controls, and devices lacking the latest security patches. Top
network level threats include:
● Information gathering
● Sniffing
● Spoofing
● Session hijacking
● Denial of service

Information Gathering
Network devices can be discovered and profiled in much the same way as other
types of systems. Attackers usually start with port scanning. After they identify open
ports, they use banner grabbing and enumeration to detect device types and to
determine operating system and application versions. Armed with this information,
an attacker can attack known vulnerabilities that may not be updated with security
patches.

 Chapter 2: Threats and Countermeasures 19

Countermeasures to prevent information gathering include:
● Configure routers to restrict their responses to footprinting requests.
● Configure operating systems that host network software (for example, software

firewalls) to prevent footprinting by disabling unused protocols and unnecessary
ports.

Sniffing
Sniffing or eavesdropping is the act of monitoring traffic on the network for data such
as plaintext passwords or configuration information. With a simple packet sniffer, an
attacker can easily read all plaintext traffic. Also, attackers can crack packets
encrypted by lightweight hashing algorithms and can decipher the payload that you
considered to be safe. The sniffing of packets requires a packet sniffer in the path of
the server/client communication.

Countermeasures to help prevent sniffing include:
● Use strong physical security and proper segmenting of the network. This is the

first step in preventing traffic from being collected locally.
● Encrypt communication fully, including authentication credentials. This prevents

sniffed packets from being usable to an attacker. SSL and IPSec (Internet Protocol
Security) are examples of encryption solutions.

Spoofing
Spoofing is a means to hide one’s true identity on the network. To create a spoofed
identity, an attacker uses a fake source address that does not represent the actual
address of the packet. Spoofing may be used to hide the original source of an attack
or to work around network access control lists (ACLs) that are in place to limit host
access based on source address rules.

Although carefully crafted spoofed packets may never be tracked to the original
sender, a combination of filtering rules prevents spoofed packets from originating
from your network, allowing you to block obviously spoofed packets.

Countermeasures to prevent spoofing include:
● Filter incoming packets that appear to come from an internal IP address at your

perimeter.
● Filter outgoing packets that appear to originate from an invalid local IP address.

Session Hijacking
Also known as man in the middle attacks, session hijacking deceives a server or a
client into accepting the upstream host as the actual legitimate host. Instead the
upstream host is an attacker’s host that is manipulating the network so the attacker’s
host appears to be the desired destination.

20 Part I: Introduction to Threats and Countermeasures

Countermeasures to help prevent session hijacking include:
● Use encrypted session negotiation.
● Use encrypted communication channels.
● Stay informed of platform patches to fix TCP/IP vulnerabilities, such as

predictable packet sequences.

Denial of Service
Denial of service denies legitimate users access to a server or services. The SYN flood
attack is a common example of a network level denial of service attack. It is easy to
launch and difficult to track. The aim of the attack is to send more requests to a server
than it can handle. The attack exploits a potential vulnerability in the TCP/IP
connection establishment mechanism and floods the server’s pending connection
queue.

Countermeasures to prevent denial of service include:
● Apply the latest service packs.
● Harden the TCP/IP stack by applying the appropriate registry settings to increase

the size of the TCP connection queue, decrease the connection establishment
period, and employ dynamic backlog mechanisms to ensure that the connection
queue is never exhausted.

● Use a network Intrusion Detection System (IDS) because these can automatically
detect and respond to SYN attacks.

Host Threats and Countermeasures
Host threats are directed at the system software upon which your applications are
built. This includes Windows 2000, Internet Information Services (IIS), the .NET
Framework, and SQL Server 2000, depending upon the specific server role. Top host
level threats include:
● Viruses, Trojan horses, and worms
● Footprinting
● Profiling
● Password cracking
● Denial of service
● Arbitrary code execution
● Unauthorized access

 Chapter 2: Threats and Countermeasures 21

Viruses, Trojan Horses, and Worms
A virus is a program that is designed to perform malicious acts and cause disruption
to your operating system or applications. A Trojan horse resembles a virus except that
the malicious code is contained inside what appears to be a harmless data file or
executable program. A worm is similar to a Trojan horse except that it self-replicates
from one server to another. Worms are difficult to detect because they do not
regularly create files that can be seen. They are often noticed only when they begin to
consume system resources because the system slows down or the execution of other
programs halt. The Code Red Worm is one of the most notorious to afflict IIS; it relied
upon a buffer overflow vulnerability in a particular ISAPI filter.

Although these three threats are actually attacks, together they pose a significant
threat to Web applications, the hosts these applications live on, and the network used
to deliver these applications. The success of these attacks on any system is possible
through many vulnerabilities such as weak defaults, software bugs, user error, and
inherent vulnerabilities in Internet protocols.

Countermeasures that you can use against viruses, Trojan horses, and worms include:
● Stay current with the latest operating system service packs and software patches.
● Block all unnecessary ports at the firewall and host.
● Disable unused functionality including protocols and services.
● Harden weak, default configuration settings.

Footprinting
Examples of footprinting are port scans, ping sweeps, and NetBIOS enumeration that
can be used by attackers to glean valuable system-level information to help prepare
for more significant attacks. The type of information potentially revealed by
footprinting includes account details, operating system and other software versions,
server names, and database schema details.

Countermeasures to help prevent footprinting include:
● Disable unnecessary protocols.
● Lock down ports with the appropriate firewall configuration.
● Use TCP/IP and IPSec filters for defense in depth.
● Configure IIS to prevent information disclosure through banner grabbing.
● Use an IDS that can be configured to pick up footprinting patterns and reject

suspicious traffic.

22 Part I: Introduction to Threats and Countermeasures

Password Cracking
If the attacker cannot establish an anonymous connection with the server, he or she
will try to establish an authenticated connection. For this, the attacker must know a
valid username and password combination. If you use default account names, you
are giving the attacker a head start. Then the attacker only has to crack the account’s
password. The use of blank or weak passwords makes the attacker’s job even easier.

Countermeasures to help prevent password cracking include:
● Use strong passwords for all account types.
● Apply lockout policies to end-user accounts to limit the number of retry attempts

that can be used to guess the password.
● Do not use default account names, and rename standard accounts such as the

administrator’s account and the anonymous Internet user account used by many
Web applications.

● Audit failed logins for patterns of password hacking attempts.

Denial of Service
Denial of service can be attained by many methods aimed at several targets within
your infrastructure. At the host, an attacker can disrupt service by brute force against
your application, or an attacker may know of a vulnerability that exists in the service
your application is hosted in or in the operating system that runs your server.

Countermeasures to help prevent denial of service include:
● Configure your applications, services, and operating system with denial of service

in mind.
● Stay current with patches and security updates.
● Harden the TCP/IP stack against denial of service.
● Make sure your account lockout policies cannot be exploited to lock out well

known service accounts.
● Make sure your application is capable of handling high volumes of traffic and that

thresholds are in place to handle abnormally high loads.
● Review your application’s failover functionality.
● Use an IDS that can detect potential denial of service attacks.

 Chapter 2: Threats and Countermeasures 23

Arbitrary Code Execution
If an attacker can execute malicious code on your server, the attacker can either
compromise server resources or mount further attacks against downstream systems.
The risks posed by arbitrary code execution increase if the server process under
which the attacker’s code runs is over-privileged. Common vulnerabilities include
weak IID configuration and unpatched servers that allow path traversal and buffer
overflow attacks, both of which can lead to arbitrary code execution.

Countermeasures to help prevent arbitrary code execution include:
● Configure IIS to reject URLs with “../” to prevent path traversal.
● Lock down system commands and utilities with restricted ACLs.
● Stay current with patches and updates to ensure that newly discovered buffer

overflows are speedily patched.

Unauthorized Access
Inadequate access controls could allow an unauthorized user to access restricted
information or perform restricted operations. Common vulnerabilities include weak
IIS Web access controls, including Web permissions and weak NTFS permissions.

Countermeasures to help prevent unauthorized access include:
● Configure secure Web permissions.
● Lock down files and folders with restricted NTFS permissions.
● Use .NET Framework access control mechanisms within your ASP.NET

applications, including URL authorization and principal permission demands.

Application Threats and Countermeasures
A good way to analyze application-level threats is to organize them by application
vulnerability category. The various categories used in the subsequent sections of this
chapter and throughout the guide, together with the main threats to your application,
are summarized in Table 2.2.

24 Part I: Introduction to Threats and Countermeasures

Table 2.2 Threats by Application Vulnerability Category

Category Threats
Input validation Buffer overflow; cross-site scripting; SQL injection;

canonicalization

Authentication Network eavesdropping; brute force attacks;

dictionary attacks; cookie replay; credential theft

Authorization Elevation of privilege; disclosure of confidential data; data
tampering; luring attacks

Configuration management Unauthorized access to administration interfaces; unauthorized
access to configuration stores; retrieval of clear text
configuration data; lack of individual accountability; over-
privileged process and service accounts

Sensitive data Access sensitive data in storage; network eavesdropping; data
tampering

Session management Session hijacking; session replay; man in the middle

Cryptography Poor key generation or key management; weak or custom
encryption

Parameter manipulation Query string manipulation; form field manipulation; cookie
manipulation; HTTP header manipulation

Exception management Information disclosure; denial of service

Auditing and logging User denies performing an operation; attacker exploits an
application without trace; attacker covers his or her tracks

Input Validation
Input validation is a security issue if an attacker discovers that your application
makes unfounded assumptions about the type, length, format, or range of input data.
The attacker can then supply carefully crafted input that compromises your
application.

When network and host level entry points are fully secured; the public interfaces
exposed by your application become the only source of attack. The input to your
application is a means to both test your system and a way to execute code on an
attacker’s behalf. Does your application blindly trust input? If it does, your
application may be susceptible to the following:
● Buffer overflows
● Cross-site scripting
● SQL injection
● Canonicalization

 Chapter 2: Threats and Countermeasures 25

The following section examines these vulnerabilities in detail, including what makes
these vulnerabilities possible.

Buffer Overflows
Buffer overflow vulnerabilities can lead to denial of service attacks or code injection.
A denial of service attack causes a process crash;. code injection alters the program
execution address to run an attacker’s injected code. The following code fragment
illustrates a common example of a buffer overflow vulnerability.

void SomeFunction(char *pszInput)
{
 char szBuffer[10];
 // Input is copied straight into the buffer when no type checking is performed
 strcpy(szBuffer, pszInput);
 . . .
}

Managed .NET code is not susceptible to this problem because array bounds are
automatically checked whenever an array is accessed. This makes the threat of buffer
overflow attacks on managed code much less of an issue. It is still a concern,
however, especially where managed code calls unmanaged APIs or COM objects.

Countermeasures to help prevent buffer overflows include:
● Perform thorough input validation. This is the first line of defense against buffer

overflows. Although a bug may exist in your application that permits expected
input to reach beyond the bounds of a container, unexpected input will be the
primary cause of this vulnerability. Constrain input by validating it for type,
length, format and range.

● When possible, limit your application’s use of unmanaged code, and thoroughly
inspect the unmanaged APIs to ensure that input is properly validated.

● Inspect the managed code that calls the unmanaged API to ensure that only
appropriate values can be passed as parameters to the unmanaged API.

● Use the /GS flag to compile code developed with the Microsoft Visual C++
development system. The /GS flag causes the compiler to inject security checks
into the compiled code. This is not a fail-proof solution or a replacement for your
specific validation code; it does, however, protect your code from commonly
known buffer overflow attacks. For more information, see the .NET Framework
Product documentation http://msdn.microsoft.com/library/default.asp?url=
/library/en-us/vccore/html/vclrfGSBufferSecurity.asp and Microsoft Knowledge Base
article 325483 “WebCast: Compiler Security Checks: The –GS compiler switch.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vclrfGSBufferSecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vccore/html/vclrfGSBufferSecurity.asp

26 Part I: Introduction to Threats and Countermeasures

Example of Code Injection Through Buffer Overflows
An attacker can exploit a buffer overflow vulnerability to inject code. With this attack,
a malicious user exploits an unchecked buffer in a processby supplying a carefully
constructed input value that overwrites the program’s stack and alters a function’s
return address. This causes execution to jump to the attacker’s injected code.

The attacker’s code usually ends up running under the process security context. This
emphasizes the importance of using least privileged process accounts. If the current
thread is impersonating, the attacker’s code ends up running under the security
context defined by the thread impersonation token. The first thing an attacker usually
does is call the RevertToSelf API to revert to the process level security context that
the attacker hopes has higher privileges.

Make sure you validate input for type and length, especially before you call
unmanaged code because unmanaged code is particularly susceptible to buffer
overflows.

Cross-Site Scripting
An XSS attack can cause arbitrary code to run in a user’s browser while the browser
is connected to a trusted Web site. The attack targets your application’s users and not
the application itself, but it uses your application as the vehicle for the attack.

Because the script code is downloaded by the browser from a trusted site, the
browser has no way of knowing that the code is not legitimate. Internet Explorer
security zones provide no defense. Since the attacker’s code has access to the cookies
associated with the trusted site and are stored on the user’s local computer, a user’s
authentication cookies are typically the target of attack.

Example of Cross-Site Scripting
To initiate the attack, the attacker must convince the user to click on a carefully
crafted hyperlink, for example, by embedding a link in an email sent to the user or by
adding a malicious link to a newsgroup posting. The link points to a vulnerable page
in your application that echoes the unvalidated input back to the browser in the
HTML output stream. For example, consider the following two links.

Here is a legitimate link:

www.yourwebapplication.com/logon.aspx?username=bob

Here is a malicious link:

www.yourwebapplication.com/logon.aspx?username=<script>alert('hacker
code')</script>

 Chapter 2: Threats and Countermeasures 27

If the Web application takes the query string, fails to properly validate it, and then
returns it to the browser, the script code executes in the browser. The preceding
example displays a harmless pop-up message. With the appropriate script, the
attacker can easily extract the user’s authentication cookie, post it to his site, and
subsequently make a request to the target Web site as the authenticated user.

Countermeasures to prevent XSS include:
● Perform thorough input validation. Your applications must ensure that input from

query strings, form fields, and cookies are valid for the application. Consider all
user input as possibly malicious, and filter or sanitize for the context of the
downstream code. Validate all input for known valid values and then reject all
other input. Use regular expressions to validate input data received via HTML
form fields, cookies, and query strings.

● Use HTMLEncode and URLEncode functions to encode any output that includes
user input. This converts executable script into harmless HTML.

SQL Injection
A SQL injection attack exploits vulnerabilities in input validation to run arbitrary
commands in the database. It can occur when your application uses input to
construct dynamic SQL statements to access the database. It can also occur if your
code uses stored procedures that are passed strings that contain unfiltered user input.
Using the SQL injection attack, the attacker can execute arbitrary commands in the
database. The issue is magnified if the application uses an over-privileged account to
connect to the database. In this instance it is possible to use the database server to run
operating system commands and potentially compromise other servers, in addition
to being able to retrieve, manipulate, and destroy data.

Example of SQL Injection
Your application may be susceptible to SQL injection attacks when you incorporate
unvalidated user input into database queries. Particularly susceptible is code that
constructs dynamic SQL statements with unfiltered user input. Consider the
following code:

SqlDataAdapter myCommand = new SqlDataAdapter(
 "SELECT * FROM Users
 WHERE UserName ='" + txtuid.Text + "'", conn);

Attackers can inject SQL by terminating the intended SQL statement with the single
quote character followed by a semicolon character to begin a new command, and
then executing the command of their choice. Consider the following character string
entered into the txtuid field.

'; DROP TABLE Customers -

28 Part I: Introduction to Threats and Countermeasures

This results in the following statement being submitted to the database for execution.

SELECT * FROM Users WHERE UserName=''; DROP TABLE Customers --'

This deletes the Customers table, assuming that the application’s login has sufficient
permissions in the database (another reason to use a least privileged login in the
database). The double dash (--) denotes a SQL comment and is used to comment out
any other characters added by the programmer, such as the trailing quote.

Note The semicolon is not actually required. SQL Server will execute two commands separated by
spaces.

Other more subtle tricks can be performed. Supplying this input to the txtuid field:

' OR 1=1 -

builds this command:

SELECT * FROM Users WHERE UserName='' OR 1=1 -

Because 1=1 is always true, the attacker retrieves every row of data from the Users
table.

Countermeasures to prevent SQL injection include:
● Perform thorough input validation. Your application should validate its input

prior to sending a request to the database.
● Use parameterized stored procedures for database access to ensure that input

strings are not treated as executable statements. If you cannot use stored
procedures, use SQL parameters when you build SQL commands.

● Use least privileged accounts to connect to the database.

Canonicalization
Different forms of input that resolve to the same standard name (the canonical name),
is referred to as canonicalization. Code is particularly susceptible to canonicalization
issues if it makes security decisions based on the name of a resource that is passed to
the program as input. Files, paths, and URLs are resource types that are vulnerable to
canonicalization because in each case there are many different ways to represent the
same name. File names are also problematic. For example, a single file could be
represented as:

c:\temp\somefile.dat
somefile.dat
c:\temp\subdir\..\somefile.dat
c:\ temp\ somefile.dat
..\somefile.dat

 Chapter 2: Threats and Countermeasures 29

Ideally, your code does not accept input file names. If it does, the name should be
converted to its canonical form prior to making security decisions, such as whether
access should be granted or denied to the specified file.

Countermeasures to address canonicalization issues include:
● Avoid input file names where possible and instead use absolute file paths that

cannot be changed by the end user.
● Make sure that file names are well formed (if you must accept file names as input)

and validate them within the context of your application. For example, check that
they are within your application’s directory hierarchy.

● Ensure that the character encoding is set correctly to limit how input can be
represented. Check that your application’s Web.config has set the
requestEncoding and responseEncoding attributes on the <globalization>
element.

Authentication
Depending on your requirements, there are several available authentication
mechanisms to choose from. If they are not correctly chosen and implemented, the
authentication mechanism can expose vulnerabilities that attackers can exploit to
gain access to your system. The top threats that exploit authentication vulnerabilities
include:
● Network eavesdropping
● Brute force attacks
● Dictionary attacks
● Cookie replay attacks
● Credential theft

Network Eavesdropping
If authentication credentials are passed in plaintext from client to server, an attacker
armed with rudimentary network monitoring software on a host on the same
network can capture traffic and obtain user names and passwords.

Countermeasures to prevent network eavesdropping include:
● Use authentication mechanisms that do not transmit the password over the

network such as Kerberos protocol or Windows authentication.
● Make sure passwords are encrypted (if you must transmit passwords over the

network) or use an encrypted communication channel, for example with SSL.

30 Part I: Introduction to Threats and Countermeasures

Brute Force Attacks
Brute force attacks rely on computational power to crack hashed passwords or other
secrets secured with hashing and encryption. To mitigate the risk, use strong
passwords.

Dictionary Attacks
This attack is used to obtain passwords. Most password systems do not store
plaintext passwords or encrypted passwords. They avoid encrypted passwords
because a compromised key leads to the compromise of all passwords in the data
store. Lost keys mean that all passwords are invalidated.

Most user store implementations hold password hashes (or digests). Users are
authenticated by re-computing the hash based on the user-supplied password value
and comparing it against the hash value stored in the database. If an attacker
manages to obtain the list of hashed passwords, a brute force attack can be used to
crack the password hashes.

With the dictionary attack, an attacker uses a program to iterate through all of the
words in a dictionary (or multiple dictionaries in different languages) and computes
the hash for each word. The resultant hash is compared with the value in the data
store. Weak passwords such as “Yankees” (a favorite team) or “Mustang”
(a favorite car) will be cracked quickly. Stronger passwords such as
“?You’LlNevaFiNdMeyePasSWerd!”, are less likely to be cracked.

Note Once the attacker has obtained the list of password hashes, the dictionary attack can be
performed offline and does not require interaction with the application.

Countermeasures to prevent dictionary attacks include:
● Use strong passwords that are complex, are not regular words, and contain a

mixture of upper case, lower case, numeric, and special characters.
● Store non-reversible password hashes in the user store. Also combine a salt value

(a cryptographically strong random number) with the password hash.

For more information about storing password hashes with added salt, see Chapter 14,
“Building Secure Data Access.”

 Chapter 2: Threats and Countermeasures 31

Cookie Replay Attacks
With this type of attack, the attacker captures the user’s authentication cookie using
monitoring software and replays it to the application to gain access under a false
identity.

Countermeasures to prevent cookie replay include:
● Use an encrypted communication channel provided by SSL whenever an

authentication cookie is transmitted.
● Use a cookie timeout to a value that forces authentication after a relatively short

time interval. Although this doesn’t prevent replay attacks, it reduces the time
interval in which the attacker can replay a request without being forced to re-
authenticate because the session has timed out.

Credential Theft
If your application implements its own user store containing user account names and
passwords, compare its security to the credential stores provided by the platform, for
example, a Microsoft Active Directory® directory service or Security Accounts
Manager (SAM) user store. Browser history and cache also store user login
information for future use. If the terminal is accessed by someone other than the user
who logged on, and the same page is hit, the saved login will be available.

Countermeasures to help prevent credential theft include:
● Use and enforce strong passwords.
● Store password verifiers in the form of one way hashes with added salt.
● Enforce account lockout for end-user accounts after a set number of retry attempts.
● To counter the possibility of the browser cache allowing login access, create

functionality that either allows the user to choose to not save credentials, or force
this functionality as a default policy.

Authorization
Based on user identity and role membership, authorization to a particular resource or
service is either allowed or denied. Top threats that exploit authorization
vulnerabilities include:
● Elevation of privilege
● Disclosure of confidential data
● Data tampering
● Luring attacks

32 Part I: Introduction to Threats and Countermeasures

Elevation of Privilege
When you design an authorization model, you must consider the threat of an attacker
trying to elevate privileges to a powerful account such as a member of the local
administrators group or the local system account. By doing this, the attacker is able to
take complete control over the application and local machine. For example, with
classic ASP programming, calling the RevertToSelf API from a component might
cause the executing thread to run as the local system account with the most power
and privileges on the local machine.

The main countermeasure that you can use to prevent elevation of privilege is to use
least privileged process, service, and user accounts.

Disclosure of Confidential Data
The disclosure of confidential data can occur if sensitive data can be viewed by
unauthorized users. Confidential data includes application specific data such as
credit card numbers, employee details, financial records and so on together with
application configuration data such as service account credentials and database
connection strings. To prevent the disclosure of confidential data you should secure it
in persistent stores such as databases and configuration files, and during transit over
the network. Only authenticated and authorized users should be able to access the
data that is specific to them. Access to system level configuration data should be
restricted to administrators.

Countermeasures to prevent disclosure of confidential data include:
● Perform role checks before allowing access to the operations that could potentially

reveal sensitive data.
● Use strong ACLs to secure Windows resources.
● Use standard encryption to store sensitive data in configuration files and

databases.

Data Tampering
Data tampering refers to the unauthorized modification of data.

Countermeasures to prevent data tampering include:
● Use strong access controls to protect data in persistent stores to ensure that only

authorized users can access and modify the data.
● Use role-based security to differentiate between users who can view data and

users who can modify data.

 Chapter 2: Threats and Countermeasures 33

Luring Attacks
A luring attack occurs when an entity with few privileges is able to have an entity
with more privileges perform an action on its behalf.

To counter the threat, you must restrict access to trusted code with the appropriate
authorization. Using .NET Framework code access security helps in this respect by
authorizing calling code whenever a secure resource is accessed or a privileged
operation is performed.

Configuration Management
Many applications support configuration management interfaces and functionality to
allow operators and administrators to change configuration parameters, update Web
site content, and to perform routine maintenance. Top configuration management
threats include:
● Unauthorized access to administration interfaces
● Unauthorized access to configuration stores
● Retrieval of plaintext configuration secrets
● Lack of individual accountability
● Over-privileged process and service accounts

Unauthorized Access to Administration Interfaces
Administration interfaces are often provided through additional Web pages or
separate Web applications that allow administrators, operators, and content
developers to managed site content and configuration. Administration interfaces
such as these should be available only to restricted and authorized users. Malicious
users able to access a configuration management function can potentially deface the
Web site, access downstream systems and databases, or take the application out of
action altogether by corrupting configuration data.

Countermeasures to prevent unauthorized access to administration interfaces
include:
● Minimize the number of administration interfaces.
● Use strong authentication, for example, by using certificates.
● Use strong authorization with multiple gatekeepers.
● Consider supporting only local administration. If remote administration is

absolutely essential, use encrypted channels, for example, with VPN technology or
SSL, because of the sensitive nature of the data passed over administrative
interfaces. To further reduce risk, also consider using IPSec policies to limit remote
administration to computers on the internal network.

34 Part I: Introduction to Threats and Countermeasures

Unauthorized Access to Configuration Stores
Because of the sensitive nature of the data maintained in configuration stores, you
should ensure that the stores are adequately secured.

Countermeasures to protect configuration stores include:
● Configure restricted ACLs on text-based configuration files such as

Machine.config and Web.config.
● Keep custom configuration stores outside of the Web space. This removes the

potential to download Web server configurations to exploit their vulnerabilities.

Retrieval of Plaintext Configuration Secrets
Restricting access to the configuration store is a must. As an important defense in
depth mechanism, you should encrypt sensitive data such as passwords and
connection strings. This helps prevent external attackers from obtaining sensitive
configuration data. It also prevents rogue administrators and internal employees
from obtaining sensitive details such as database connection strings and account
credentials that might allow them to gain access to other systems.

Lack of Individual Accountability
Lack of auditing and logging of changes made to configuration information threatens
the ability to identify when changes were made and who made those changes. When
a breaking change is made either by an honest operator error or by a malicious
change to grant privileged access, action must first be taken to correct the change.
Then apply preventive measures to prevent breaking changes to be introduced in the
same manner. Keep in mind that auditing and logging can be circumvented by a
shared account; this applies to both administrative and user/application/service
accounts. Administrative accounts must not be shared. User/application/service
accounts must be assigned at a level that allows the identification of a single source of
access using the account, and that contains any damage to the privileges granted that
account.

Over-privileged Application and Service Accounts
If application and service accounts are granted access to change configuration
information on the system, they may be manipulated to do so by an attacker. The risk
of this threat can be mitigated by adopting a policy of using least privileged service
and application accounts. Be wary of granting accounts the ability to modify their
own configuration information unless explicitly required by design.

 Chapter 2: Threats and Countermeasures 35

Sensitive Data
Sensitive data is subject to a variety of threats. Attacks that attempt to view or modify
sensitive data can target persistent data stores and networks. Top threats to sensitive
data include:
● Access to sensitive data in storage
● Network eavesdropping
● Data tampering

Access to Sensitive Data in Storage
You must secure sensitive data in storage to prevent a user — malicious or otherwise
— from gaining access to and reading the data.

Countermeasures to protect sensitive data in storage include:
● Use restricted ACLs on the persistent data stores that contain sensitive data.
● Store encrypted data.
● Use identity and role-based authorization to ensure that only the user or users

with the appropriate level of authority are allowed access to sensitive data. Use
role-based security to differentiate between users who can view data and users
who can modify data.

Network Eavesdropping
The HTTP data for Web application travels across networks in plaintext and is subject
to network eavesdropping attacks, where an attacker uses network monitoring
software to capture and potentially modify sensitive data.

Countermeasures to prevent network eavesdropping and to provide privacy include:
● Encrypt the data.
● Use an encrypted communication channel, for example, SSL.

Data Tampering
Data tampering refers to the unauthorized modification of data, often as it is passed
over the network.

One countermeasure to prevent data tampering is to protect sensitive data passed
across the network with tamper-resistant protocols such as hashed message
authentication codes (HMACs).

36 Part I: Introduction to Threats and Countermeasures

An HMAC provides message integrity in the following way:
1. The sender uses a shared secret key to create a hash based on the message

payload.
2. The sender transmits the hash along with the message payload.
3. The receiver uses the shared key to recalculate the hash based on the received

message payload. The receiver then compares the new hash value with the
transmitted hash value. If they are the same, the message cannot have been
tampered with.

Session Management
Session management for Web applications is an application layer responsibility.
Session security is critical to the overall security of the application.

Top session management threats include:
● Session hijacking
● Session replay
● Man in the middle

Session Hijacking
A session hijacking attack occurs when an attacker uses network monitoring software
to capture the authentication token (often a cookie) used to represent a user’s session
with an application. With the captured cookie, the attacker can spoof the user’s
session and gain access to the application. The attacker has the same level of
privileges as the legitimate user.

Countermeasures to prevent session hijacking include:
● Use SSL to create a secure communication channel and only pass the

authentication cookie over an HTTPS connection.
● Implement logout functionality to allow a user to end a session that forces

authentication if another session is started.
● Make sure you limit the expiration period on the session cookie if you do not use

SSL. Although this does not prevent session hijacking, it reduces the time window
available to the attacker.

Session Replay
Session replay occurs when a user’s session token is intercepted and submitted by an
attacker to bypass the authentication mechanism. For example, if the session token is
in plaintext in a cookie or URL, an attacker can sniff it. The attacker then posts a
request using the hijacked session token.

 Chapter 2: Threats and Countermeasures 37

Countermeasures to help address the threat of session replay include:
● Re-authenticate when performing critical functions. For example, prior to

performing a monetary transfer in a banking application, make the user supply
the account password again.

● Expire sessions appropriately, including all cookies and session tokens.
● Create a “do not remember me” option to allow no session data to be stored on the

client.

Man in the Middle Attacks
A man in the middle attack occurs when the attacker intercepts messages sent
between you and your intended recipient. The attacker then changes your message
and sends it to the original recipient. The recipient receives the message, sees that it
came from you, and acts on it. When the recipient sends a message back to you, the
attacker intercepts it, alters it, and returns it to you. You and your recipient never
know that you have been attacked.

Any network request involving client-server communication, including Web
requests, Distributed Component Object Model (DCOM) requests, and calls to remote
components and Web services, are subject to man in the middle attacks.

Countermeasures to prevent man in the middle attacks include:
● Use cryptography. If you encrypt the data before transmitting it, the attacker can

still intercept it but cannot read it or alter it. If the attacker cannot read it, he or she
cannot know which parts to alter. If the attacker blindly modifies your encrypted
message, then the original recipient is unable to successfully decrypt it and, as a
result, knows that it has been tampered with.

● Use Hashed Message Authentication Codes (HMACs). If an attacker alters the
message, the recalculation of the HMAC at the recipient fails and the data can be
rejected as invalid.

Cryptography
Most applications use cryptography to protect data and to ensure it remains private
and unaltered. Top threats surrounding your application’s use of cryptography
include:
● Poor key generation or key management
● Weak or custom encryption
● Checksum spoofing

38 Part I: Introduction to Threats and Countermeasures

Poor Key Generation or Key Management
Attackers can decrypt encrypted data if they have access to the encryption key or can
derive the encryption key. Attackers can discover a key if keys are managed poorly or
if they were generated in a non-random fashion.

Countermeasures to address the threat of poor key generation and key management
include:
● Use built-in encryption routines that include secure key management. Data

Protection application programming interface (DPAPI) is an example of an
encryption service provided on Windows 2000 and later operating systems where
the operating system manages the key.

● Use strong random key generation functions and store the key in a restricted
location — for example, in a registry key secured with a restricted ACL — if you
use an encryption mechanism that requires you to generate or manage the key.

● Encrypt the encryption key using DPAPI for added security.
● Expire keys regularly.

Weak or Custom Encryption
An encryption algorithm provides no security if the encryption is cracked or is
vulnerable to brute force cracking. Custom algorithms are particularly vulnerable if
they have not been tested. Instead, use published, well-known encryption algorithms
that have withstood years of rigorous attacks and scrutiny.

Countermeasures that address the vulnerabilities of weak or custom encryption
include:
● Do not develop your own custom algorithms.
● Use the proven cryptographic services provided by the platform.
● Stay informed about cracked algorithms and the techniques used to crack them.

Checksum Spoofing
Do not rely on hashes to provide data integrity for messages sent over networks.
Hashes such as Safe Hash Algorithm (SHA1) and Message Digest compression
algorithm (MD5) can be intercepted and changed. Consider the following base 64
encoding UTF-8 message with an appended Message Authentication Code (MAC).

Plaintext: Place 10 orders.
Hash: T0mUNdEQh13IO9oTcaP4FYDX6pU=

 Chapter 2: Threats and Countermeasures 39

If an attacker intercepts the message by monitoring the network, the attacker could
update the message and recompute the hash (guessing the algorithm that you used).
For example, the message could be changed to:

Plaintext: Place 100 orders.
Hash: oEDuJpv/ZtIU7BXDDNv17EAHeAU=

When recipients process the message, and they run the plaintext (“Place 100 orders”)
through the hashing algorithm, and then recompute the hash, the hash they calculate
will be equal to whatever the attacker computed.

To counter this attack, use a MAC or HMAC. The Message Authentication Code
Triple Data Encryption Standard (MACTripleDES) algorithm computes a MAC, and
HMACSHA1 computes an HMAC. Both use a key to produce a checksum. With these
algorithms, an attacker needs to know the key to generate a checksum that would
compute correctly at the receiver.

Parameter Manipulation
Parameter manipulation attacks are a class of attack that relies on the modification of
the parameter data sent between the client and Web application. This includes query
strings, form fields, cookies, and HTTP headers. Top parameter manipulation threats
include:
● Query string manipulation
● Form field manipulation
● Cookie manipulation
● HTTP header manipulation

Query String Manipulation
Users can easily manipulate the query string values passed by HTTP GET from client
to server because they are displayed in the browser’s URL address bar. If your
application relies on query string values to make security decisions, or if the values
represent sensitive data such as monetary amounts, the application is vulnerable to
attack.

Countermeasures to address the threat of query string manipulation include:
● Avoid using query string parameters that contain sensitive data or data that can

influence the security logic on the server. Instead, use a session identifier to
identify the client and store sensitive items in the session store on the server.

● Choose HTTP POST instead of GET to submit forms.
● Encrypt query string parameters.

40 Part I: Introduction to Threats and Countermeasures

Form Field Manipulation
The values of HTML form fields are sent in plaintext to the server using the HTTP
POST protocol. This may include visible and hidden form fields. Form fields of any
type can be easily modified and client-side validation routines bypassed. As a result,
applications that rely on form field input values to make security decisions on the
server are vulnerable to attack.

To counter the threat of form field manipulation, instead of using hidden form fields,
use session identifiers to reference state maintained in the state store on the server.

Cookie Manipulation
Cookies are susceptible to modification by the client. This is true of both persistent
and memory-resident cookies. A number of tools are available to help an attacker
modify the contents of a memory-resident cookie. Cookie manipulation is the attack
that refers to the modification of a cookie, usually to gain unauthorized access to a
Web site.

While SSL protects cookies over the network, it does not prevent them from being
modified on the client computer. To counter the threat of cookie manipulation,
encrypt or use an HMAC with the cookie.

HTTP Header Manipulation
HTTP headers pass information between the client and the server. The client
constructs request headers while the server constructs response headers. If your
application relies on request headers to make a decision, your application is
vulnerable to attack.

Do not base your security decisions on HTTP headers. For example, do not trust the
HTTP Referer to determine where a client came from because this is easily falsified.

Exception Management
Exceptions that are allowed to propagate to the client can reveal internal
implementation details that make no sense to the end user but are useful to attackers.
Applications that do not use exception handling or implement it poorly are also
subject to denial of service attacks. Top exception handling threats include:
● Attacker reveals implementation details
● Denial of service

 Chapter 2: Threats and Countermeasures 41

Attacker Reveals Implementation Details
One of the important features of the .NET Framework is that it provides rich
exception details that are invaluable to developers. If the same information is allowed
to fall into the hands of an attacker, it can greatly help the attacker exploit potential
vulnerabilities and plan future attacks. The type of information that could be
returned includes platform versions, server names, SQL command strings, and
database connection strings.

Countermeasures to help prevent internal implementation details from being
revealed to the client include:
● Use exception handling throughout your application’s code base.
● Handle and log exceptions that are allowed to propagate to the application

boundary.
● Return generic, harmless error messages to the client.

Denial of Service
Attackers will probe a Web application, usually by passing deliberately malformed
input. They often have two goals in mind. The first is to cause exceptions that reveal
useful information and the second is to crash the Web application process. This can
occur if exceptions are not properly caught and handled.

Countermeasures to help prevent application-level denial of service include:
● Thoroughly validate all input data at the server.
● Use exception handling throughout your application’s code base.

Auditing and Logging
Auditing and logging should be used to help detect suspicious activity such as
footprinting or possible password cracking attempts before an exploit actually occurs.
It can also help deal with the threat of repudiation. It is much harder for a user to
deny performing an operation if a series of synchronized log entries on multiple
servers indicate that the user performed that transaction.

Top auditing and logging related threats include:
● User denies performing an operation
● Attackers exploit an application without leaving a trace
● Attackers cover their tracks

42 Part I: Introduction to Threats and Countermeasures

User Denies Performing an Operation
The issue of repudiation is concerned with a user denying that he or she performed
an action or initiated a transaction. You need defense mechanisms in place to ensure
that all user activity can be tracked and recorded.

Countermeasures to help prevent repudiation threats include:
● Audit and log activity on the Web server and database server, and on the

application server as well, if you use one.
● Log key events such as transactions and login and logout events.
● Do not use shared accounts since the original source cannot be determined.

Attackers Exploit an Application Without Leaving a Trace
System and application-level auditing is required to ensure that suspicious activity
does not go undetected.

Countermeasures to detect suspicious activity include:
● Log critical application level operations.
● Use platform-level auditing to audit login and logout events, access to the file

system, and failed object access attempts.
● Back up log files and regularly analyze them for signs of suspicious activity.

Attackers Cover Their Tracks
Your log files must be well-protected to ensure that attackers are not able to cover
their tracks.

Countermeasures to help prevent attackers from covering their tracks include:
● Secure log files by using restricted ACLs.
● Relocate system log files away from their default locations.

Summary
By being aware of the typical approach used by attackers as well as their goals, you
can be more effective when applying countermeasures. It also helps to use a goal-
based approach when considering and identifying threats, and to use the STRIDE
model to categorize threats based on the goals of the attacker, for example, to spoof
identity, tamper with data, deny service, elevate privileges, and so on. This allows
you to focus more on the general approaches that should be used for risk mitigation,
rather than focusing on the identification of every possible attack, which can be a
time-consuming and potentially fruitless exercise.

 Chapter 2: Threats and Countermeasures 43

This chapter has shown you the top threats that have the potential to compromise
your network, host infrastructure, and applications. Knowledge of these threats,
together with the appropriate countermeasures, provides essential information for
the threat modeling process It enables you to identify the threats that are specific to
your particular scenario and prioritize them based on the degree of risk they pose to
your system. This structured process for identifying and prioritizing threats is
referred to as threat modeling. For more information, see Chapter 3, “Threat
Modeling.”

Additional Resources
For further related reading, see the following resources:
● For more information about network threats and countermeasures, see Chapter 15,

“Securing Your Network.”
● For more information about host threats and countermeasures, see Chapter 16,

“Securing Your Web Server,” Chapter 17, “Securing Your Application Server,”
Chapter 18, “Securing Your Database Server,” and Chapter 19, “Securing Your
ASP.NET Application.”

● For more information about addressing the application level threats presented
in this chapter, see the Building chapters in Part III, “Building Secure Web
Applications” of this guide.

● Michael Howard and David LeBlanc, Writing Secure Code 2nd Edition.
Microsoft Press, Redmond, WA, 2002

● For more information about tracking and fixing buffer overruns, see the
MSDN article, “Fix Those Buffer Overruns,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dncode/html/secure05202002.asp

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure05202002.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/secure05202002.asp

3
Threat Modeling

In This Chapter
● Steps to decompose an application architecture to discover vulnerabilities
● How to identify and document threats that are relevant to your application

Overview
Threat modeling allows you to systematically identify and rate the threats that are
most likely to affect your system. By identifying and rating threats based on a solid
understanding of the architecture and implementation of your application, you can
address threats with appropriate countermeasures in a logical order, starting with the
threats that present the greatest risk.

Threat modeling has a structured approach that is far more cost efficient and effective
than applying security features in a haphazard manner without knowing precisely
what threats each feature is supposed to address. With a random, “shotgun”
approach to security, how do you know when your application is “secure enough,”
and how do you know the areas where your application is still vulnerable? In short,
until you know your threats, you cannot secure your system.

Before You Begin
Before you start the threat modeling process, it is important that you understand the
following basic terminology:
● Asset. A resource of value, such as the data in a database or on the file system.

A system resource.
● Threat. A potential occurrence, malicious or otherwise, that might damage or

compromise your assets.

46 Part I: Introduction to Threats and Countermeasures

● Vulnerability. A weakness in some aspect or feature of a system that makes a
threat possible. Vulnerabilities might exist at the network, host, or application
levels.

● Attack (or exploit). An action taken by someone or something that harms an asset.
This could be someone following through on a threat or exploiting a vulnerability.

● Countermeasure. A safeguard that addresses a threat and mitigates risk.

Consider a simple house analogy: an item of jewelry in a house is an asset and a
burglar is an attacker. A door is a feature of the house and an open door represents a
vulnerability. The burglar can exploit the open door to gain access to the house and
steal the jewelry. In other words, the attacker exploits a vulnerability to gain access to
an asset. The appropriate countermeasure in this case is to close and lock the door.

How to Use This Chapter
This chapter outlines a generic process that helps you identify and document threats
to your application. The following are recommendations on how to use this chapter:
● Establish a process for threat modeling. Use this chapter as a starting point for

introducing a threat modeling process in your organization if you do not already
have one. If you already have a process, then you can use this as a reference for
comparison.

● Use the other chapters in this guide to familiarize yourself with the most
common threats. Read Chapter 2, “Threats and Countermeasures,” for an
overview of common threats that occur at the network, host, and application
levels.
● For more specific threats to your network, see “Threats and Countermeasures”

in Chapter 15, “Securing Your Network.”
● For more specific threats to your Web server, application server, and database

server, see “Threats and Countermeasures” in Chapter 16, “Securing Your Web
Server,” Chapter 17, “Securing Your Application Server,” and Chapter 18,
“Securing Your Database Server.”

● For more specific threats to your assemblies, ASP.NET, serviced components,
remoted components, Web Services, and data access, see “Threats and
Countermeasures” in Chapter 7, “Building Secure Assemblies;” Chapter 10,
“Building Secure ASP.NET Pages and Controls;” Chapter 11, “Building
Secure Serviced Components;” Chapter 12, “Building Secure Web Services;”
Chapter 13, “Building Secure Remoted Components;” and Chapter 14,
“Building Secure Data Access.”

● Evolve your threat model. Build a threat model early and then evolve it as you go.
It is a work in progress. Security threats evolve, and so does your application.
Having a document that identifies both what the known threats are and how they
have been addressed (or not) puts you in control of the security of your
application.

 Chapter 3: Threat Modeling 47

Threat Modeling Principles
Threat modeling should not be a one time only process. It should be an iterative
process that starts during the early phases of the design of your application and
continues throughout the application life cycle. There are two reasons for this. First,
it is impossible to identify all of the possible threats in a single pass. Second, because
applications are rarely static and need to be enhanced and adapted to suit changing
business requirements, the threat modeling process should be repeated as your
application evolves.

The Process
Figure 3.1 shows the threat modeling process that you can perform using a six-stage
process.

Note The following process outline can be used for applications that are currently in development
and for existing applications.

2. Create an Architecture Overview

Threat Modeling Process

1. Identify Assets

3. Decompose the Application

4. Identify the Threats

6. Rate the Threats

5. Document the Threats

Figure 3.1
An overview of the threat modeling process

48 Part I: Introduction to Threats and Countermeasures

1. Identify assets.
Identify the valuable assets that your systems must protect.

2. Create an architecture overview.
Use simple diagrams and tables to document the architecture of your application,
including subsystems, trust boundaries, and data flow.

3. Decompose the application.
Decompose the architecture of your application, including the underlying network
and host infrastructure design, to create a security profile for the application. The
aim of the security profile is to uncover vulnerabilities in the design,
implementation, or deployment configuration of your application.

4. Identify the threats.
Keeping the goals of an attacker in mind, and with knowledge of the architecture
and potential vulnerabilities of your application, identify the threats that could
affect the application.

5. Document the threats.
Document each threat using a common threat template that defines a core set of
attributes to capture for each threat.

6. Rate the threats.
Rate the threats to prioritize and address the most significant threats first. These
threats present the biggest risk. The rating process weighs the probability of the
threat against damage that could result should an attack occur. It might turn out
that certain threats do not warrant any action when you compare the risk posed by
the threat with the resulting mitigation costs.

The Output
The output from the threat modeling process is a document for the various members
of your project team. It allows them to clearly understand the threats that need to be
addressed and how to address them. Threat models consist of a definition of the
architecture of your application and a list of threats for your application scenario, as
Figure 3.2 shows.

 Chapter 3: Threat Modeling 49

Threat #1

Threat #2

Threat #3

Threat #n

Architecture
Diagrams and

Definitions

Identified
Threats and

Threat
Attributes

Figure 3.2
Components of the threat model

Step 1. Identify Assets
Identify the assets that you need to protect. This could range from confidential data,
such as your customer or orders database, to your Web pages or Web site availability.

Step 2. Create an Architecture Overview
At this stage, the goal is to document the function of your application, its architecture
and physical deployment configuration, and the technologies that form part of your
solution. You should be looking for potential vulnerabilities in the design or
implementation of the application.

During this step, you perform the following tasks:
● Identify what the application does.
● Create an architecture diagram.
● Identify the technologies.

50 Part I: Introduction to Threats and Countermeasures

Identify What the Application Does
Identify what the application does and how it uses and accesses assets. Document
use cases to help you and others understand how your application is supposed to be
used. This also helps you work out how it can be misused. Use cases put application
functionality in context.

Here are some sample use cases for a self-service, employee human resources
application:
● Employee views financial data.
● Employee updates personal data.
● Manager views employee details.

In the above cases you can look at the implications of the business rules being
misused. For example, consider a user trying to modify personal details of another
user. He or she should not be authorized to access those details according to the
defined application requirements.

Create an Architecture Diagram
Create a high-level architecture diagram that describes the composition and structure
of your application and its subsystems as well as its physical deployment
characteristics, such as the diagram in Figure 3.3. Depending on the complexity of
your system, you might need to create additional diagrams that focus on different
areas, for example, a diagram to model the architecture of a middle-tier application
server, or one to model the interaction with an external system.

 Chapter 3: Threat Modeling 51

Figure 3.3
Sample application architecture diagram

Start by drawing a rough diagram that conveys the composition and structure of the
application and its subsystems together with its deployment characteristics. Then,
evolve the diagram by adding details about the trust boundaries, authentication, and
authorization mechanisms as and when you discover them (usually during Step 3
when you decompose the application).

Identify the Technologies
Identify the distinct technologies that are used to implement your solution. This helps
you focus on technology-specific threats later in the process. It also helps you
determine the correct and most appropriate mitigation techniques. The technologies
you are most likely to identify include ASP.NET, Web Services, Enterprise Services,
Microsoft .NET Remoting, and ADO.NET. Also identify any unmanaged code that
your application calls.

52 Part I: Introduction to Threats and Countermeasures

Document the technologies using a table similar to Table 3.1, below.

Table 3.1 Implementation Technologies

Technology/Platform Implementation Details
Microsoft SQL Server on Microsoft
Windows Advanced Server 2000

Includes logins, database users, user defined database roles,
tables, stored procedures, views, constraints, and triggers.

Microsoft .NET Framework Used for Forms authentication.

Secure Sockets Layer (SSL) Used to encrypt HTTP traffic.

Step 3. Decompose the Application
In this step, you break down your application to create a security profile for the
application based on traditional areas of vulnerability. You also identify trust
boundaries, data flow, entry points, and privileged code. The more you know about
the mechanics of your application, the easier it is to uncover threats. Figure 3.4 shows
the various targets for the decomposition process.

Application Decomposition

Security Profile

Input Validation

Authentication

Authorization

Configuration
Management

Sensitive Data

Session Management

Cryptography

Parameter
Manipulation

Exception
Management

Auditing and Logging

Trust Boundaries

Data Flow

Entry Points

Privileged Code

Figure 3.4
Targets for application decomposition

During this step, you perform the following tasks:
● Identify trust boundaries.
● Identify data flow.
● Identify entry points.
● Identify privileged code.
● Document the security profile.

 Chapter 3: Threat Modeling 53

Identify Trust Boundaries
Identify the trust boundaries that surround each of the tangible assets of your
application. These assets are determined by your application design. For each
subsystem, consider whether the upstream data flows or user input is trusted, and if
not, consider how the data flows and input can be authenticated and authorized.
Also consider whether the calling code is trusted, and if it is not, consider how it can
be authenticated and authorized. You must be able to ensure that the appropriate
gatekeepers guard all entry points into a particular trust boundary and that the
recipient entry point fully validates all data passed across a trust boundary.

Start by analyzing trust boundaries from a code perspective. The assembly, which
represents one form of trust boundary, is a useful place to start. Which assemblies
trust which other assemblies? Does a particular assembly trust the code that calls it,
or does it use code access security to authorize the calling code?

Also consider server trust relationships. Does a particular server trust an upstream
server to authenticate and authorize the end users, or does the server provide its own
gatekeeping services? Also, does a server trust an upstream server to pass it data that
is well formed and correct?

For example, in Figure 3.3, the Web application accesses the database server by using
a fixed, trusted identity, which in this case is the ASPNET Web application process
account. In this scenario, the database server trusts the application to authenticate
and authorize callers and forward only valid data request data on behalf of
authorized users.

Note In a .NET Framework application, the assembly defines the smallest unit of trust. Whenever
data is passed across an assembly boundary — which by definition includes an application domain,
process, or machine boundary — the recipient entry point should validate its input data.

Identify Data Flow
A simple approach is to start at the highest level and then iteratively decompose the
application by analyzing the data flow between individual subsystems. For example,
analyze the data flow between a Web application and an Enterprise Services
application and then between individual serviced components.

Data flow across trust boundaries is particularly important because code that is
passed data from outside its own trust boundary should assume that the data is
malicious and perform thorough validation of the data.

Note Data flow diagrams (DFDs) and sequence diagrams can help with the formal decomposition
of a system. A DFD is a graphical representation of data flows, data stores, and relationships
between data sources and destinations. A sequence diagram shows how a group of objects
collaborate in terms of chronological events.

54 Part I: Introduction to Threats and Countermeasures

Identify Entry Points
The entry points of your application also serve as entry points for attacks. Entry
points might include the front-end Web application listening for HTTP requests. This
entry point is intended to be exposed to clients. Other entry points, such as internal
entry points exposed by subcomponents across the tiers of your application, may
only exist to support internal communication with other components. However, you
should know where these are, and what types of input they receive in case an
attacker manages to bypass the front door of the application and directly attack an
internal entry point.

For each entry point, you should be able to determine the types of gatekeepers that
provide authorization and the degree of validation.

Logical application entry points include user interfaces provide by Web pages,
service interfaces provided by Web services, serviced components, and .NET
Remoting components and message queues that provide asynchronous entry points.
Physical or platform entry points include ports and sockets.

Identify Privileged Code
Privileged code accesses specific types of secure resources and performs other
privileged operations. Secure resource types include DNS servers, directory services,
environment variables, event logs, file systems, message queues, performance
counters, printers, the registry, sockets, and Web services. Secure operations include
unmanaged code calls, reflection, serialization, code access security permissions, and
manipulation of code access security policy, including evidence.

Privileged code must be granted the appropriate code access security permissions by
code access security policy. Privileged code must ensure that the resources and
operations that it encapsulates are not exposed to untrusted and potentially malicious
code. .NET Framework code access security verifies the permissions granted to
calling code by performing stack walks. However, it is sometimes necessary to
override this behavior and short-circuit the full stack walk, for example, when you
want to restrict privileged code with a sandbox or otherwise isolate privileged code.
Doing so opens your code up to luring attacks, where malicious code calls your code
through trusted intermediary code.

Whenever you override the default security behavior provided by code access
security, do it diligently and with the appropriate safeguards. For more information
about reviewing code for security flaws, see Chapter 21, “Code Review.” For more
information about code access security, see Chapter 8, “Code Access Security in
Practice” and Chapter 9, “Using Code Access Security with ASP.NET.”

 Chapter 3: Threat Modeling 55

Document the Security Profile
Next, you should identify the design and implementation approaches used for input
validation, authentication, authorization, configuration management, and the
remaining areas where applications are most susceptible to vulnerabilities. By doing
this, you create a security profile for the application.

The following table shows what kinds of questions to ask while analyzing each
aspect of the design and implementation of your application. For more information
about reviewing application architecture and design, see Chapter 5, “Architecture
and Design Review.”

Table 3.2 Creating a Security Profile

Category Considerations
Input validation Is all input data validated?

Could an attacker inject commands or malicious data into the application?

Is data validated as it is passed between separate trust boundaries (by the
recipient entry point)?

Can data in the database be trusted?

Authentication Are credentials secured if they are passed over the network?

Are strong account policies used?

Are strong passwords enforced?

Are you using certificates?

Are password verifiers (using one-way hashes) used for user passwords?

Authorization What gatekeepers are used at the entry points of the application?

How is authorization enforced at the database?

Is a defense in depth strategy used?

Do you fail securely and only allow access upon successful confirmation of
credentials?

Configuration
management

What administration interfaces does the application support?

How are they secured?

How is remote administration secured?

What configuration stores are used and how are they secured?

Sensitive data What sensitive data is handled by the application?

How is it secured over the network and in persistent stores?

What type of encryption is used and how are encryption keys secured?

(continued)

56 Part I: Introduction to Threats and Countermeasures

Table 3.2 Creating a Security Profile (continued)
Category Considerations
Session
management

How are session cookies generated?

How are they secured to prevent session hijacking?

How is persistent session state secured?

How is session state secured as it crosses the network?

How does the application authenticate with the session store?

Are credentials passed over the wire and are they maintained by the
application? If so, how are they secured?

Cryptography What algorithms and cryptographic techniques are used?

How long are encryption keys and how are they secured?

Does the application put its own encryption into action?

How often are keys recycled?

Parameter
manipulation

Does the application detect tampered parameters?

Does it validate all parameters in form fields, view state, cookie data, and
HTTP headers?

Exception
management

How does the application handle error conditions?

Are exceptions ever allowed to propagate back to the client?

Are generic error messages that do not contain exploitable information used?

Auditing and
logging

Does your application audit activity across all tiers on all servers?

How are log files secured?

Step 4. Identify the Threats
In this step, you identify threats that might affect your system and compromise your
assets. To conduct this identification process, bring members of the development and
test teams together to conduct an informed brainstorming session in front of a
whiteboard. This is a simple yet effective way to identify potential threats. Ideally, the
team consists of application architects, security professionals, developers, testers, and
system administrators.

You can use two basic approaches:

 Chapter 3: Threat Modeling 57

● Use STRIDE to identify threats. Consider the broad categories of threats, such as
spoofing, tampering, and denial of service, and use the STRIDE model from
Chapter 2, “Threats and Countermeasures” to ask questions in relation to each
aspect of the architecture and design of your application. This is a goal-based
approach where you consider the goals of an attacker. For example, could an
attacker spoof an identity to access your server or Web application? Could
someone tamper with data over the network or in a store? Could someone deny
service?

● Use categorized threat lists. With this approach, you start with a laundry list of
common threats grouped by network, host, and application categories. Next,
apply the threat list to your own application architecture and any vulnerabilities
you have identified earlier in the process. You will be able to rule some threats out
immediately because they do not apply to your scenario.

Use the following resources to help you with the threat identification process:
● For a list of threats organized by network, host, and application layers, as well as

explanations of the threats and associated countermeasures, see Chapter 2,
“Threats and Countermeasures.”

● For a list of threats by technology, see “Threats and Countermeasures” at the
beginning of each of the “Building” chapters in Part III of this guide.

During this step, you perform the following tasks:
● Identify network threats.
● Identity host threats.
● Identify application threats.

Identify Network Threats
This is a task for network designers and administrators. Analyze the network
topology and the flow of data packets, together with router, firewall, and switch
configurations, and look for potential vulnerabilities. Also pay attention to virtual
private network (VPN) endpoints. Review the network defenses against the most
common network layer threats identified in Chapter 2, “Threats and
Countermeasures.”

Top network threats to consider during the design phase include:
● Using security mechanisms that rely on the IP address of the sender. It is relatively

easy to send IP packets with false source IP addresses (IP spoofing).
● Passing session identifiers or cookies over unencrypted network channels. This

can lead to IP session hijacking.
● Passing clear text authentication credentials or other sensitive data over

unencrypted communication channels. This could allow an attacker to monitor the
network, obtain logon credentials, or obtain and possibly tamper with other
sensitive data items.

58 Part I: Introduction to Threats and Countermeasures

You must also ensure that your network is not vulnerable to threats arising from
insecure device and server configuration. For example, are unnecessary ports and
protocols closed and disabled? Are routing tables and DNS server secured? Are
the TCP network stacks hardened on your servers? For more information about
preventing this type of vulnerability, see Chapter 15, “Securing Your Network.”

Identify Host Threats
The approach used throughout this guide when configuring host security (that is,
Microsoft Windows 2000 and .NET Framework configuration) is to divide the
configuration into separate categories to allow you to apply security settings in a
structured and logical manner. This approach is also ideally suited for reviewing
security, spotting vulnerabilities, and identifying threats. Common configuration
categories applicable to all server roles include patches and updates, services,
protocols, accounts, files and directories, shares, ports, and auditing and logging.
For each category, identify potentially vulnerable configuration settings. From these,
identify threats.

Top vulnerabilities to consider include:
● Maintaining unpatched servers, which can be exploited by viruses, Trojan horses,

worms, and well-known IIS attacks.
● Using nonessential ports, protocols, and services, which increase the attack profile

and enable attackers to gather information about and exploit your environment.
● Allowing unauthenticated anonymous access.
● Using weak passwords and account policies that lead to password cracking,

identity spoofing, and denial of service attacks if accounts can be locked out
deliberately.

Identify Application Threats
In the previous steps, you defined the architecture, data flow, and trust boundaries of
your application. You also created a security profile that describes how the
application handles core areas, such as authentication, authorization, configuration
management, and other areas.

Now use the broad STRIDE threat categories and predefined threat lists to scrutinize
each aspect of the security profile of your application. Focus on application threats,
technology-specific threats, and code threats. Key vulnerabilities to consider include:
● Using poor input validation that leads to cross-site scripting (XSS), SQL injection,

and buffer overflow attacks.
● Passing authentication credentials or authentication cookies over unencrypted

network links, which can lead to credential capture or session hijacking.
● Using weak password and account policies, which can lead to unauthorized

access.

 Chapter 3: Threat Modeling 59

● Failing to secure the configuration management aspects of your application,
including administration interfaces.

● Storing configuration secrets, such as connection strings and service account
credentials, in clear text.

● Using over-privileged process and service accounts.
● Using insecure data access coding techniques, which can increase the threat posed

by SQL injection.
● Using weak or custom encryption and failing to adequately secure encryption

keys.
● Relying on the integrity of parameters that are passed from the Web browser, for

example, form fields, query strings, cookie data, and HTTP headers.
● Using insecure exception handling, which can lead to denial of service attacks and

the disclosure of system-level details that are useful to an attacker.
● Doing inadequate auditing and logging, which can lead to repudiation threats.

Using Attack Trees and Attack Patterns
Attack trees and attack patterns are the primary tools that security professionals use.
These are not essential components of the threat identification phase but you may
find them useful. They allow you to analyze threats in greater depth, going beyond
what you already know to identify other possibilities.

Important When you use previously prepared categorized lists of known threats, it only reveals the
common, known threats. Additional approaches, such as the use of attack trees and attack patterns,
can help you identify other potential threats.

An attack tree is a way of collecting and documenting the potential attacks on your
system in a structured and hierarchical manner. The tree structure gives you a
descriptive breakdown of various attacks that the attacker uses to compromise the
system. By creating attack trees, you create a reusable representation of security
issues that helps focus efforts. Your test team can create test plans to validate security
design. Developers can make tradeoffs during implementation and architects or
developer leads can evaluate the security cost of alternative approaches.

Attack patterns are a formalized approach to capturing attack information in your
enterprise. These patterns can help you identify common attack techniques.

60 Part I: Introduction to Threats and Countermeasures

Creating Attack Trees
While several approaches can be used in practice, the accepted method is to identify
goals and sub-goals of an attack, as well as what must be done so that the attack
succeeds. You can use a hierarchical diagram to represent your attack tree, or use a
simple outline. What is important in the end is that you have something that portrays
the attack profile of your application. You can then evaluate likely security risks,
which you can mitigate with the appropriate countermeasures, such as correcting a
design approach, hardening a configuration setting, and other solutions.

Start building an attack tree by creating root nodes that represent the goals of the
attacker. Then add the leaf nodes, which are the attack methodologies that represent
unique attacks. Figure 3.5 shows a simple example.

Threat #1
Obtaining authentication

credentials over the
network

1.1
Clear text credentials
sent over the network

1.2
Attacker uses network

monitoring tools

1.2.1
Attacker recognizes

credential data

and

Figure 3.5
Representation of an attack tree

You can label leaf nodes with AND and OR labels. For example, in Figure 3.5, both
1.1 and 1.2 must occur for the threat to result in an attack.

Attack trees like the one shown above have a tendency to become complex quickly.
They are also time-consuming to create. An alternative approach favored by some
teams is to structure your attack tree using an outline such as the one shown below.

1. Goal One
 1.1 Sub-goal one
 1.2 Sub-goal two
2. Goal Two
 2.1 Sub-goal one
 2.2 Sub-goal two

 Chapter 3: Threat Modeling 61

Note In addition to goals and sub-goals, attack trees include methodologies and required
conditions.

Here is an example of the outline approach in action:

Threat #1 Attacker obtains authentication credentials by monitoring the network
 1.1 Clear text credentials sent over the network AND
 1.2 Attacker uses network-monitoring tools
 1.2.1 Attacker recognizes credential data

For a complete example, see “Sample Attack Trees” in the “Cheat Sheets” section of
this guide.

Attack Patterns
Attack patterns are generic representations of commonly occurring attacks that
can occur in a variety of different contexts. The pattern defines the goal of the attack
as well as the conditions that must exist for the attack to occur, the steps that are
required to perform the attack, and the results of the attack. Attack patterns focus
on attack techniques, whereas STRIDE-based approaches focus on the goals of the
attacker.

An example of an attack pattern is the code-injection attack pattern that is used to
describe code injection attacks in a generic way. Table 3.3 describes the code-injection
attack pattern.

Table 3.3 Code Injection Attack Pattern

Pattern Code injection attacks
Attack goals Command or code execution

Required conditions Weak input validation

Code from the attacker has sufficient privileges on the server.

Attack technique 1. Identify program on target system with an input validation vulnerability.

2. Create code to inject and run using the security context of the target
application.

3. Construct input value to insert code into the address space of the target
application and force a stack corruption that causes application
execution to jump to the injected code.

Attack results Code from the attacker runs and performs malicious action.

For more information about attack patterns, see the “Additional References” section
at the end of this chapter.

62 Part I: Introduction to Threats and Countermeasures

Step 5. Document the Threats
To document the threats of your application, use a template that shows several threat
attributes similar to the one below. The threat description and threat target are
essential attributes. Leave the risk rating blank at this stage. This is used in the final
stage of the threat modeling process when you prioritize the identified threat list.
Other attributes you may want to include are the attack techniques, which can also
highlight the vulnerabilities exploited, and the countermeasures that are required to
address the threat.

Table 3.4 Threat 1

Threat Description Attacker obtains authentication credentials by monitoring the network
Threat target Web application user authentication process

Risk

Attack techniques Use of network monitoring software

Countermeasures Use SSL to provide encrypted channel

Table 3.5 Threat 2

Threat Description Injection of SQL commands
Threat target Data access component

Risk

Attack techniques Attacker appends SQL commands to user name, which is used to form a
SQL query

Countermeasures Use a regular expression to validate the user name, and use a stored
procedure that uses parameters to access the database.

Step 6. Rate the Threats
At this stage in the process, you have a list of threats that apply to your particular
application scenario. In the final step of the process, you rate threats based on the
risks they pose. This allows you to address the threats that present the most risk first,
and then resolve the other threats. In fact, it may not be economically viable to
address all of the identified threats, and you may decide to ignore some because of
the chance of them occurring is small and the damage that would result if they did is
minimal.

 Chapter 3: Threat Modeling 63

Risk = Probability * Damage Potential
This formula indicates that the risk posed by a particular threat is equal to the
probability of the threat occurring multiplied by the damage potential, which
indicates the consequences to your system if an attack were to occur.

You can use a 1–10 scale for probability where 1 represents a threat that is very
unlikely to occur and 10 represents a near certainty. Similarly, you can use a 1–10
scale for damage potential where 1 indicates minimal damage and 10 represents a
catastrophe. Using this approach, the risk posed by a threat with a low likelihood of
occurring but with high damage potential is equal to the risk posed by a threat with
limited damage potential but that is extremely likely to occur.

For example, if Probability=10 and Damage Potential=1, then Risk = 10 * 1 = 10. If
Probability=1 and Damage Potential=10, then Risk = 1 * 10 = 10.

This approach results in a scale of 1–100, and you can divide the scale into three
bands to generate a High, Medium, or Low risk rating.

High, Medium, and Low Ratings
You can use a simple High, Medium, or Low scale to prioritize threats. If a threat is
rated as High, it poses a significant risk to your application and needs to be
addressed as soon as possible. Medium threats need to be addressed, but with less
urgency. You may decide to ignore low threats depending upon how much effort and
cost is required to address the threat.

DREAD
The problem with a simplistic rating system is that team members usually will not
agree on ratings. To help solve this, add new dimensions that help determine what
the impact of a security threat really means. At Microsoft, the DREAD model is used
to help calculate risk. By using the DREAD model, you arrive at the risk rating for a
given threat by asking the following questions:
● Damage potential: How great is the damage if the vulnerability is exploited?
● Reproducibility: How easy is it to reproduce the attack?
● Exploitability: How easy is it to launch an attack?
● Affected users: As a rough percentage, how many users are affected?
● Discoverability: How easy is it to find the vulnerability?

You can use above items to rate each threat. You can also extend the above questions
to meet your needs. For example, you could add a question about potential
reputation damage:

Reputation: How high are the stakes? Is there a risk to reputation, which could lead
to the loss of customer trust?

64 Part I: Introduction to Threats and Countermeasures

Ratings do not have to use a large scale because this makes it difficult to rate threats
consistently alongside one another. You can use a simple scheme such as High (1),
Medium (2), and Low (3).

When you clearly define what each value represents for your rating system, it helps
avoids confusion. Table 3.6 shows a typical example of a rating table that can be used
by team members when prioritizing threats.

Table 3.6 Thread Rating Table

 Rating High (3) Medium (2) Low (1)
D Damage

potential
The attacker can
subvert the security
system; get full trust
authorization; run as
administrator; upload
content.

Leaking sensitive
information

Leaking trivial
information

R Reproducibility The attack can be
reproduced every time
and does not require a
timing window.

The attack can be
reproduced, but only
with a timing window
and a particular race
situation.

The attack is very
difficult to reproduce,
even with knowledge of
the security hole.

E Exploitability A novice programmer
could make the attack
in a short time.

A skilled programmer
could make the attack,
then repeat the steps.

The attack requires an
extremely skilled
person and in-depth
knowledge every time
to exploit.

A Affected users All users, default
configuration, key
customers

Some users, non-
default configuration

Very small percentage
of users, obscure
feature; affects
anonymous users

D Discoverability Published information
explains the attack. The
vulnerability is found in
the most commonly
used feature and is
very noticeable.

The vulnerability is in a
seldom-used part of
the product, and only a
few users should come
across it. It would take
some thinking to see
malicious use.

The bug is obscure,
and it is unlikely that
users will work out
damage potential.

After you ask the above questions, count the values (1–3) for a given threat. The
result can fall in the range of 5–15. Then you can treat threats with overall ratings of
12–15 as High risk, 8–11 as Medium risk, and 5–7 as Low risk.

For example, consider the two threats described earlier:
● Attacker obtains authentication credentials by monitoring the network.
● SQL commands injected into application.

 Chapter 3: Threat Modeling 65

Table 3.7 shows an example DREAD rating for both threats:

Table 3.7 DREAD rating

Threat D R E A D Total Rating
Attacker obtains authentication
credentials by monitoring the network.

3 3 2 2 2 12 High

SQL commands injected into application. 3 3 3 3 2 14 High

Once you have obtained the risk rating, you update the documented threats and add
the discovered rating level, which is High for both of the above threats. Table 3.8
shows an example.

Table 3.8 Threat 1

Threat Description Attacker obtains authentication credentials by monitoring the network
Threat target Web application user authentication process

Risk rating High

Attack techniques Use of network monitoring software

Countermeasures Use SSL to provide encrypted channel

What Comes After Threat Modeling?
The output of the threat modeling process includes documentation of the security
aspects of the architecture of your application and a list of rated threats. The threat
model helps you orchestrate development team members and focus on the most
potent threats.

Important Threat modeling is an iterative process. The threat model is a document that evolves
and that various team members can work from.

The threat model can be used by the following groups of people:
● Designers can use it to make secure design choices about technologies and

functionality.
● Developers who write code can use it to mitigate risks.
● Testers can write test cases to test if the application is vulnerable to the threats

identified by the analysis.

66 Part I: Introduction to Threats and Countermeasures

Generating a Work Item Report
From the initial threat model, you can create a more formalized work item report that
can include additional attributes, such as a Bug ID, which can be used to tie the threat
in with your favorite bug tracking system. In fact, you may choose to enter the
identified threats in your bug tracking system and use its reporting facilities to
generate the report. You can also include a status column to indicate whether or not
the bug has been fixed. You should make sure the report includes the original threat
number to tie it back to the threat model document.

Organize the threats in the report by network, host, and application categories. This
makes the report easier to consume for different team members in different roles.
Within each category, present the threats in prioritized order starting with the ones
given a high risk rating followed by the threats that present less risk.

Summary
While you can mitigate the risk of an attack, you do not mitigate or eliminate the
actual threat. Threats still exist regardless of the security actions you take and the
countermeasures you apply. The reality in the security world is that you
acknowledge the presence of threats and you manage your risks. Threat modeling
can help you manage and communicate security risks across your team.

Treat threat modeling as an iterative process. Your threat model should be a dynamic
item that changes over time to cater to new types of threats and attacks as they are
discovered. It should also be capable of adapting to follow the natural evolution of
your application as it is enhanced and modified to accommodate changing business
requirements.

Additional Resources
For additional related reading, see the following resources:
● For information on attack patterns, see “Attack Modeling for Information Security

and Survivability,” by Andrew P. Moore, Robert J. Ellison, and Richard C. Linger
at http://www.cert.org/archive/pdf/01tn001.pdf

● For information on evaluating threats, assets and vulnerabilities, see
“Operationally Critical Threat, Asset, and Vulnerability Evaluation (OCTAVE)
Framework, Version 1.0” on the Carnegie Mellon Software Engineering Institute
Web site at http://www.sei.cmu.edu/publications/documents/99.reports/99tr017
/99tr017figures.html

● For a walkthrough of threat modeling, see “Architect WebCast: Using Threat
Models to Design Secure Solutions” at http://www.microsoft.com/usa/webcasts
/ondemand/1617.asp

● For more information on creating DFDs, see Writing Secure Code, Second Edition, by
Michael Howard, David C. LeBlanc.

http://www.cert.org/archive/pdf/01tn001.pdf
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017figures.html
http://www.sei.cmu.edu/publications/documents/99.reports/99tr017/99tr017figures.html
http://www.microsoft.com/usa/webcasts/ondemand/1617.asp
http://www.microsoft.com/usa/webcasts/ondemand/1617.asp

Part II
Designing Secure
Web Applications

In This Part:
● Design Guidelines for Secure Web Applications
● Architecture and Design Review for Security

4
Design Guidelines for Secure Web
Applications

In This Chapter
● Designing input validation strategies
● Partitioning Web sites into open and restricted areas
● Implementing effective account management practices
● Developing effective authentication and authorization strategies
● Protecting sensitive data
● Protecting user sessions
● Preventing parameter manipulation
● Handling exceptions securely
● Securing an application’s configuration management features
● Listing audit and logging considerations

Overview
Web applications present a complex set of security issues for architects, designers,
and developers. The most secure and hack-resilient Web applications are those that
have been built from the ground up with security in mind.

In addition to applying sound architectural and design practices, incorporate
deployment considerations and corporate security policies during the early design
phases. Failure to do so can result in applications that cannot be deployed on an
existing infrastructure without compromising security.

70 Part II: Designing Secure Web Applications

This chapter presents a set of secure architecture and design guidelines. They have
been organized by common application vulnerability category. These are key areas
for Web application security and they are the areas where mistakes are most often
made.

How to Use This Chapter
This chapter focuses on the guidelines and principles you should follow when
designing an application. The following are recommendations on how to use this
chapter:
● Know the threats to your application so that you can make sure these are

addressed by your design. Read Chapter 2, “Threats and Countermeasures,” to
gain understanding of the threat types to consider. Chapter 2 lists the threats that
may harm your application; keep these threats in mind during the design phase.

● When designing your application, take a systematic approach to the key areas
where your application could be vulnerable to attack. Focus on deployment
considerations; input validation; authentication and authorization; cryptography
and data sensitivity; configuration, session, and exception management; and
adequate auditing and logging to ensure accountability.

Architecture and Design Issues for Web Applications
Web applications present designers and developers with many challenges. The
stateless nature of HTTP means that tracking per-user session state becomes the
responsibility of the application. As a precursor to this, the application must be able
to identify the user by using some form of authentication. Given that all subsequent
authorization decisions are based on the user’s identity, it is essential that the
authentication process is secure and that the session handling mechanism used to
track authenticated users is equally well protected. Designing secure authentication
and session management mechanisms are just a couple of the issues facing Web
application designers and developers. Other challenges occur because input and
output data passes over public networks. Preventing parameter manipulation and
the disclosure of sensitive data are other top issues.

Some of the top issues that must be addressed with secure design practices are shown
in Figure 4.1.

 Chapter 4: Design Guidelines for Secure Web Applications 71

Database

Web
Server

Application
Server

Database
Server

F
ire

w
al

l
Web

Application
Applications

Preventing
parameter

manipulation

Authenticating
users

Browser

Preventing
session

hijacking and
cookie replay

attacks

Validating
input

Auditing and
logging activity

and
transactions

Protecting
sensitive data

Authorizing
users Encrypting or

hashing
sensitive

data

Protecting
sensitive

data

Handling
exceptions

Providing
secure

configuration

Authenticating
and authorizing

upstream
identities

Figure 4.1
Web application design issues

The design guidelines in this chapter are organized by application vulnerability
category. Experience shows that poor design in these areas, in particular, leads to
security vulnerabilities. Table 4.1 lists the vulnerability categories, and for each one
highlights the potential problems that can occur due to bad design.

Table 4.1 Web Application Vulnerabilities and Potential Problem Due to Bad Design

Vulnerability Category Potential Problem Due to Bad Design
Input Validation Attacks performed by embedding malicious strings in query strings,

form fields, cookies, and HTTP headers. These include command
execution, cross-site scripting (XSS), SQL injection, and buffer
overflow attacks.

Authentication Identity spoofing, password cracking, elevation of privileges, and
unauthorized access.

Authorization Access to confidential or restricted data, tampering, and execution
of unauthorized operations.

Configuration Management Unauthorized access to administration interfaces, ability to update
configuration data, and unauthorized access to user accounts and
account profiles.

(continued)

72 Part II: Designing Secure Web Applications

Table 4.1 Web Application Vulnerabilities and Potential Problem Due to Bad Design (continued)
Vulnerability Category Potential Problem Due to Bad Design

Sensitive Data Confidential information disclosure and data tampering.

Session Management Capture of session identifiers resulting in session hijacking and
identity spoofing.

Cryptography Access to confidential data or account credentials, or both.

Parameter Manipulation Path traversal attacks, command execution, and bypass of access
control mechanisms among others, leading to information
disclosure, elevation of privileges, and denial of service.

Exception Management Denial of service and disclosure of sensitive system level details.

Auditing and Logging Failure to spot the signs of intrusion, inability to prove a user’s
actions, and difficulties in problem diagnosis.

Deployment Considerations
During the application design phase, you should review your corporate security
policies and procedures together with the infrastructure your application is to be
deployed on. Frequently, the target environment is rigid, and your application design
must reflect the restrictions. Sometimes design tradeoffs are required, for example,
because of protocol or port restrictions, or specific deployment topologies. Identify
constraints early in the design phase to avoid surprises later and involve members of
the network and infrastructure teams to help with this process.

Figure 4.2 shows the various deployment aspects that require design time
consideration.

S
e

cu
ri

ty
 P

ol
ic

ie
s

a
nd

 P
ro

ce
d

ur
e

s

Switch

Network Infrastructure Security

Router Firewall

Local
Application

Tier

Remote
Application

Tier

Deployment Topologies

Host Security

Application Security

Figure 4.2
Deployment considerations

 Chapter 4: Design Guidelines for Secure Web Applications 73

Security Policies and Procedures
Security policy determines what your applications are allowed to do and what the
users of the application are permitted to do. More importantly, they define
restrictions to determine what applications and users are not allowed to do. Identify
and work within the framework defined by your corporate security policy while
designing your applications to make sure you do not breach policy that might
prevent the application being deployed.

Network Infrastructure Components
Make sure you understand the network structure provided by your target
environment and understand the baseline security requirements of the network in
terms of filtering rules, port restrictions, supported protocols, and so on.

Identify how firewalls and firewall policies are likely to affect your application’s
design and deployment. There may be firewalls to separate the Internet-facing
applications from the internal network. There may be additional firewalls in front of
the database. These can affect your possible communication ports and, therefore,
authentication options from the Web server to remote application and database
servers. For example, Windows authentication requires additional ports.

At the design stage, consider what protocols, ports, and services are allowed to access
internal resources from the Web servers in the perimeter network. Also identify the
protocols and ports that the application design requires and analyze the potential
threats that occur from opening new ports or using new protocols.

Communicate and record any assumptions made about network and application
layer security and which component will handle what. This prevents security
controls from being missed when both development and network teams assume that
the other team is addressing the issue. Pay attention to the security defenses that your
application relies upon the network to provide. Consider the implications of a change
in network configuration. How much security have you lost if you implement a
specific network change?

Deployment Topologies
Your application’s deployment topology and whether you have a remote application
tier is a key consideration that must be incorporated in your design. If you have a
remote application tier, you need to consider how to secure the network between
servers to address the network eavesdropping threat and to provide privacy and
integrity for sensitive data.

74 Part II: Designing Secure Web Applications

Also consider identity flow and identify the accounts that will be used for network
authentication when your application connects to remote servers. A common
approach is to use a least privileged process account and create a duplicate (mirrored)
account on the remote server with the same password. Alternatively, you might use a
domain process account, which provides easier administration but is more
problematic to secure because of the difficulty of limiting the account’s use
throughout the network. An intervening firewall or separate domains without trust
relationships often makes the local account approach the only viable option.

Intranet, Extranet, and Internet
Intranet, extranet, and Internet application scenarios each present design challenges.
Questions that you should consider include: How will you flow caller identity
through multiple application tiers to back- end resources? Where will you perform
authentication? Can you trust authentication at the front end and then use a trusted
connection to access back-end resources? In extranet scenarios, you also must
consider whether you trust partner accounts.

For more information about these and other scenario-specific issues, see the
“Intranet Security,” “Extranet Security,” and “Internet Security” sections in
the “Microsoft patterns & practices Volume I, Building Secure ASP.NET
Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

Input Validation
Input validation is a challenging issue and the primary burden of a solution falls on
application developers. However, proper input validation is one of your strongest
measures of defense against today’s application attacks. Proper input validation is an
effective countermeasure that can help prevent XSS, SQL injection, buffer overflows,
and other input attacks.

Input validation is challenging because there is not a single answer for what
constitutes valid input across applications or even within applications. Likewise,
there is no single definition of malicious input. Adding to this difficulty is that what
your application does with this input influences the risk of exploit. For example, do
you store data for use by other applications or does your application consume input
from data sources created by other applications?

The following practices improve your Web application’s input validation:
● Assume all input is malicious.
● Centralize your approach.
● Do not rely on client-side validation.
● Be careful with canonicalization issues.
● Constrain, reject, and sanitize your input.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

 Chapter 4: Design Guidelines for Secure Web Applications 75

Assume All Input Is Malicious
Input validation starts with a fundamental supposition that all input is malicious
until proven otherwise. Whether input comes from a service, a file share, a user, or a
database, validate your input if the source is outside your trust boundary. For
example, if you call an external Web service that returns strings, how do you know
that malicious commands are not present? Also, if several applications write to a
shared database, when you read data, how do you know whether it is safe?

Centralize Your Approach
Make your input validation strategy a core element of your application design.
Consider a centralized approach to validation, for example, by using common
validation and filtering code in shared libraries. This ensures that validation rules are
applied consistently. It also reduces development effort and helps with future
maintenance.

In many cases, individual fields require specific validation, for example, with
specifically developed regular expressions. However, you can frequently factor out
common routines to validate regularly used fields such as e-mail addresses, titles,
names, postal addresses including ZIP or postal codes, and so on. This approach is
shown in Figure 4.3.

Browser
or Service

Pages
Specific

Validation

Controls
Specific

Validation

Services
Specific

Validation

Shared
Validation
Routines

Figure 4.3
A centralized approach to input validation

76 Part II: Designing Secure Web Applications

Do Not Rely on Client-Side Validation
Server-side code should perform its own validation. What if an attacker bypasses
your client, or shuts off your client-side script routines, for example, by disabling
JavaScript? Use client-side validation to help reduce the number of round trips to the
server but do not rely on it for security. This is an example of defense in depth.

Be Careful with Canonicalization Issues
Data in canonical form is in its most standard or simplest form. Canonicalization is
the process of converting data to its canonical form. File paths and URLs are
particularly prone to canonicalization issues and many well-known exploits are a
direct result of canonicalization bugs. For example, consider the following string that
contains a file and path in its canonical form.

c:\temp\somefile.dat

The following strings could also represent the same file.

somefile.dat
c:\temp\subdir\..\somefile.dat
c:\ temp\ somefile.dat
..\somefile.dat
c%3A%5Ctemp%5Csubdir%5C%2E%2E%5Csomefile.dat

In the last example, characters have been specified in hexadecimal form:
● %3A is the colon character.
● %5C is the backslash character.
● %2E is the dot character.

You should generally try to avoid designing applications that accept input file names
from the user to avoid canonicalization issues. Consider alternative designs instead.
For example, let the application determine the file name for the user.

If you do need to accept input file names, make sure they are strictly formed before
making security decisions such as granting or denying access to the specified file.

For more information about how to handle file names and to perform file I/O in a
secure manner, see the “File I/O” sections in Chapter 7, “Building Secure
Assemblies,” and Chapter 8, “Code Access Security in Practice.”

 Chapter 4: Design Guidelines for Secure Web Applications 77

Constrain, Reject, and Sanitize Your Input
The preferred approach to validating input is to constrain what you allow from the
beginning. It is much easier to validate data for known valid types, patterns, and
ranges than it is to validate data by looking for known bad characters. When you
design your application, you know what your application expects. The range of valid
data is generally a more finite set than potentially malicious input. However, for
defense in depth you may also want to reject known bad input and then sanitize the
input. The recommended strategy is shown in Figure 4.4.

Constrain

Allow known
good data

Reject SanitizeInput

Reject known
bad data

Make
potentially

malicious data
safe

Validate type, format,
length and range

(Use regular expressions
for string data)

For example, stripping
Null characters or

spaces

Figure 4.4
Input validation strategy: constrain, reject, and sanitize input

To create an effective input validation strategy, be aware of the following approaches
and their tradeoffs:
● Constrain input.
● Validate data for type, length, format, and range.
● Reject known bad input.
● Sanitize input.

Constrain Input
Constraining input is about allowing good data. This is the preferred approach. The
idea here is to define a filter of acceptable input by using type, length, format, and
range. Define what is acceptable input for your application fields and enforce it.
Reject everything else as bad data.

Constraining input may involve setting character sets on the server so that you can
establish the canonical form of the input in a localized way.

78 Part II: Designing Secure Web Applications

Validate Data for Type, Length, Format, and Range
Use strong type checking on input data wherever possible, for example, in the classes
used to manipulate and process the input data and in data access routines. For
example, use parameterized stored procedures for data access to benefit from strong
type checking of input fields.

String fields should also be length checked and in many cases checked for
appropriate format. For example, ZIP codes, personal identification numbers, and so
on have well defined formats that can be validated using regular expressions.
Thorough checking is not only good programming practice; it makes it more difficult
for an attacker to exploit your code. The attacker may get through your type check,
but the length check may make executing his favorite attack more difficult.

Reject Known Bad Input
Deny “bad” data; although do not rely completely on this approach. This approach is
generally less effective than using the “allow” approach described earlier and it is
best used in combination. To deny bad data assumes your application knows all the
variations of malicious input. Remember that there are multiple ways to represent
characters. This is another reason why “allow” is the preferred approach.

While useful for applications that are already deployed and when you cannot afford
to make significant changes, the “deny” approach is not as robust as the “allow”
approach because bad data, such as patterns that can be used to identify common
attacks, do not remain constant. Valid data remains constant while the range of bad
data may change over time.

Sanitize Input
Sanitizing is about making potentially malicious data safe. It can be helpful when the
range of input that is allowed cannot guarantee that the input is safe. This includes
anything from stripping a null from the end of a user-supplied string to escaping out
values so they are treated as literals.

Another common example of sanitizing input in Web applications is using URL
encoding or HTML encoding to wrap data and treat it as literal text rather than
executable script. HtmlEncode methods escape out HTML characters, and UrlEncode
methods encode a URL so that it is a valid URI request.

 Chapter 4: Design Guidelines for Secure Web Applications 79

In Practice
The following are examples applied to common input fields, using the preceding
approaches:
● Last Name field. This is a good example where constraining input is appropriate

In this case, you might allow string data in the range ASCII A–Z and a–z, and also
hyphens and curly apostrophes (curly apostrophes have no significance to SQL) to
handle names such as O’Dell. You would also limit the length to your longest
expected value.

● Quantity field. This is another case where constraining input works well. In this
example, you might use a simple type and range restriction. For example, the
input data may need to be a positive integer between 0 and 1000.

● Free-text field. Examples include comment fields on discussion boards. In this
case, you might allow letters and spaces, and also common characters such as
apostrophes, commas, and hyphens. The set that is allowed does not include less
than and greater than signs, brackets, and braces.
Some applications might allow users to mark up their text using a finite set of
script characters, such as bold ““, italic “<i>“, or even include a link to their
favorite URL. In the case of a URL, your validation should encode the value so
that it is treated as a URL.
For more information about validating free text fields, see “Input Validation” in
Chapter 10, “Building Secure ASP.NET Pages and Controls.”

● An existing Web application that does not validate user input. In an ideal
scenario, the application checks for acceptable input for each field or entry point.
However, if you have an existing Web application that does not validate user
input, you need a stopgap approach to mitigate risk until you can improve your
application’s input validation strategy. While neither of the following approaches
ensures safe handling of input, because that is dependent on where the input
comes from and how it is used in your application, they are in practice today as
quick fixes for short-term security improvement:
● HTML-encoding and URL-encoding user input when writing back to the

client. In this case, the assumption is that no input is treated as HTML and all
output is written back in a protected form. This is sanitization in action.

● Rejecting malicious script characters. This is a case of rejecting known bad
input. In this case, a configurable set of malicious characters is used to reject the
input. As described earlier, the problem with this approach is that bad data is a
matter of context.

For more information and examples of input coding, using regular expressions, and
ASP.NET validation controls, see “Input Validation” in Chapter 10, “Building Secure
ASP.NET Pages and Controls.”

80 Part II: Designing Secure Web Applications

Authentication
Authentication is the process of determining caller identity. There are three aspects to
consider:
● Identify where authentication is required in your application. It is generally

required whenever a trust boundary is crossed. Trust boundaries usually include
assemblies, processes, and hosts.

● Validate who the caller is. Users typically authenticate themselves with user
names and passwords.

● Identify the user on subsequent requests. This requires some form of
authentication token.

Many Web applications use a password mechanism to authenticate users, where the
user supplies a user name and password in an HTML form. The issues and questions
to consider here include:
● Are user names and passwords sent in plaintext over an insecure channel? If so,

an attacker can eavesdrop with network monitoring software to capture the
credentials. The countermeasure here is to secure the communication channel by
using Secure Socket Layer (SSL).

● How are the credentials stored? If you are storing user names and passwords in
plaintext, either in files or in a database, you are inviting trouble. What if your
application directory is improperly configured and an attacker browses to the file
and downloads its contents or adds a new privileged logon account? What if a
disgruntled administrator takes your database of user names and passwords?

● How are the credentials verified? There is no need to store user passwords if the
sole purpose is to verify that the user knows the password value. Instead, you can
store a verifier in the form of a hash value and re-compute the hash using the user-
supplied value during the logon process. To mitigate the threat of dictionary
attacks against the credential store, use strong passwords and combine a randomly
generated salt value with the password hash.

● How is the authenticated user identified after the initial logon? Some form of
authentication ticket, for example an authentication cookie, is required. How is the
cookie secured? If it is sent across an insecure channel, an attacker can capture the
cookie and use it to access the application. A stolen authentication cookie is a
stolen logon.

 Chapter 4: Design Guidelines for Secure Web Applications 81

The following practices improve your Web application’s authentication:
● Separate public and restricted areas.
● Use account lockout policies for end-user accounts.
● Support password expiration periods.
● Be able to disable accounts.
● Do not store passwords in user stores.
● Require strong passwords.
● Do not send passwords over the wire in plaintext.
● Protect authentication cookies.

Separate Public and Restricted Areas
A public area of your site can be accessed by any user anonymously. Restricted areas
can be accessed only by specific individuals and the users must authenticate with the
site. Consider a typical retail Web site. You can browse the product catalog
anonymously. When you add items to a shopping cart, the application identifies you
with a session identifier. Finally, when you place an order, you perform a secure
transaction. This requires you to log in to authenticate your transaction over SSL.

By partitioning your site into public and restricted access areas, you can apply
separate authentication and authorization rules across the site and limit the use of
SSL. To avoid the unnecessary performance overhead associated with SSL, design
your site to limit the use of SSL to the areas that require authenticated access.

Use Account Lockout Policies for End-User Accounts
Disable end-user accounts or write events to a log after a set number of failed logon
attempts. If you are using Windows authentication, such as NTLM or the Kerberos
protocol, these policies can be configured and applied automatically by the operating
system. With Forms authentication, these policies are the responsibility of the
application and must be incorporated into the application design.

Be careful that account lockout policies cannot be abused in denial of service attacks.
For example, well known default service accounts such as IUSR_MACHINENAME
should be replaced by custom account names to prevent an attacker who obtains the
Internet Information Services (IIS) Web server name from locking out this critical
account.

Support Password Expiration Periods
Passwords should not be static and should be changed as part of routine password
maintenance through password expiration periods. Consider providing this type of
facility during application design.

82 Part II: Designing Secure Web Applications

Be Able to Disable Accounts
If the system is compromised, being able to deliberately invalidate credentials or
disable accounts can prevent additional attacks.

Do Not Store Passwords in User Stores
If you must verify passwords, it is not necessary to actually store the passwords.
Instead, store a one way hash value and then re-compute the hash using the user-
supplied passwords. To mitigate the threat of dictionary attacks against the user
store, use strong passwords and incorporate a random salt value with the password.

Require Strong Passwords
Do not make it easy for attackers to crack passwords. There are many guidelines
available, but a general practice is to require a minimum of eight characters and a
mixture of uppercase and lowercase characters, numbers, and special characters.
Whether you are using the platform to enforce these for you, or you are developing
your own validation, this step is necessary to counter brute-force attacks where an
attacker tries to crack a password through systematic trial and error. Use regular
expressions to help with strong password validation.

For examples of regular expressions to aid password validation, see “Input
Validation” in Chapter 10, “Building Secure ASP.NET Pages and Controls.”

Do Not Send Passwords Over the Wire in Plaintext
Plaintext passwords sent over a network are vulnerable to eavesdropping. To address
this threat, secure the communication channel, for example, by using SSL to encrypt
the traffic.

Protect Authentication Cookies
A stolen authentication cookie is a stolen logon. Protect authentication tickets using
encryption and secure communication channels. Also limit the time interval in which
an authentication ticket remains valid, to counter the spoofing threat that can result
from replay attacks, where an attacker captures the cookie and uses it to gain illicit
access to your site. Reducing the cookie timeout does not prevent replay attacks but it
does limit the amount of time the attacker has to access the site using the stolen
cookie.

 Chapter 4: Design Guidelines for Secure Web Applications 83

Authorization
Authorization determines what the authenticated identity can do and the resources
that can be accessed. Improper or weak authorization leads to information disclosure
and data tampering. Defense in depth is the key security principle to apply to your
application’s authorization strategy.

The following practices improve your Web application’s authorization:
● Use multiple gatekeepers.
● Restrict user access to system-level resources.
● Consider authorization granularity.

Use Multiple Gatekeepers
On the server side, you can use IP Security Protocol (IPSec) policies to provide host
restrictions to restrict server-to-server communication. For example, an IPSec policy
might restrict any host apart from a nominated Web server from connecting to a
database server. IIS provides Web permissions and Internet Protocol/ Domain Name
System (IP/DNS) restrictions. IIS Web permissions apply to all resources requested
over HTTP regardless of the user. They do not provide protection if an attacker
manages to log on to the server. For this, NTFS permissions allow you to specify per
user access control lists. Finally, ASP.NET provides URL authorization and File
authorization together with principal permission demands. By combining these
gatekeepers you can develop an effective authorization strategy.

Restrict User Access to System Level Resources
System level resources include files, folders, registry keys, Active Directory objects,
database objects, event logs, and so on. Use Windows Access Control Lists (ACLs) to
restrict which users can access what resources and the types of operations that they
can perform. Pay particular attention to anonymous Internet user accounts; lock these
down with ACLs on resources that explicitly deny access to anonymous users.

For more information about locking down anonymous Internet user accounts with
Windows ACLs, see Chapter 16, “Securing Your Web Server.”

Consider Authorization Granularity
There are three common authorization models, each with varying degrees of
granularity and scalability.

84 Part II: Designing Secure Web Applications

The most granular approach relies on impersonation. Resource access occurs using
the security context of the caller. Windows ACLs on the secured resources (typically
files or tables, or both) determine whether the caller is allowed to access the resource.
If your application provides access primarily to user specific resources, this approach
may be valid. It has the added advantage that operating system level auditing can be
performed across the tiers of your application, because the original caller’s security
context flows at the operating system level and is used for resource access. However,
the approach suffers from poor application scalability because effective connection
pooling for database access is not possible. As a result, this approach is most
frequently found in limited scale intranet-based applications. The impersonation
model is shown in Figure 4.5.

Web Server
or

Application
Server

Database
Server

Caller
Impersonation /

Delegation

A

B

C

D

A

B

C

D

Figure 4.5
Impersonation model providing per end user authorization granularity

The least granular but most scalable approach uses the application’s process identity
for resource access. This approach supports database connection pooling but it means
that the permissions granted to the application’s identity in the database are
common, irrespective of the identity of the original caller. The primary authorization
is performed in the application’s logical middle tier using roles, which group together
users who share the same privileges in the application. Access to classes and methods
is restricted based on the role membership of the caller. To support the retrieval of per
user data, a common approach is to include an identity column in the database tables
and use query parameters to restrict the retrieved data. For example, you may pass
the original caller’s identity to the database at the application (not operating system)
level through stored procedure parameters, and write queries similar to the
following:

SELECT field1, field2, field3 FROM Table1 WHERE {some search criteria} AND
UserName = @originalCallerUserName

This model is referred to as the trusted subsystem or sometimes as the trusted server
model. It is shown in Figure 4.6.

 Chapter 4: Design Guidelines for Secure Web Applications 85

Database Tr usts the Web /
Application Server

A

B

C

D

Trusted
service identity

Web or Application
Server

Database
Server

Role-based
authorization

Trust Boundary

Figure 4.6
Trusted subsystem model that supports database connection pooling

The third option is to use a limited set of identities for resource access based on the
role membership of the caller. This is really a hybrid of the two models described
earlier. Callers are mapped to roles in the application’s logical middle tier, and access
to classes and methods is restricted based on role membership. Downstream resource
access is performed using a restricted set of identities determined by the current
caller’s role membership. The advantage of this approach is that permissions can be
assigned to separate logins in the database, and connection pooling is still effective
with multiple pools of connections. The downside is that creating multiple thread
access tokens used to establish different security contexts for downstream resource
access using Windows authentication is a privileged operation that requires
privileged process accounts. This is counter to the principle of least privilege. The
hybrid model using multiple trusted service identities for downstream resource
access is shown in Figure 4.7.

Identity 1 and 2 have
different permissions in the

database

A

B

C

D

Trusted service
identity 1

Web or Application
Server

Database
Server

Trust Boundary

Role
1

Role
2

Trusted service
identity 2

Figure 4.7
Hybrid model

86 Part II: Designing Secure Web Applications

Configuration Management
Carefully consider your Web application’s configuration management functionality.
Most applications require interfaces that allow content developers, operators, and
administrators to configure the application and manage items such as Web page
content, user accounts, user profile information, and database connection strings. If
remote administration is supported, how are the administration interfaces secured?
The consequences of a security breach to an administration interface can be severe,
because the attacker frequently ends up running with administrator privileges and
has direct access to the entire site.

The following practices improve the security of your Web application’s configuration
management:
● Secure your administration interfaces.
● Secure your configuration store.
● Maintain separate administration privileges.
● Use least privileged process and service accounts.

Secure Your Administration Interfaces
It is important that configuration management functionality is accessible only by
authorized operators and administrators. A key part is to enforce strong
authentication over your administration interfaces, for example, by using certificates.

If possible, limit or avoid the use of remote administration and require administrators
to log on locally. If you need to support remote administration, use encrypted
channels, for example, with SSL or VPN technology, because of the sensitive nature of
the data passed over administrative interfaces. Also consider limiting remote
administration to computers on the internal network by using IPSec policies, to
further reduce risk.

Secure Your Configuration Stores
Text-based configuration files, the registry, and databases are common options for
storing application configuration data. If possible, avoid using configuration files in
the application’s Web space to prevent possible server configuration vulnerabilities
resulting in the download of configuration files. Whatever approach you use, secure
access to the configuration store, for example, by using Windows ACLs or database
permissions. Also avoid storing plaintext secrets such as database connection strings
or account credentials. Secure these items using encryption and then restrict access to
the registry key, file, or table that contains the encrypted data.

 Chapter 4: Design Guidelines for Secure Web Applications 87

Separate Administration Privileges
If the functionality supported by the features of your application’s configuration
management varies based on the role of the administrator, consider authorizing each
role separately by using role-based authorization. For example, the person
responsible for updating a site’s static content should not necessarily be allowed to
change a customer’s credit limit.

Use Least Privileged Process and Service Accounts
An important aspect of your application’s configuration is the process accounts used
to run the Web server process and the service accounts used to access downstream
resources and systems. Make sure these accounts are set up as least privileged. If an
attacker manages to take control of a process, the process identity should have very
restricted access to the file system and other system resources to limit the damage
that can be done.

Sensitive Data
Applications that deal with private user information such as credit card numbers,
addresses, medical records, and so on should take special steps to make sure that the
data remains private and unaltered. In addition, secrets used by the application’s
implementation, such as passwords and database connection strings, must be
secured. The security of sensitive data is an issue while the data is stored in persistent
storage and while it is passed across the network.

Secrets
Secrets include passwords, database connection strings, and credit card numbers. The
following practices improve the security of your Web application’s handling of
secrets:
● Do not store secrets if you can avoid it.
● Do not store secrets in code.
● Do not store database connections, passwords, or keys in plaintext.
● Avoid storing secrets in the Local Security Authority (LSA).
● Use Data Protection API (DPAPI) for encrypting secrets.

88 Part II: Designing Secure Web Applications

Do Not Store Secrets if You Can Avoid It
Storing secrets in software in a completely secure fashion is not possible. An
administrator, who has physical access to the server, can access the data. For example,
it is not necessary to store a secret when all you need to do is verify whether a user
knows the secret. In this case, you can store a hash value that represents the secret
and compute the hash using the user-supplied value to verify whether the user
knows the secret.

Do Not Store Secrets in Code
Do not hard code secrets in code. Even if the source code is not exposed on the Web
server, it is possible to extract string constants from compiled executable files. A
configuration vulnerability may allow an attacker to retrieve the executable.

Do Not Store Database Connections, Passwords, or Keys in Plaintext
Avoid storing secrets such as database connection strings, passwords, and keys in
plaintext. Use encryption and store encrypted strings.

Avoid Storing Secrets in the LSA
Avoid the LSA because your application requires administration privileges to access
it. This violates the core security principle of running with least privilege. Also, the
LSA can store secrets in only a restricted number of slots. A better approach is to use
DPAPI, available on Microsoft Windows 2000 and later operating systems.

Use DPAPI for Encrypting Secrets
To store secrets such as database connection strings or service account credentials, use
DPAPI. The main advantage to using DPAPI is that the platform system manages the
encryption/decryption key and it is not an issue for the application. The key is either
tied to a Windows user account or to a specific computer, depending on flags passed
to the DPAPI functions.

DPAPI is best suited for encrypting information that can be manually recreated when
the master keys are lost, for example, because a damaged server requires an
operating system re-install. Data that cannot be recovered because you do not know
the plaintext value, for example, customer credit card details, require an alternate
approach that uses traditional symmetric key-based cryptography such as the use of
triple-DES.

For more information about using DPAPI from Web applications, see Chapter 10,
“Building Secure ASP.NET Web Pages and Controls.”

 Chapter 4: Design Guidelines for Secure Web Applications 89

Sensitive Per User Data
Sensitive data such as logon credentials and application level data such as credit card
numbers, bank account numbers, and so on, must be protected. Privacy through
encryption and integrity through message authentication codes (MAC) are the key
elements.

The following practices improve your Web application’s security of sensitive per user
data:
● Retrieve sensitive data on demand.
● Encrypt the data or secure the communication channel.
● Do not store sensitive data in persistent cookies.
● Do not pass sensitive data using the HTTP-GET protocol.

Retrieve Sensitive Data on Demand
The preferred approach is to retrieve sensitive data on demand when it is needed
instead of persisting or caching it in memory. For example, retrieve the encrypted
secret when it is needed, decrypt it, use it, and then clear the memory (variable) used
to hold the plaintext secret. If performance becomes an issue, consider the following
options:
● Cache the encrypted secret.
● Cache the plaintext secret.

Cache the Encrypted Secret

Retrieve the secret when the application loads and then cache the encrypted secret in
memory, decrypting it when the application uses it. Clear the plaintext copy when it
is no longer needed. This approach avoids accessing the data store on a per request
basis.

Cache the Plaintext Secret

Avoid the overhead of decrypting the secret multiple times and store a plaintext copy
of the secret in memory. This is the least secure approach but offers the optimum
performance. Benchmark the other approaches before guessing that the additional
performance gain is worth the added security risk.

Encrypt the Data or Secure the Communication Channel
If you are sending sensitive data over the network to the client, encrypt the data or
secure the channel. A common practice is to use SSL between the client and Web
server. Between servers, an increasingly common approach is to use IPSec. For
securing sensitive data that flows through several intermediaries, for example, Web
service Simple Object Access Protocol (SOAP) messages, use message level
encryption.

90 Part II: Designing Secure Web Applications

Do Not Store Sensitive Data in Persistent Cookies
Avoid storing sensitive data in persistent cookies. If you store plaintext data, the end
user is able to see and modify the data. If you encrypt the data, key management can
be a problem. For example, if the key used to encrypt the data in the cookie has
expired and been recycled, the new key cannot decrypt the persistent cookie passed
by the browser from the client.

Do Not Pass Sensitive Data Using the HTTP-GET Protocol
You should avoid storing sensitive data using the HTTP-GET protocol because the
protocol uses query strings to pass data. Sensitive data cannot be secured using query
strings and query strings are often logged by the server.

Session Management
Web applications are built on the stateless HTTP protocol, so session management is
an application-level responsibility. Session security is critical to the overall security of
an application.

The following practices improve the security of your Web application’s session
management:
● Use SSL to protect session authentication cookies.
● Encrypt the contents of the authentication cookies.
● Limit session lifetime.
● Protect session state from unauthorized access.

Use SSL to Protect Session Authentication Cookies
Do not pass authentication cookies over HTTP connections. Set the secure cookie
property within authentication cookies, which instructs browsers to send cookies
back to the server only over HTTPS connections. For more information, see
Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

Encrypt the Contents of the Authentication Cookies
Encrypt the cookie contents even if you are using SSL. This prevents an attacker
viewing or modifying the cookie if he manages to steal it through an XSS attack. In
this event, the attacker could still use the cookie to access your application, but only
while the cookie remains valid.

 Chapter 4: Design Guidelines for Secure Web Applications 91

Limit Session Lifetime
Reduce the lifetime of sessions to mitigate the risk of session hijacking and replay
attacks. The shorter the session, the less time an attacker has to capture a session
cookie and use it to access your application.

Protect Session State from Unauthorized Access
Consider how session state is to be stored. For optimum performance, you can store
session state in the Web application’s process address space. However, this approach
has limited scalability and implications in Web farm scenarios, where requests from
the same user cannot be guaranteed to be handled by the same server. In this
scenario, an out-of-process state store on a dedicated state server or a persistent state
store in a shared database is required. ASP.NET supports all three options.

You should secure the network link from the Web application to state store using
IPSec or SSL to mitigate the risk of eavesdropping. Also consider how the Web
application is to be authenticated by the state store. Use Windows authentication
where possible to avoid passing plaintext authentication credentials across the
network and to benefit from secure Windows account policies.

Cryptography
Cryptography in its fundamental form provides the following:
● Privacy (Confidentiality). This service keeps a secret confidential.
● Non-Repudiation (Authenticity). This service makes sure a user cannot deny

sending a particular message.
● Tamperproofing (Integrity). This service prevents data from being altered.
● Authentication. This service confirms the identity of the sender of a message.

Web applications frequently use cryptography to secure data in persistent stores or as
it is transmitted across networks. The following practices improve your Web
application’s security when you use cryptography:
● Do not develop your own cryptography.
● Keep unencrypted data close to the algorithm.
● Use the correct algorithm and correct key size.
● Secure your encryption keys.

92 Part II: Designing Secure Web Applications

Do Not Develop Your Own Cryptography
Cryptographic algorithms and routines are notoriously difficult to develop
successfully. As a result, you should use the tried and tested cryptographic services
provided by the platform. This includes the .NET Framework and the underlying
operating system. Do not develop custom implementations because these frequently
result in weak protection.

Keep Unencrypted Data Close to the Algorithm
When passing plaintext to an algorithm, do not obtain the data until you are ready to
use it, and store it in as few variables as possible.

Use the Correct Algorithm and Correct Key Size
It is important to make sure you choose the right algorithm for the right job and to
make sure you use a key size that provides a sufficient degree of security. Larger key
sizes generally increase security. The following list summarizes the major algorithms
together with the key sizes that each uses:
● Data Encryption Standard (DES) 64-bit key (8 bytes)
● TripleDES 128-bit key or 192-bit key (16 or 24 bytes)
● Rijndael 128–256 bit keys (16–32 bytes)
● RSA 384–16,384 bit keys (48–2,048 bytes)

For large data encryption, use the TripleDES symmetric encryption algorithm. For
slower and stronger encryption of large data, use Rijndael. To encrypt data that is to
be stored for short periods of time, you can consider using a faster but weaker
algorithm such as DES. For digital signatures, use Rivest, Shamir, and Adleman
(RSA) or Digital Signature Algorithm (DSA). For hashing, use the Secure Hash
Algorithm (SHA)1.0. For keyed hashes, use the Hash-based Message Authentication
Code (HMAC) SHA1.0.

Secure Your Encryption Keys
An encryption key is a secret number used as input to the encryption and decryption
processes. For encrypted data to remain secure, the key must be protected. If an
attacker compromises the decryption key, your encrypted data is no longer secure.

The following practices help secure your encryption keys:
● Use DPAPI to avoid key management.
● Cycle your keys periodically.

 Chapter 4: Design Guidelines for Secure Web Applications 93

Use DPAPI to Avoid Key Management
As mentioned previously, one of the major advantages of using DPAPI is that the key
management issue is handled by the operating system. The key that DPAPI uses is
derived from the password that is associated with the process account that calls the
DPAPI functions. Use DPAPI to pass the burden of key management to the operating
system.

Cycle Your Keys Periodically
Generally, a static secret is more likely to be discovered over time. Questions to keep
in mind are: Did you write it down somewhere? Did Bob, the administrator with the
secrets, change positions in your company or leave the company? Do not overuse
keys.

Parameter Manipulation
With parameter manipulation attacks, the attacker modifies the data sent between the
client and Web application. This may be data sent using query strings, form fields,
cookies, or in HTTP headers. The following practices help secure your Web
application’s parameter manipulation:
● Encrypt sensitive cookie state.
● Make sure that users do not bypass your checks.
● Validate all values sent from the client.
● Do not trust HTTP header information.

Encrypt Sensitive Cookie State
Cookies may contain sensitive data such as session identifiers or data that is used as
part of the server-side authorization process. To protect this type of data from
unauthorized manipulation, use cryptography to encrypt the contents of the cookie.

Make Sure that Users Do Not Bypass Your Checks
Make sure that users do not bypass your checks by manipulating parameters. URL
parameters can be manipulated by end users through the browser address text box.
For example, the URL http://www.<YourSite>/<YourApp>/sessionId=10 has a value
of 10 that can be changed to some random number to receive different output. Make
sure that you check this in server-side code, not in client-side JavaScript, which can
be disabled in the browser.

94 Part II: Designing Secure Web Applications

Validate All Values Sent from the Client
Restrict the fields that the user can enter and modify and validate all values coming
from the client. If you have predefined values in your form fields, users can change
them and post them back to receive different results. Permit only known good values
wherever possible. For example, if the input field is for a state, only inputs matching
a state postal code should be permitted.

Do Not Trust HTTP Header Information
HTTP headers are sent at the start of HTTP requests and HTTP responses. Your Web
application should make sure it does not base any security decision on information in
the HTTP headers because it is easy for an attacker to manipulate the header. For
example, the referer field in the header contains the URL of the Web page from where
the request originated. Do not make any security decisions based on the value of the
referer field, for example, to check whether the request originated from a page
generated by the Web application, because the field is easily falsified.

Exception Management
Secure exception handling can help prevent certain application-level denial of service
attacks and it can also be used to prevent valuable system-level information useful to
attackers from being returned to the client. For example, without proper exception
handling, information such as database schema details, operating system versions,
stack traces, file names and path information, SQL query strings and other
information of value to an attacker can be returned to the client.

A good approach is to design a centralized exception management and logging
solution and consider providing hooks into your exception management system to
support instrumentation and centralized monitoring to help system administrators.

The following practices help secure your Web application’s exception management:
● Do not leak information to the client.
● Log detailed error messages.
● Catch exceptions.

Do Not Leak Information to the Client
In the event of a failure, do not expose information that could lead to information
disclosure. For example, do not expose stack trace details that include function names
and line numbers in the case of debug builds (which should not be used on
production servers). Instead, return generic error messages to the client.

 Chapter 4: Design Guidelines for Secure Web Applications 95

Log Detailed Error Messages
Send detailed error messages to the error log. Send minimal information to the
consumer of your service or application, such as a generic error message and custom
error log ID that can subsequently be mapped to detailed message in the event logs.
Make sure that you do not log passwords or other sensitive data.

Catch Exceptions
Use structured exception handling and catch exception conditions. Doing so avoids
leaving your application in an inconsistent state that may lead to information
disclosure. It also helps protect your application from denial of service attacks.
Decide how to propagate exceptions internally in your application and give special
consideration to what occurs at the application boundary.

For more information about designing and implementing an exception management
framework for .NET applications, see the MSDN article “Exception Management in
.NET,” at http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp

Auditing and Logging
You should audit and log activity across the tiers of your application. Using logs, you
can detect suspicious-looking activity. This frequently provides early indications of a
full-blown attack and the logs help address the repudiation threat where users deny
their actions. Log files may be required in legal proceedings to prove the wrongdoing
of individuals. Generally, auditing is considered most authoritative if the audits are
generated at the precise time of resource access and by the same routines that access
the resource.

The following practices improve your Web application’s security:
● Audit and log access across application tiers.
● Consider identity flow.
● Log key events.
● Secure log files.
● Back up and analyze log files regularly.

Audit and Log Access Across Application Tiers
Audit and log access across the tiers of your application for non-repudiation. Use a
combination of application-level logging and platform auditing features, such as
Windows, IIS, and SQL Server auditing.

http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp

96 Part II: Designing Secure Web Applications

Consider Identity Flow
Consider how your application will flow caller identity across multiple application
tiers. You have two basic choices. You can flow the caller’s identity at the operating
system level using the Kerberos protocol delegation. This allows you to use operating
system level auditing. The drawback with this approach is that it affects scalability
because it means there can be no effective database connection pooling at the middle
tier. Alternatively, you can flow the caller’s identity at the application level and use
trusted identities to access back-end resources. With this approach, you have to trust
the middle tier and there is a potential repudiation risk. You should generate audit
trails in the middle tier that can be correlated with back-end audit trails. For this, you
must make sure that the server clocks are synchronized, although Microsoft
Windows 2000 and Active Directory do this for you.

Log Key Events
The types of events that should be logged include successful and failed logon
attempts, modification of data, retrieval of data, network communications, and
administrative functions such as the enabling or disabling of logging. Logs should
include the time of the event, the location of the event including the machine name,
the identity of the current user, the identity of the process initiating the event, and a
detailed description of the event.

Secure Log Files
Secure log files using Windows ACLs and restrict access to the log files. This makes it
more difficult for attackers to tamper with log files to cover their tracks. Minimize the
number of individuals who can manipulate the log files. Authorize access only to
highly trusted accounts such as administrators.

Back Up and Analyze Log Files Regularly
There’s no point in logging activity if the log files are never analyzed. Log files
should be removed from production servers on a regular basis. The frequency of
removal is dependent upon your application’s level of activity. Your design should
consider the way that log files will be retrieved and moved to offline servers for
analysis. Any additional protocols and ports opened on the Web server for this
purpose must be securely locked down.

 Chapter 4: Design Guidelines for Secure Web Applications 97

Design Guidelines Summary
Table 4.2 summarizes the design guidelines discussed in this chapter and organizes
them by application vulnerability category.

Table 4.2 Design Guidelines for Your Application

Category Guidelines
Input Validation Do not trust input; consider centralized input validation. Do not rely on

client-side validation. Be careful with canonicalization issues. Constrain,
reject, and sanitize input. Validate for type, length, format, and range.

Authentication Partition site by anonymous, identified, and authenticated area. Use
strong passwords. Support password expiration periods and account
disablement. Do not store credentials (use one-way hashes with salt).
Encrypt communication channels to protect authentication tokens. Pass
Forms authentication cookies only over HTTPS connections.

Authorization Use least privileged accounts. Consider authorization granularity. Enforce
separation of privileges. Restrict user access to system-level resources.

Configuration
Management

Use least privileged process and service accounts. Do not store
credentials in plaintext. Use strong authentication and authorization on
administration interfaces. Do not use the LSA. Secure the
communication channel for remote administration. Avoid storing sensitive
data in the Web space.

Sensitive Data Avoid storing secrets. Encrypt sensitive data over the wire. Secure the
communication channel. Provide strong access controls on sensitive data
stores. Do not store sensitive data in persistent cookies. Do not pass
sensitive data using the HTTP-GET protocol.

Session Management Limit the session lifetime. Secure the channel. Encrypt the contents of
authentication cookies. Protect session state from unauthorized access.

Cryptography Do not develop your own. Use tried and tested platform features. Keep
unencrypted data close to the algorithm. Use the right algorithm and key
size. Avoid key management (use DPAPI). Cycle your keys periodically.
Store keys in a restricted location.

Parameter Manipulation Encrypt sensitive cookie state. Do not trust fields that the client can
manipulate (query strings, form fields, cookies, or HTTP headers).
Validate all values sent from the client.

Exception Management Use structured exception handling. Do not reveal sensitive application
implementation details. Do not log private data such as passwords.
Consider a centralized exception management framework.

Auditing and Logging Identify malicious behavior. Know what good traffic looks like. Audit and
log activity through all of the application tiers. Secure access to log files.
Back up and regularly analyze log files.

98 Part II: Designing Secure Web Applications

Summary
Security should permeate every stage of the product development life cycle and it
should be a focal point of application design. Pay particular attention to the design of
a solid authentication and authorization strategy. Also remember that the majority of
application level attacks rely on maliciously formed input data and poor application
input validation. The guidance presented in this chapter should help you with these
and other challenging aspects of designing and building secure applications.

Additional Resources
For more information, see the following resources:
● The current guide is Volume II in a series dedicated to helping customers

improve Web application security. For more information on architecting,
designing, building and configuring authentication, authorization, and secure
communications across tiers of a distributed Web applications, see “Microsoft
patterns & practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library/en-us
/dnnetsec/html/secnetlpMSDN.asp

● The MSDN article “Security Models for ASP.NET Applications” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch02.asp?frame=true

● The MSDN article “Designing Authentication and Authorization” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetch03.asp?frame=true

● “Checklist: Architecture and Design Review” in the “Checklists” section of
this guide.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch02.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch02.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch03.asp?frame=true

5
Architecture and Design Review
for Security

In This Chapter
● Analyzing and reviewing application architecture and design
● Identifying key application deployment and infrastructure security considerations

Overview
To build a secure Web application, you need an appropriate architecture and design.
The cost and effort of retrofitting security after development are too high. An
architecture and design review helps you validate the security-related design features
of your application before you start the development phase. This allows you to
identify and fix potential vulnerabilities before they can be exploited and before the
fix requires a substantial reengineering effort.

If you have already created your application, you should still review this chapter and
then revisit the concepts, principles, and techniques that you used during your
application design.

100 Part II:Designing Secure Web Applications

How to Use This Chapter
This chapter gives you the questions to ask when performing a thorough review of
your architecture design. The following are recommendations on how to use this
chapter:
● Integrate a security review into your architecture design process. Start early on,

and as your design changes, review those changes with the steps given in this
chapter.

● Evolve your security review. This chapter provides questions that you can ask to
improve the security of your design. To complete the review process, you might
also need to add specific questions that are unique to your application.

● Know the threats you are reviewing against. Chapter 2, “Threats and
Countermeasures,” lists the threats that affect the various components and layers
that make up your application. Knowing these threats is essential to improving the
results of your review process.

Architecture and Design Review Process
The architecture and design review process analyzes the architecture and design from
a security perspective. If you have just completed the design, the design
documentation can help you with this process. Regardless of how comprehensive
your design documentation is, you must be able to decompose your application and
be able to identify key items, including trust boundaries, data flow, entry points, and
privileged code. You must also know the physical deployment configuration of your
application. Pay attention to the design approaches you have adopted for those areas
that most commonly exhibit vulnerabilities. This guide refers to these as application
vulnerability categories.

Consider the following aspects when you review the architecture and design of your
application:
● Deployment and infrastructure. You review the design of your application in

relation to the target deployment environment and the associated security policies.
You also consider the restrictions imposed by the underlying infrastructure-layer
security.

● Application architecture and design. You review the approach to critical areas in
your application, including authentication, authorization, input validation,
exception management, and other areas. You can use the application vulnerability
categories as a roadmap and to ensure that you do not miss any key areas during
the review.

● Tier-by-tier analysis. You walk through the logical tiers of your application and
examine the security of ASP.NET Web pages and controls, Web services, serviced
components, Microsoft .NET Remoting, data access code, and others.

 Chapter 5: Architecture and Design Review for Security 101

Figure 5.1 shows this three-pronged approach to the review process.

Application Architecture and Design

Input Validation

Authentication

Session Management

Authorization

Configuration Mgmt

Sensitive Data

Cryptography

Parameter Manipulation

Exception Management

Auditing and Logging

Deployment and
Infrastructure

Component
Analysis

Application

Host

Network

ASP.NET Pages

Web Services

Enterprise Services

Remoting

Data Access

2

31

Figure 5.1
Application review

The remainder of this chapter presents the key considerations and questions to ask
during the review process for each of these distinct areas.

Deployment and Infrastructure Considerations
Examine the security settings that the underlying network and host infrastructure
offer to the application, and examine any restrictions that the target environment
might impose. Also consider your deployment topology and the impact of middle-
tier application servers, perimeter zones, and internal firewalls on your design.

Review the following questions to identify potential deployment and infrastructure
issues:
● Does the network provide secure communication?
● Does your deployment topology include an internal firewall?
● Does your deployment topology include a remote application server?
● What restrictions does infrastructure security impose?
● Have you considered Web farm issues?
● What trust levels does the target environment support?

102 Part II:Designing Secure Web Applications

Does the Network Provide Secure Communication?
Your data is at its most vulnerable while in transit between a client and server, or
server to server. How private should the data be? Are you legally responsible for
customer data?

While your application is responsible for handling and transforming data securely
prior to transit, the network is responsible for the integrity and privacy of the data as
it transmits. Use an appropriate encryption algorithm when the data must remain
private. Additionally, make sure that your network devices are secured because they
maintain network integrity.

Does Your Deployment Topology Include an Internal Firewall?
If an internal firewall separates your Web server from an application server or a
database server, review the following questions to ensure that your design
accommodates this:
● How do downstream servers authenticate the Web server?

If you use domain accounts and Windows authentication, does the firewall open
the necessary ports? If not, or if the Web server and downstream server are in
separate domains, you can use mirrored local accounts. For example, you can
duplicate the least privileged local ASPNET account that is used to run the Web
application on the database server.

● Do you use distributed transactions?
If the Web server initiates distributed transactions using the services of the
Microsoft Distributed Transaction Coordinator (DTC), does the internal firewall
open the necessary ports for DTC communication?
For more information about using the DTC through a firewall, see Microsoft
Knowledge Base article 250367, “INFO: Configuring Microsoft Distributed
Transaction Coordinator (DTC) to Work Through a Firewall.”

Does Your Deployment Topology Include a Remote Application Server?
If your deployment topology includes a physically remote middle tier, review the
following questions:
● Do you use Enterprise Services?

If so, have you restricted the DCOM port range and does any internal firewall
open these ports?

Note In some scenarios, using a middle-tier Web service as a front end to the Enterprise
Services application is a superior design choice. With this approach, the Web server can
communicate with the application server through port 80 using Simple Object Access
Protocol (SOAP).

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q250367
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q250367

 Chapter 5: Architecture and Design Review for Security 103

For more information, see the following Microsoft Knowledge Base articles:
● Article 312960, “Cannot Set Fixed Endpoint for a COM+ Application“
● Article 259011, “SAMPLE: A Simple DCOM Client Server Test Application“
● Article 248809, “PRB: DCOM Does Not Work over NAT-Based Firewall“
● Article 154596, “HOWTO: Configure RPC Dynamic Port Allocation to

Work w/Firewall“
● Do you use .NET Remoting?

Remoting is designed to be used in trusted server scenarios. Does the network
support an IPSec policy that ensures that your middle-tier Remoting components
can only be accessed from the Web server? Does ASP.NET host your remote
components to support authentication and authorization?

● Do you use Web services?
If so, how do middle-tier Web services authenticate the Web application? Does the
Web application configure credentials on the Web service proxy so that the Web
service can authenticate the Web server? If not, how does the Web service identify
the caller?

What Restrictions Does Infrastructure Security Impose?
Does your design make any assumptions that the host infrastructure security
restrictions will invalidate? For example, the security restrictions may require design
tradeoffs based on the availability of required services, protocols, or account
privileges. Review the following questions:
● Do you rely on services or protocols that might not be available?

Services and protocols that are available in the development and test
environments might not be available in the production environment.
Communicate with the team responsible for the infrastructure security to
understand the restrictions and requirements.

● Do you rely on sensitive account privileges?
Your design should use least privileged process, service, and user accounts.
Do you perform operations that require sensitive privileges that might not be
permitted?
For example, does your application need to create thread-level impersonation
tokens to create service identities for resource access? This requires the “Act as
part of the operating system” privilege, which should not be granted to Web
server processes because of the increased security risk associated with a process
compromise. If this feature is required, your design should compartmentalize the
higher privileges, for example, in an out-of-process Enterprise Services
application.

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q312960
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q259011
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q248809
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q154596
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q154596

104 Part II:Designing Secure Web Applications

Have You Considered Web Farm Issues?
If your application is going to be deployed in a Web farm, you can make no
assumptions about which server in the farm will process client requests. Successive
requests from the same client may be served by separate servers. As a result, you
need to consider the following issues:
● How are you managing session state?

In a Web farm, you cannot manage session state on the Web server. Instead, your
design must incorporate a remote state store on a server that is accessed by all the
Web servers in the farm. For more information, see “Session Management” later in
this chapter.

● Are you using machine-specific encryption keys?
If you plan to use encryption to encrypt data in a shared data source, such as a
database, the encryption and decryption keys must be the same across all
machines in the farm. Check that your design does not require encryption
mechanisms that require machine affinity.

● Are you using Forms authentication or protected view state?
If so, you are reliant upon the <machineKey> settings. In a Web farm, you must
use common key across all servers.

● Are you using Secure Sockets Layer (SSL)?
If you use SSL to encrypt the traffic between browser and Web server, where do
you terminate the SSL connection? Your options include the Web server, a Web
server with an accelerator card, or a load balancer with an accelerator card.
Terminating the SSL session at a load balancer with an accelerator card generally
offers the best performance, particularly for sites with large numbers of
connections.
If you terminate SSL at the load balancer, network traffic is not encrypted from the
load balancer to the Web server. This means that an attacker can potentially sniff
network traffic after the data is decrypted, while it is in transit between the load
balancer and Web server. You can address this threat either by ensuring that the
Web server environment is physically secured or by using transport-level
encryption provided by IPSec policies to protect internal data center links.

What Trust Levels Does the Target Environment Support?
The code access security trust level of the target environment determines the
resources your code can access and the privileged operations it can perform. Check
the supported trust level of your target environment. If your Web application is
allowed to run with Full trust, your code can access any resources, subject to
operating system security.

 Chapter 5: Architecture and Design Review for Security 105

If your Web application must run at a reduced trust level, this limits the types of
resources and privileged operations your code can perform. In partial trust scenarios,
your design should sandbox your privileged code. You should also use separate
assemblies to isolate your privileged code. This is done so that the privileged code
can be configured separately from the rest of the application and granted the
necessary additional code access permissions.

For more information, see Chapter 9, “Using Code Access Security with ASP.NET.”

Note Trust levels are often an issue if you are planning to deploy your application onto a shared
server, or if your application is going to be run by a hosting company. In these cases, check the
security policy and find out what trust levels it mandates for Web applications.

Input Validation
Examine how your application validates input because many Web application attacks
use deliberately malformed input . SQL injection, cross-site scripting (XSS), buffer
overflow, code injection, and numerous other denial of service and elevation of
privilege attacks can exploit poor input validation. Table 5.1 highlights the most
common input validation vulnerabilities.

Table 5.1 Common Input Validation Vulnerabilities

Vulnerability Implications
Non-validated input in the
Hypertext Markup Language
(HTML) output stream

The application is susceptible to XSS attacks.

Non-validated input used to
generate SQL queries

The application is susceptible to SQL injection attacks.

Reliance on client-side
validation

Client validation is easily bypassed.

Use of input file names, URLs,
or user names for security
decisions

The application is susceptible to canonicalization bugs, leading to
security flaws.

Application-only filters for
malicious input

This is almost impossible to do correctly because of the enormous
range of potentially malicious input. The application should
constrain, reject, and sanitize input.

Review the following questions to help you identify potential input validation
security issues:
● How do you validate input?
● What do you do with the input?

106 Part II:Designing Secure Web Applications

How Do You Validate Input?
What approach to input validation does your design specify? First, your design
should lay out the strategy. Your application should constrain, reject, and sanitize all
of the input it receives. Constraining input is the best approach because validating
data for known valid types, patterns, and ranges is much easier than validating data
by looking for known bad characters. With a defense in depth strategy, you should
also reject known bad input and sanitize input.

The following questions can help you identify potential vulnerabilities:
● Do you know your entry points?

Make sure the design identifies entry points of the application so that you can
track what happens to individual input fields. Consider Web page input, input to
components and Web services, and input from databases.

● Do you know your trust boundaries?
Input validation is not always necessary if the input is passed from a trusted
source inside your trust boundary, but it should be considered mandatory if the
input is passed from sources that are not trusted.

● Do you validate Web page input?
Do not consider the end user as a trusted source of data. Make sure you validate
regular and hidden form fields, query strings, and cookies.

● Do you validate arguments that are passed to your components or Web services?
The only case where it might be safe not to do so is where data is received from
inside the current trust boundary. However, with a defense in depth strategy,
multiple validation layers are recommended.

● Do you validate data that is retrieved from a database?
You should also validate this form of input, especially if other applications write to
the database. Make no assumptions about how thorough the input validation of
the other application is.

● Do you centralize your approach?
For common types of input fields, examine whether or not you are using common
validation and filtering libraries to ensure that validation rules are performed
consistently.

● Do you rely on client-side validation?
Do not. Client-side validation can be used to reduce the number of round trips to
the server, but do not rely on it for security because it is easy to bypass. Validate all
input at the server.

 Chapter 5: Architecture and Design Review for Security 107

What Do You Do with the Input?
Check what your application does with its input because different types of processing
can lead to various types of vulnerabilities. For example, if you use input in SQL
queries your application is potentially vulnerable to SQL injection.

Review the following questions to help you identify possible vulnerabilities:
● Is your application susceptible to canonicalization issues?

Check whether your application uses names based on input to make security
decisions. For example, does it accept user names, file names, or URLs? These are
notorious for canonicalization bugs because of the many ways that the names can
be represented. If your application does accept names as input, check that they are
validated and converted to their canonical representation before processing.

● Is your application susceptible to SQL injection attacks?
Pay close attention to any input field that you use to form a SQL database query.
Check that these fields are suitably validated for type, format, length, and range.
Also check how the queries are generated. If you use parameterized stored
procedures, input parameters are treated as literals and are not treated as
executable code. This is effective risk mitigation.

● Is your application susceptible to XSS attacks?
If you include input fields in the HTML output stream, you might be vulnerable to
XSS. Check that input is validated and that output is encoded. Pay close attention
to how input fields that accept a range of HTML characters are processed.

Authentication
Examine how your application authenticates its callers, where it uses authentication,
and how it ensures that credentials remain secure while in storage and when passed
over the network. Vulnerabilities in authentication can make your application
susceptible to spoofing attacks, dictionary attacks, session hijacking, and other
attacks. Table 5.2 highlights the most common authentication vulnerabilities.

Table 5.2 Common Authentication Vulnerabilities

Vulnerability Implications
Weak passwords The risk of password cracking and dictionary attacks increase.

Clear text credentials in
configuration files

Insiders who can access the server or attackers who exploit a
host vulnerability to download the configuration file have
immediate access to credentials.

Passing clear text credentials
over the network

Attackers can monitor the network to steal authentication
credentials and spoof identity.

(continued)

108 Part II:Designing Secure Web Applications

Table 5.2 Common Authentication Vulnerabilities (continued)
Vulnerability Implications
Over-privileged accounts The risks associated with a process or account compromise

increase.

Long sessions The risks associated with session hijacking increase.

Mixing personalization with
authentication

Personalization data is suited to persistent cookies.
Authentication cookies should not be persisted.

Review the following questions to identify potential vulnerabilities in the way your
application performs authentication:
● Do you separate public and restricted access?
● Have you identified service account requirements?
● How do you authenticate the caller?
● How do you authenticate with the database?
● Do you enforce strong account management practices?

Do You Separate Public and Restricted Access?
If your application provides public areas that do not require authentication and
restricted areas that do require authentication, examine how your site design
distinguishes between the two. You should use separate subfolders for restricted
pages and resources and then secure those folders in Internet Information Services
(IIS) by configuring them to require SSL. This approach allows you to provide
security for sensitive data and authentication cookies using SSL in only those areas of
your site that need it. You avoid the added performance hit associated with SSL
across the whole site.

Have You Identified Service Account Requirements?
Your design should identify the range of service accounts that is required to connect
to different resources, including databases, directory services, and other types of
remote network resources. Make sure that the design does not require a single, highly
privileged account with sufficient privileges to connect to the range of different
resource types.
● Does the design require least privileged accounts?

Have you identified which resources and operations require which privileges?
Check that the design identifies precisely which privileges each account requires
to perform its specific function and use least privileged accounts in all cases.

● Does the application need to maintain service account credentials?
If so make sure that the credentials are encrypted and held in a restricted location,
such as a registry key with a restricted access control list (ACL).

 Chapter 5: Architecture and Design Review for Security 109

How Do You Authenticate the Caller?
Review the following aspects of authenticating a caller. The aspects you use depend
on the type of authentication your design uses.
● Do you pass clear text credentials over the wire?

If you use Forms or Basic authentication, or if you use Web services and pass
credentials in SOAP headers, make sure that you use SSL to protect the credentials
in transit.

● Do you implement your own user store?
If so, check where and how the user credentials will be stored. A common mistake
is to store plaintext or encrypted passwords in the user store. Instead, you should
store a password hash for verification.
If you validate credentials against a SQL Server user store, pay close attention to
the input user names and passwords. Check for the malicious injection of SQL
characters.

● Do you use Forms authentication?
If so, in addition to using SSL to protect the credentials, you should use SSL to
protect the authentication cookie. Also check that your design uses a limited
session lifetime to counter the threat of cookie replay attacks and check that the
cookie is encrypted.

For more information about Forms authentication, see Chapter 10, “Building Secure
ASP.NET Web Pages and Controls” and Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

How Do You Authenticate with the Database?
When your application connects to the database, examine what authentication
mechanism you will use, what account or accounts you plan to use, and how you
plan to authorize the application in the database.

The following questions help review your approach to database authentication:
● Do you use SQL authentication?

Ideally, your design uses Windows authentication to connect to SQL Server
because this is an inherently more secure approach. If you use SQL authentication,
examine how you plan to secure credentials over the network and in database
connection strings.
If your network infrastructure does not provide IPSec encrypted channels, make
sure a server certificate is installed on the database to provide automatic SQL
credential encryption. Also examine how you plan to secure database connection
strings because these strings contain SQL account user names and passwords.

110 Part II:Designing Secure Web Applications

● Do you use the process account?
If you use the process account of the application and connect to SQL Server using
Windows authentication, make sure that your design assumes a least privileged
account. The local ASPNET account is provided for this purpose, although with
local accounts, you need to create a duplicate account on the database server.
If you plan to use a domain account, make sure that it is a least privileged account
and check that all intervening firewalls support Windows authentication by
opening the relevant ports.

● Do you use service accounts?
If your design requires multiple identities to support more granular authorization
in the database, examine how you plan to store the account credentials (ideally
they are encrypted using the Data Protection API (DPAPI) and held in a secured
registry key) and how you are going to use the service identity.
Also examine which process will be used to create the impersonated security
context using the service account. This should not be done by the ASP.NET
application process on Microsoft Windows 2000 because it forces you to increase
the privileges of the process account and grant the “Act as part of the operation
system” privilege. This should be avoided because it significantly increases the
risk factor.

● Have you considered using the anonymous Internet user identity?
For applications that use Forms or Passport authentication, you can configure a
separate anonymous user account for each application. Next, you can enable
impersonation and then use the anonymous identity to access the database. This
approach accommodates separate authorization and identity tracking for separate
applications on the same Web server.

● Do you use the original user identity?
If your design requires impersonation of the original caller, you need to consider
whether or not the approach provides sufficient scalability because connection
pooling is ineffective. An alternative approach is to flow the identity of the
original caller at the application level through trusted query parameters.

● How do you store database connection strings?
If database connection strings are hard coded or stored in clear text in
configuration files or the COM+ catalog, it makes them vulnerable. Instead, you
should encrypt them and restrict access to the encrypted data.

For more information about the different options for connecting to SQL Server and
about storing database connection strings securely, see Chapter 14, “Building Secure
Data Access.”

 Chapter 5: Architecture and Design Review for Security 111

Do You Enforce Strong Account Management Practices?
The use of strong passwords, restricted login attempts, and other best practice
account management policies can be enforced by Windows security policy if your
application uses Windows authentication. Otherwise, the application layer is
responsible for this. Review the following aspects of the account management of your
application:
● Does your application enforce strong passwords?

For example, do your ASP.NET Web pages use regular expressions to verify
password complexity rules?

● Do you restrict the number of failed login attempts?
Doing so can help counter the threat of dictionary attacks.

● Do you reveal too much information in the event of failure?
Make sure you do not display messages such as “Incorrect password” because this
tells malicious users that the user name is correct. This allows them to focus their
efforts on cracking passwords.

● Do you enforce a periodic change of passwords?
This is recommended because otherwise there is a high probability that a user will
not change his or her password, which makes it more vulnerable.

● Can you quickly disable accounts in the event of compromise?
If an account is compromised, can you easily disable the account to prevent the
attacker from continuing to use the account?

● Does your application record login attempts?
Recording failed login attempts is an effective way to detect an attacker who is
attempting to break in.

Authorization
Examine how your application authorizes its users. Also examine how your
application is authorized inside the database and how access to system-level
resources is controlled. Authorization vulnerabilities can result in information
disclosure, data tampering, and elevation of privileges. A defense in depth strategy is
the key security principle that you can apply to the authorization strategy of your
application. Table 5.3 highlights the most common authorization vulnerabilities.

112 Part II:Designing Secure Web Applications

Table 5.3 Common Authorization Vulnerabilities

Vulnerability Implications
Reliance on a single gatekeeper If the gatekeeper is bypassed or is improperly

configured, a user gains unauthorized access.

Failing to lock down system resources
against application identities

An attacker can coerce the application into accessing
restricted system resources.

Failing to limit database access to
specified stored procedures

An attacker mounts a SQL injection attack to retrieve,
manipulate, or destroy data.

Inadequate separation of privileges There is no accountability or ability to perform per user
authorization.

Review the following questions to help validate the authorization strategy of your
application design:
● How do you authorize end users?
● How do you authorize the application in the database?
● How do you restrict access to system-level resources?

How Do You Authorize End Users?
You should consider authorization from two perspectives at design time. First,
consider end-user authorization. Which users can access which resources and
perform which operations? Secondly, how do you prevent malicious users from using
the application to access system level resources? Review the following questions to
validate the authorization strategy of your application:
● Do you use a defense in depth strategy?

Make sure that your design does not rely on a single gatekeeper to enforce access
control. Consider what happens if this gatekeeper fails or if an attack manages to
bypass it.

● Which gatekeepers are used?
Options include IIS Web permissions, NTFS permissions, ASP.NET file
authorization (which applies only with Windows authentication), URL
authorization, and principal permission demands. If certain types are not used,
make sure you know the reasons why not.

● Do you use a role-based approach?
If so, how are the role lists maintained and how secure are the administration
interfaces that are required to do this?

● Do your roles provide adequate privilege separation?
Does your design provide the right degree of granularity so that the privileges
that are associated with distinct user roles are adequately separated? Avoid
situations where roles are granted elevated privileges just to satisfy the
requirements of certain users. Consider adding new roles instead.

 Chapter 5: Architecture and Design Review for Security 113

How Do You Authorize the Application in the Database?
The accounts that your application uses to connect to the database should have
restricted capabilities that are sufficient for the application requirements, but no
more.
● Does the application access the database using stored procedures?

This is recommended because the login of the application can only be granted
permissions to access the specified stored procedures. The login can be restricted
from performing direct create/read/update/delete (CRUD) operations against the
database.
This benefits security, and performance and future maintainability also benefit.

For more information about database authorization approaches, see Chapter 14,
“Building Secure Data Access.”

How Do You Restrict Access to System-Level Resources?
When you design your application, consider the restrictions that will be placed on the
application in terms of which system-level resources it can access. The application
should only be granted access to the minimum required resources. This is a risk
mitigation strategy that limits damage if an application is compromised. Consider the
following issues:
● Does your design use code access security?

Code access security provides a resource constraint model that can prevent code
(and Web applications) from accessing specific types of system-level resources.
When you use code access security, it inevitably influences your design. Identify
whether or not you want to include code access security in your design plans, and
then design accordingly by isolating and sandboxing privileged code and placing
resource access code in its own separate assemblies.

● What identities does your application use?
Your design should identify all of the identities that the application uses, including
the process identity, and any impersonated identities, including anonymous
Internet user accounts and service identities. The design should also indicate to
which resources these identities require access.
At deployment time, the appropriate ACLs can be configured on system-level
resources to ensure that the identities of the application only have access to the
resources they require.

For more information about designing for code access security, see Chapter 9, “Using
Code Access Security with ASP.NET.”

114 Part II:Designing Secure Web Applications

Configuration Management
If your application provides an administration interface that allows it to be
configured, examine how the administration interfaces are secured. Also examine
how sensitive configuration data is secured. Table 5.4 shows the most common
configuration management vulnerabilities.

Table 5.4 Common Configuration Management Vulnerabilities

Vulnerability Implications
Insecure administration
interfaces

Unauthorized users can reconfigure your application and access
sensitive data.

Insecure configuration stores Unauthorized users can access configuration stores and obtain
secrets, such as account names and passwords, and database
connection details.

Clear text configuration data Anyone that can log in to the server can view sensitive
configuration data.

Too many administrators This makes it difficult to audit and vet administrators.

Over-privileged process accounts
and service accounts

This can allow privilege escalation attacks.

Use the following questions to help validate the approach of your application design
to configuration management:
● Do you support remote administration?
● Do you secure configuration stores?
● Do you separate administrator privileges?

Do You Support Remote Administration?
If your design specifies remote administration, then you must secure the
administration interfaces and configuration stores because of the sensitive nature of
the operations and the data that is accessible over the administration interface.
Review the following aspects of your remote administration design:
● Do you use strong authentication?

All administration interface users should be required to authenticate. Use strong
authentication, such as Windows or client-certificate authentication.

● Do you encrypt the network traffic?
Use encrypted communication channels, such as those provided by IPSec or
virtual private network (VPN) connections. Do not support remote administration
over insecure channels. IPSec allows you to limit the identity and number of client
machines that can be used to administer the server.

 Chapter 5: Architecture and Design Review for Security 115

Do You Secure Configuration Stores?
Identify the configuration stores of your application and then examine your approach
to restricting access to the stores and securing the data inside the stores.
● Is your configuration store in the Web space?

Configuration data that is held in files in the Web space is considered less secure
than data that is held outside the Web space. Host configuration mistakes or
undiscovered bugs could potentially allow an attacker to retrieve and download
configuration files over HTTP.

● Is the data in the configuration store secure?
Make sure that key items of configuration data, such as database connection
strings, encryption keys, and service account credentials, are encrypted inside the
store.

● How is access to the configuration store restricted?
Check that the administration interface provides the necessary authorization to
ensure that only authenticated administrators can access and manipulate the data.

Do You Separate Administrator Privileges?
If your administration interfaces support different functionalities — for example, site
content updates, service account reconfiguration, and database connection details —
verify that your administration interfaces support role-based authorization to
differentiate between content developers and operators or system administrators. For
example, the person who updates static Web site content should not necessarily be
allowed to alter the credit limit of a customer or reconfigure a database connection
string.

Sensitive Data
Examine how your application handles sensitive data in store, in application
memory, and while in transit across the network. Table 5.5 shows the most common
vulnerabilities that are associated with handling sensitive data.

Table 5.5 Common Vulnerabilities with Handling Sensitive Data

Vulnerability Implications
Storing secrets when you do not
need to

This drastically increases the security risk as opposed to not
storing the secret in the first place.

Storing secrets in code If the code is on the server, an attacker might be able to
download it. Secrets are visible in binary assemblies.

Storing secrets in clear text Anyone who can log on to the server can see secret data.

Passing sensitive data in clear
text over networks

Eavesdroppers can monitor the network to reveal and tamper
with the data.

116 Part II:Designing Secure Web Applications

Use the following questions to help validate the handling of sensitive data by your
application:
● Do you store secrets?
● How do you store sensitive data?
● Do you pass sensitive data over the network?
● Do you log sensitive data?

Do You Store Secrets?
Secrets include application configuration data, such as account passwords and
encryption keys. If possible, identify alternate design approaches that remove any
reason to store secrets. If you handle secrets, let the platform handle them so that the
burden is lifted from your application wherever possible. If you do store secrets,
review the following questions:
● Can you avoid storing the secret?

If you use an alternative implementation technique, it could remove the need to
store secrets. For example, if all you need to do is verify that a user knows a
password, you do not need to store passwords. Store one-way password hashes
instead.
Also, if you use Windows authentication, you avoid storing connection strings
with embedded credentials.

● How do you store secrets?
If you use encryption, how do you secure the encryption keys? Consider using
platform-provided DPAPI encryption that takes care of the key management for
you.

● Where do you store secrets?
Examine how your application stores its encrypted data. For maximum security,
access to the encrypted data should be restricted with Windows ACLs. Check that
the application does not store secrets in clear text or in source code.
If you use the Local Security Authority (LSA), the code that retrieves the secret has
to run with administrator privileges, which increases risk. An alternative approach
that does not require extended privileges is to use DPAPI.

● How do you process secrets?
Examine how your application accesses the secrets and how long they are retained
in memory in clear text form. Secrets should generally be retrieved on demand,
used for the smallest amount of time possible, and then discarded.

● Do you store secrets in cookies?
If so, make sure the cookie is encrypted and is not persisted on the client
computer.

 Chapter 5: Architecture and Design Review for Security 117

How Do You Store Sensitive Data?
If you store sensitive application data, such as custom credit card details, examine
how you protect the data.
● What encryption algorithm do you use? You should encrypt the data using a

strong encryption algorithm with a large key size, such as Triple DES.
● How do you secure the encryption keys? The data is only as secure as the

encryption key, so examine how you secure the key. Ideally, encrypt the key with
DPAPI and secure it in a restricted location, for example, a registry key.

Do You Pass Sensitive Data Over the Network?
If you pass sensitive data over the network, check that the data is either encrypted by
the application or that the data is only passed over encrypted communication links.

Do You Log Sensitive Data?
Examine whether or not your application (or the host) logs sensitive data such as user
account passwords in clear text log files. You should generally avoid this. Make sure
the application does not pass sensitive data in query strings because these are logged
and are also clearly visible in the client’s browser address bar.

Session Management
Because Web applications are built on the stateless HTTP protocol, session
management is an application-level responsibility. Examine the approach to session
management by your application because it directly affects the overall security of
your application. Table 5.6 shows the most common vulnerabilities associated with
session management.

Table 5.6 Common Session Management Vulnerabilities

Vulnerability Implications
Passing session identifiers over
unencrypted channels

Attackers can capture session identifiers to spoof identity.

Prolonged session lifetime This increases the risk of session hijacking and replay attacks.

Insecure session state stores Attackers can access the private session data of a user.

Session identifiers in query
strings

Session identifiers can easily be modified at the client to spoof
identity and access the application as another user.

118 Part II:Designing Secure Web Applications

Use the following questions to help validate the handling of sensitive data by your
application:
● How are session identifiers exchanged?
● Do you restrict session lifetime?
● How is the session state store secured?

How Are Session Identifiers Exchanged?
Examine the session identifier that your application uses to manage user sessions and
how these session identifiers are exchanged. Consider the following:
● Do you pass session identifiers over unencrypted channels?

If you track session state with session identifiers — for example, tokens contained
in cookies — examine whether or not the identifier or cookie is only passed over an
encrypted channel, such as SSL.

● Do you encrypt session cookies?
If you use Forms authentication, make sure your application encrypts the
authentication cookies using the protection=“All” attribute on the <forms>
element. This practice is recommended in addition to SSL to mitigate the risk of an
XSS attack that manages to steal the authentication cookie of a user.

● Do you pass session identifiers in query strings?
Make sure that your application does not pass session identifiers in query strings.
These strings can be easily modified at the client, which would allow a user to
access the application as another user, access the private data of other users, and
potentially elevate privileges.

Do You Restrict Session Lifetime?
Examine how long your application considers a session identifier valid. The
application should limit this time to mitigate the threat of session hijacking and
replay attacks.

How Is the Session State Store Secured?
Examine how your application stores session state. Session state can be stored in the
Web application process, the ASP.NET session state service, or a SQL Server state
store. If you use a remote state store, make sure that the link from the Web server to
the remote store is encrypted with IPSec or SSL to protect data over the wire.

For more information about securing ASP.NET session state, see “Session State” in
Chapter 19, “Securing Your ASP.NET Application and Web Services.”

 Chapter 5: Architecture and Design Review for Security 119

Cryptography
If your application uses cryptography to provide security, examine what it is used for
and the way it is used. Table 5.7 shows the most common vulnerabilities relating to
cryptography.

Table 5.7 Common Cryptography Vulnerabilities

Vulnerability Implications
Using custom cryptography This is almost certainly less secure than the tried and

tested platform-provided cryptography.

Using the wrong algorithm or too
small a key size

Newer algorithms increase security. Larger key sizes
increase security.

Failing to secure encryption keys Encrypted data is only as secure as the encryption key.

Using the same key for a prolonged
period of time

A static key is more likely to be discovered over time.

Review the following questions to help validate the handling of sensitive data by
your application:
● Why do you use particular algorithms?
● How do you secure encryption keys?

Why Do You Use Particular Algorithms?
Cryptography only provides real security if it is used appropriately and the right
algorithms are used for the right job. The strength of the algorithm is also important.
Review the following questions to review your use of cryptographic algorithms:
● Do you develop your own cryptography?

Do not. Cryptographic algorithms and routines are notoriously difficult to develop
and get right. Custom implementations frequently result in weak protection and
are almost always less secure than the proven platform-provided services.

● Do you use the right algorithm with an adequate key size?
Examine what algorithms your application uses and for what purpose. Larger key
sizes result in improved security, but performance suffers. Stronger encryption is
most important for persisted data that is retained in data stores for prolonged
periods of time.

For more information about choosing an appropriate algorithm and key size, see the
Cryptography section in Chapter 4, “Design Guidelines for Secure Web
Applications.”

120 Part II:Designing Secure Web Applications

How Do You Secure Encryption Keys?
The encrypted data is only as secure as the key. To decipher encrypted data, an
attacker must be able to retrieve the key and the cipher text. Therefore, examine your
design to ensure that the encryption keys and the encrypted data are secured.
Consider the following review questions:
● How do you secure the encryption key?

If you use DPAPI, the platform manages the key for you. Otherwise, the
application is responsible for key management. Examine how your application
secures its encryption keys. A good approach is to use DPAPI to encrypt the
encryption keys that are required by other forms of encryption. Then securely
store the encrypted key, for example, by placing it in the registry beneath a key
configured with a restricted ACL.

● How often are keys recycled?
Do not overuse keys. The longer the same key is used, the more likely it is to be
discovered. Does your design consider how and how often you are going to
recycle keys and how they are going to be distributed and installed on your
servers?

Parameter Manipulation
Examine how your application uses parameters. These parameters include form
fields, query strings, cookies, HTTP headers, and view state that are passed between
client and server. If you pass sensitive data, such as session identifiers, using
parameters such as query strings, a malicious client can easily bypass your server
side checks with simple parameter manipulation. Table 5.8 shows the most common
parameter manipulation vulnerabilities.

Table 5.8 Common Parameter Manipulation Vulnerabilities

Vulnerability Implications
Failing to validate all input
parameters

Your application is susceptible to denial of service attacks and
code injection attacks, including SQL injection and XSS.

Sensitive data in unencrypted
cookies

Cookie data can be changed at the client or it can be captured
and changed as it is passed over the network.

Sensitive data in query strings
and form fields

This is easily changed on the client.

Trusting HTTP header
information

This is easily changed on the client.

Unprotected view state This is easily changed on the client.

 Chapter 5: Architecture and Design Review for Security 121

Examine the following questions to help ensure that your design is not susceptible to
parameter manipulation attacks:
● Do you validate all input parameters?
● Do you pass sensitive data in parameters?
● Do you use HTTP header data for security?

Do You Validate All Input Parameters?
Check that your application validates all input parameters, including regular and
hidden form fields, query strings, and cookies.

Do You Pass Sensitive Data in Parameters?
If your application passes sensitive data in parameters such as query strings or form
fields, examine why your application favors this approach over the much more
secure approach of passing a session identifier (for example, in an encrypted cookie).
Use this information to associate the session with the state of a user that is
maintained in the state store on the server. Consider the following review points:
● Do you encrypt cookies with sensitive data?

If your application uses a cookie that contains sensitive data, such as a user name
or a role list, make sure it is encrypted.

● Do you pass sensitive data in query strings or Form fields?
This is not recommended because there is no easy way to prevent the
manipulation of data in query strings or form fields. Instead, consider using
encrypted session identifiers and store the sensitive data in the session state store
on the server.

● Do you protect view state?
If your Web pages or controls use view state to maintain state across HTTP
requests, check that the view state is encrypted and checked for integrity with
message authentication codes (MACs). You can configure this at the machine level
or on a page-by-page basis.

Do You Use HTTP Header Data for Security?
Make sure that your Web application does not make security decisions based on
information in HTTP headers because an attacker can easily manipulate the header.
Do not rely on the value of the HTTP referer field to check that the request originated
from a page that is generated by your Web application — this creates vulnerabilities.
Doing this is inherently insecure because the referer field can easily be changed by
the client.

122 Part II:Designing Secure Web Applications

Exception Management
Examine the way that your application handles error conditions. It is recommended
that you consistently use structured exception handling. Also, check that your
application does not reveal too much information when an exception occurs.
Table 5.9 shows the two major exception management vulnerabilities.

Table 5.9 Common Exception Management Vulnerabilities

Vulnerability Implications
Failing to use structured
exception handling

Your application is more susceptible to denial of service attacks
and logic flaws, which can expose security vulnerabilities.

Revealing too much information
to the client

An attacker can use this information to help plan and tune
subsequent attacks.

Review the following questions to help ensure that your design is not susceptible to
exception management security vulnerabilities:
● Do you use structured exception handling?
● Do you reveal too much information to the client?

Do You Use Structured Exception Handling?
Examine how your application uses structured exception handling. Your design
should mandate that structured exception handling be used consistently throughout
the entire application. This creates more robust applications and your application is
less likely to be left in inconsistent states that can reveal security vulnerabilities.

Do You Reveal Too Much Information to the Client?
Make sure that a malicious user cannot exploit the overly detailed information that
an error message contains. Review the following points:
● Do you catch, handle, and log exceptions on the server?

Make sure that the application does not let internal exception conditions
propagate beyond the application boundary. Exceptions should be caught and
logged on the server and, if necessary, generic error messages should be returned
to the client.

● Do you use a centralized exception management system?
The best way to handle and log exceptions consistently throughout your
application is to use a formalized exception management system. You can also tie
this system into monitoring systems that can be used by the operations team for
health and performance monitoring.

 Chapter 5: Architecture and Design Review for Security 123

● Have you defined a set of custom error messages?
Your design should define the custom error messages will be used by your
application when critical errors occur. Make sure they do not contain any sensitive
items of data that could be exploited by a malicious user.

For more information about designing and implementing an exception management
framework for .NET applications, see MSDN article, “Exception Management in
.NET,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html
/exceptdotnet.asp.

Auditing and Logging
Examine how your application uses auditing and logging. Besides preventing
repudiation issues, regular log file analysis helps identify signs of intrusion.
Table 5.10 shows the most common auditing and logging vulnerabilities.

Table 5.10 Common Auditing and Logging Vulnerabilities

Vulnerability Implications
Failing to audit failed logons Attempted break-ins go undetected.

Failing to secure audit files An attacker can cover his or her tracks.

Failing to audit across application tiers The threat of repudiation increases.

Review the following questions to help verify the approach to auditing and logging
by your application:
● Have you identified key activities to audit?
● Have you considered how to flow original caller identity?
● Have you considered secure log file management policies?

Have You Identified Key Activities to Audit?
Your design should define which activities should be audited. Consider the
following:
● Do you audit failed login attempts?

This allows you to detect break-in and password-cracking attempts.
● Do you audit other key operations?

Check that you audit other key events, including data retrieval, network
communications, and administrative functions (such as enabling and disabling
of logging).

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/exceptdotnet.asp

124 Part II:Designing Secure Web Applications

Have You Considered How to Flow Original Caller Identity?
Your design should ensure that activity is audited across multiple application tiers.
To do so, the identity of the original caller must be available at each tier.
● Do you audit across application tiers?

Examine whether each tier audits activity as it should.
● How do you synchronize multiple logs?

Log files may be needed in legal proceedings to prove crimes committed by
individuals or to settle cases of repudiation. Generally, auditing is considered most
authoritative if the audits are generated at the time of resource access and by the
same routines that access the resource. Verify that the application design factors in
log file synchronization and logs some form of request identifier to ensure that
multiple log file entries can be correlated and related back to a single request.

● How do you flow the original caller identity?
If you do not flow the original caller identity at the operating system level, for
example, because of the limited scalability that this approach offers, identify how
the application flows the original caller identity. This is required for cross-tier
auditing (and potentially for authorization).
Also, if multiple users are mapped to a single application role, check that the
application logs the identity of the original caller.

Have You Considered Secure Log File Management Policies?
Check whether your application design factors in how log files are backed up,
archived, and analyzed. Log files should be archived regularly to ensure that they do
not fill up or start to cycle, and they should be regularly analyzed to detect signs of
intrusion. Also ensure that any accounts used to perform the backup are least
privileged and that you secure any additional communication channels exposed
purely for the purpose of the backup.

Summary
By spending the time and effort up front to analyze and review your application
architecture and design, you can improve its overall security by eliminating design-
related vulnerabilities. It is much easier and less expensive to fix vulnerabilities at
design time than it is later in the development cycle when substantial reengineering
might be required.

By considering your design in relation to the target deployment environment and the
security policies defined by that environment, you can help ensure a smooth and
secure application deployment.

 Chapter 5: Architecture and Design Review for Security 125

If your application has already been created, the architecture and design review is
still an important part of the security assessment process that helps you fix
vulnerabilities and improve future designs.

Additional Resources
For more information, see the following resources:
● For more information on designing, building and configuring authentication,

authorization and secure communications across the tiers of a distributed
Web application, see “Microsoft patterns & practices Volume I, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

● For a printable checklist, see “Checklist: Architecture and Design Review for
Security,” in the “Checklists” section of this guide.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

Part III
Building Secure Web
Applications

In This Part:
● .NET Security Overview
● Building Secure Assemblies
● Code Access Security in Practice
● Using Code Access Security with ASP.NET
● Building Secure ASP.NET Pages and Controls
● Building Secure Serviced Components
● Building Secure Web Services
● Building Secure Remoted Components
● Building Secure Data Access

6
.NET Security Overview

In This Chapter
● Security benefits of managed code
● Role-based security versus code access security
● Principals and identities
● PrincipalPermission objects
● .NET Framework role-based security fundamentals
● .NET Framework security namespaces

Overview
The Microsoft .NET Framework gives numerous techniques and a vast range of types
in the security namespaces to help you build secure code and create secure Web
applications. This chapter defines the .NET Framework security landscape by briefly
introducing the security benefits of managed code development. This chapter also
introduces and contrasts the two complimentary forms of security that are available
to .NET Framework applications: user security and code security. Finally, the chapter
briefly examines the security namespaces that you use to program .NET Framework
security.

This chapter emphasizes how .NET Framework security applies to ASP.NET Web
applications and Web services.

130 Part III: Building Secure Web Applications

How to Use This Chapter
This chapter describes the security benefits inherent in using the .NET Framework
and explains the complementary features of .NET Framework user (or role-based)
security and .NET Framework code-based (or code access) security. We recommend
that you use this chapter as follows:
● Understand the two-layered defense provided by the .NET Framework.

Role-based security allows you to control user access to application resources and
operations, while code access security can control which code can access resources
and perform privileged operations.

● Create applications that use the security concepts in this chapter. This chapter
tells you when you should use user-based security and when you should use
code-based security. After reading this chapter, you will be able to identify how
any new applications you create can be more secure by using role-based or
code-based security.

Managed Code Benefits
Developing .NET Framework applications provides you with some immediate
security benefits, although there are still many issues for you to think about. These
issues are discussed in the Building chapters in Part III of this guide.

.NET Framework assemblies are built with managed code. Compilers for languages,
such as the Microsoft Visual C#® development tool and Microsoft Visual Basic® .NET
development system, output Microsoft intermediate language (MSIL) instructions,
which are contained in standard Microsoft Windows portable executable (PE) .dll or
.exe files. When the assembly is loaded and a method is called, the method’s MSIL
code is compiled by a just-in-time (JIT) compiler into native machine instructions,
which are subsequently executed. Methods that are never called are not JIT-compiled.

The use of an intermediate language coupled with the run-time environment
provided by the common language runtime offers assembly developers immediate
security advantages.
● File format and metadata validation. The common language runtime verifies that

the PE file format is valid and that addresses do not point outside of the PE file.
This helps provide assembly isolation. The common language runtime also
validates the integrity of the metadata that is contained in the assembly.

 Chapter 6: .NET Security Overview 131

● Code verification. The MSIL code is verified for type safety at JIT compile time.
This is a major plus from a security perspective because the verification process
can prevent bad pointer manipulation, validate type conversions, check array
bounds, and so on. This virtually eliminates buffer overflow vulnerabilities in
managed code, although you still need to carefully inspect any code that calls
unmanaged application programming interfaces (APIs) for the possibility of buffer
overflow.

● Integrity checking. The integrity of strong named assemblies is verified using a
digital signature to ensure that the assembly has not been altered in any way since
it was built and signed. This means that attackers cannot alter your code in any
way by directly manipulating the MSIL instructions.

● Code access security. The virtual execution environment provided by the
common language runtime allows additional security checks to be performed at
runtime. Specifically, code access security can make various run-time security
decisions based on the identity of the calling code.

User vs. Code Security
User security and code security are two complementary forms of security that are
available to .NET Framework applications. User security answers the questions,
“Who is the user and what can the user do?” while code security answers the
questions “Where is the code from, who wrote the code, and what can the code do?”
Code security involves authorizing the application’s (not the user’s) access to system-
level resources, including the file system, registry, network, directory services, and
databases. In this case, it does not matter who the end user is, or which user account
runs the code, but it does matter what the code is and is not allowed to do.

The .NET Framework user security implementation is called role-based security.
The code security implementation is called code access security.

Role-Based Security
.NET Framework role-based security allows a Web application to make security
decisions based on the identity or role membership of the user that interacts with
the application. If your application uses Windows authentication, then a role is a
Windows group. If your application uses other forms of authentication, then a role is
application-defined and user and role details are usually maintained in SQL Server or
user stores based on Active Directory.

The identity of the authenticated user and its associated role membership is made
available to Web applications through Principal objects, which are attached to the
current Web request.

132 Part III: Building Secure Web Applications

Figure 6.1 shows a logical view of how user security is typically used in a Web
application to restrict user access to Web pages, business logic, operations, and data
access.

User

Who is the user?
(Authentication)

Role-Based Security

What can the user do?
(Authorization)

Business Logic

Operations

Data Access

Web Application

Web Pages

User Store
(SAM, Active

Directory or SQL
Server)

Figure 6.1
A logical view of (user) role-based security

Code Access Security
Code access security authorizes code when it attempts to access secured resources,
such as the file system, registry, network, and so on, or when it attempts to perform
other privileged operations, such as calling unmanaged code or using reflection.

Code access security is an important additional defense mechanism that you can use
to provide constraints on a piece of code. An administrator can configure code access
security policy to restrict the resource types that code can access and the other
privileged operations it can perform. From a Web application standpoint, this means
that in the event of a compromised process where an attacker takes control of a Web
application process or injects code to run inside the process, the additional constraints
that code access security provides can limit the damage that can be done.

Figure 6.2 shows a logical view of how code access security is used in a Web
application to constrain the application’s access to system resources, resources owned
by other applications, and privileged operations, such as calling unmanaged code.

 Chapter 6: .NET Security Overview 133

User

Code Access Security

What can the code do?
(Permission-based

Authorization)

Privileged
Operations

Web Application

Secure Resources

What is the code?
(Evidence-based authentication)

C
od

e

CAS
Policy

Evidence

Figure 6.2
Logical view of code-based security

The authentication (identification) of code is based on evidence about the code, for
example, its strong name, publisher, or installation directory. Authorization is based
on the code access permissions granted to code by security policy. For more
information about .NET Framework code access security, see Chapter 8, “Code
Access Security in Practice.”

.NET Framework Role-Based Security
.NET Framework role-based security is a key technology that is used to authorize a
user’s actions in an application. Roles are often used to enforce business rules. For
example, a financial application might allow only managers to perform monetary
transfers that exceed a particular threshold.

Role-based security consists of the following elements:
● Principals and identities
● PrincipalPermission objects
● Role-based security checks
● URL authorization

134 Part III: Building Secure Web Applications

Principals and Identities
Role-based security is implemented with Principal and Identity objects. The identity
and role membership of the authenticated caller is exposed through a Principal
object, which is attached to the current Web request. You can retrieve the object by
using the HttpContext.Current.User property. If the caller is not required to
authenticate with the application, for example, because the user is browsing a
publicly accessible part of the site, the Principal object represents the anonymous
Internet user.

There are many types of Principal objects and the precise type depends on the
authentication mechanism used by the application. However, all Principal objects
implement the System.Security.Principal.IPrincipal interface and they all maintain a
list of roles of which the user is a member.

Principal objects also contain Identity objects, which include the user’s name,
together with flags that indicate the authentication type and whether or not the user
has been authenticated. This allows you to distinguish between authenticated and
anonymous users. There are different types of Identity objects, depending on the
authentication type, although all implement the System.Security.Principal.IIdentity
interface.

The following table shows the range of possible authentication types and the
different types of Principal and Identity objects that ASP.NET Web applications use.

Table 6.1 Principal and Identity Objects Per Authentication Type

Authentication
Type

Principal and
Identity Type

Comments

Windows WindowsPrincipal +

WindowsIdentity

Verification of credentials is automatic and uses the
Security Accounts Manager (SAM) or Active Directory.
Windows groups are used for roles.

Forms GenericPrincipal +

FormsIdentity

You must add code to verify credentials and retrieve role
membership from a user store.

Passport GenericPrincipal +

PassportIdentity

Relies on the Microsoft Passport SDK. PassportIdentity
provides access to the passport authentication ticket.

PrincipalPermission Objects
The PrincipalPermission object represents the identity and role that the current
principal must have to execute code. PrincipalPermission objects can be used
declaratively or imperatively in code.

 Chapter 6: .NET Security Overview 135

Declarative Security
You can control precisely which users should be allowed to access a class or a method
by adding a PrincipalPermissionAttribute to the class or method definition. A class-
level attribute automatically applies to all class members unless it is overridden by a
member-level attribute. The PrincipalPermissionAttribute type is defined within the
System.Security.Permissions namespace.

Note You can also use the PrincipalPermissionAttribute to restrict access to structures and to
other member types, such as properties and delegates.

The following example shows how to restrict access to a particular class to members
of a Managers group. Note that this example assumes Windows authentication,
where the format of the role name is in the format MachineName\RoleName or
DomainName\RoleName. For other authentication types, the format of the role name is
application specific and depends on the role-name strings held in the user store.

[PrincipalPermissionAttribute(SecurityAction.Demand, Role=@"DOMAINNAME\Managers")]
public sealed class OnlyManagersCanCallMe
{
}

Note The trailing Attribute can be omitted from the attribute type names. This makes the attribute
type name appear to be the same as the associated permission type name, which in this case is
PrincipalPermission. They are distinct (but logically related) types.

The next example shows how to restrict access to a particular method on a class. In
this example, access is restricted to members of the local administrators group, which
is identified by the special “BUILTIN\Administrators” identifier.

[PrincipalPermissionAttribute(SecurityAction.Demand,
 Role=@"BUILTIN\Administrators")]
public void SomeMethod()
{
}

Other built-in Windows group names can be used by prefixing the group name with
“BUILTIN\” (for example, “BUILTIN\Users” and “BUILTIN\Power Users”).

Imperative Security
If method-level security is not granular enough for your security requirements, you
can perform imperative security checks in code by using
System.Security.Permissions.PrincipalPermission objects.

136 Part III: Building Secure Web Applications

The following example shows imperative security syntax using a
PrincipalPermission object.

PrincipalPermission permCheck = new PrincipalPermission(
 null, @"DomainName\WindowsGroup");
permCheck.Demand();

To avoid a local variable, the code above can also be written as:

(new PrincipalPermission(null, @"DomainName\WindowsGroup")).Demand();

The code creates a PrincipalPermission object with a blank user name and a specified
role name, and then calls the Demand method. This causes the common language
runtime to interrogate the current Principal object that is attached to the current
thread and check whether the associated identity is a member of the specified role.
Because Windows authentication is used in this example, the role check uses a
Windows group. If the current identity is not a member of the specified role, a
SecurityException is thrown.

The following example shows how to restrict access to an individual user.

(new PrincipalPermission(@"DOMAINNAME\James", null)).Demand();

Declarative vs. Imperative Security
You can use role-based security (and code access security) either declaratively using
attributes or imperatively in code. Generally, declarative security offers the most
benefits, although sometimes you must use imperative security (for example, when
you need to use variables that are only available at runtime) to help make a security
decision.

Advantages of Declarative Security

The main advantages of declarative security are the following:
● It allows the administrator or assembly consumer to see precisely which security

permissions that particular classes and methods must run. Tools such as
permview.exe provide this information. Knowing this information at deployment
time can help resolve security issues and it helps the administrator configure code
access security policy.

● It offers increased performance. Declarative demands are evaluated only once at
load time. Imperative demands inside methods are evaluated each time the
method that contains the demand is called.

 Chapter 6: .NET Security Overview 137

● Security attributes ensure that the permission demand is executed before any
other code in the method has a chance to run. This eliminates potential bugs
where security checks are performed too late.

● Declarative checks at the class level apply to all class members. Imperative checks
apply at the call site.

Advantages of Imperative Security

The main advantages of imperative security and the main reasons that you
sometimes must use it are:
● It allows you to dynamically shape the demand by using values only available at

runtime.
● It allows you to perform more granular authorization by implementing

conditional logic in code.

Role-Based Security Checks
For fine-grained authorization decisions, you can also perform explicit role checks by
using the IPrincipal.IsInRole method. The following example assumes Windows
authentication, although the code would be very similar for Forms authentication,
except that you would cast the User object to an object of the GenericPrincipal type.

// Extract the authenticated user from the current HTTP context.
// The User variable is equivalent to HttpContext.Current.User if you are using
// an .aspx or .asmx page
WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
if (null != authenticatedUser)
{
 // Note: If you need to authorize specific users based on their identity
 // and not their role membership, you can retrieve the authenticated user's
 // username with the following line of code (normally though, you should
 // perform role-based authorization).
 // string username = authenticatedUser.Identity.Name;

 // Perform a role check
 if (authenticatedUser.IsInRole(@"DomainName\Manager"))
 {
 // User is authorized to perform manager functionality
 }
}
else
{
 // User is not authorized to perform manager functionality
 // Throw a security exception
}

138 Part III: Building Secure Web Applications

URL Authorization
Administrators can configure role-based security by using the <authorization>
element in Machine.config or Web.config. This element configures the ASP.NET
UrlAuthorizationModule, which uses the principal object attached to the current
Web request in order to make authorization decisions.

The authorization element contains child <allow> and <deny> elements, which are
used to determine which users or groups are allowed or denied access to specific
directories or pages. Unless the <authorization> element is contained within a
<location> element, the <authorization> element in Web.config controls access to the
directory in which the Web.config file resides. This is normally the Web application’s
virtual root directory.

The following example from Web.config uses Windows authentication and allows
Bob and Mary access but denies everyone else:

<authorization>
 <allow users="DomainName\Bob, DomainName\Mary" />
 <deny users="*" />
</authorization>

The following syntax and semantics apply to the configuration of the
<authorization> element:
● “*” refers to all identities.
● “?” refers to unauthenticated identities (that is, the anonymous identity).
● You do not need to impersonate for URL authorization to work.
● Users and roles for URL authorization are determined by your authentication

settings:
● When you have <authentication mode=“Windows” />, you are authorizing

access to Windows user and group accounts.

User names take the form “DomainName\WindowsUserName”.

Role names take the form “DomainName\WindowsGroupName”.

Note The local administrators group is referred to as “BUILTIN\Administrators”. The local
users group is referred to as “BUILTIN\Users”.

● When you have <authentication mode=“Forms” />, you are authorizing
against the user and roles for the IPrincipal object that was stored in the
current HTTP context. For example, if you used Forms to authenticate users
against a database, you will be authorizing against the roles retrieved from
the database.

 Chapter 6: .NET Security Overview 139

● When you have <authentication mode=“Passport” />, you authorize against
the Passport User ID (PUID) or roles retrieved from a store. For example, you
can map a PUID to a particular account and set of roles stored in a Microsoft
SQL Server database or Active Directory.

● When you have <authentication mode=“None” />, you may not be
performing authorization. “None” specifies that you do not want to perform
any authentication or that you do not want to use any of the ASP.NET
authentication modules, but you do want to use your own custom mechanism.

However, if you use custom authentication, you should create an IPrincipal
object with roles and store it in the HttpContext.Current.User property When
you subsequently perform URL authorization, it is performed against the user
and roles (no matter how they were retrieved) maintained in the IPrincipal
object.

Configuring Access to a Specific File
To configure access to a specific file, place the <authorization> element inside a
<location> element as shown below.

<location path="somepage.aspx" />
 <authorization>
 <allow users="DomainName\Bob, DomainName\Mary" />
 <deny users="*" />
 </authorization>
</location>

You can also point the path attribute at a specific folder to apply access control to all
the files in that particular folder. For more information about the <location> element,
see Chapter 19, “Securing Your ASP.NET Application.”

.NET Framework Security Namespaces
To program .NET Framework security, you use the types in the .NET Framework
security namespaces. This section introduces these namespaces and the types that
you are likely to use when you develop secure Web applications. For a full list of
types, see the .NET Framework documentation. The security namespaces are listed
below and are shown in Figure 6.3.
● System.Security
● System.Web.Security
● System.Security.Cryptography
● System.Security.Principal
● System.Security.Policy
● System.Security.Permissions

140 Part III: Building Secure Web Applications

System.Security.
Cryptography

System.Security.
Principal

System.Security.
Policy

System.Security.
Permissions

System.Web.Security

Encryption
Decryption

Hashing
Random Numbers

User-Based
Security

Code-Based
Security

Code-Based
Security

Windows, Forms and
Passport authentication

for Web applications
URL and File
authorization

Security Exception
Other Attributes

System.Security

Figure 6.3
.NET Framework security namespaces

System.Security
This namespace contains the CodeAccessPermission base class from which all other
code access permission types derive. You are unlikely to use the base class directly.
You are more likely to use specific permission types that represent the rights of code
to access specific resource types or perform other privileged operations. For example,
FileIOPermission represents the rights to perform file I/O, EventLogPermission
represents the rights for code to access the event log, and so on. For a full list of code
access permission types, see Table 6.2 later in this chapter.

The System.Security namespace also contains classes that encapsulate permission
sets. These include the PermissionSet and NamedPermissionSet classes. The types
you are most likely to use when building secure Web applications are:
● SecurityException. The exception type used to represent security errors.
● AllowPartiallyTrustedCallersAttribute. An assembly-level attribute used with

strong named assemblies that must support partial trust callers. Without this
attribute, a strong named assembly can only be called by full trust callers (callers
with unrestricted permissions.)

 Chapter 6: .NET Security Overview 141

● SupressUnmanagedSecurityAttribute. Used to optimize performance and
eliminate the demand for the unmanaged code permission issued by the Platform
Invocation Services (P/Invoke) and Component Object Model (COM)
interoperability layers. This attribute must be used with caution because it exposes
a potential security risk. If an attacker gains control of unmanaged code, he is no
longer restricted by code access security. For more information about using this
attribute safely, see “Unmanaged Code” in Chapter 8, “Code Access Security in
Practice.”

System.Web.Security
This namespace contains the classes used to manage Web application authentication
and authorization. This includes Windows, Forms, and Passport authentication and
URL and File authorization, which are controlled by the UrlAuthorizationModule
and FileAuthorizationModule classes, respectively. The types you are most likely to
use when you build secure Web applications are:
● FormsAuthentication. Provides static methods to help with Forms authentication

and authentication ticket manipulation.
● FormsIdentity. Used to encapsulate the user identity that is authenticated by

Forms authentication.
● PassportIdentity. Used to encapsulate the user identity that is authenticated by

Passport authentication.

System.Security.Cryptography
This namespace contains types that are used to perform encryption and decryption,
hashing, and random number generation. This is a large namespace that contains
many types. Many encryption algorithms are implemented in managed code,
while others are exposed by types in this namespace that wrap the underlying
cryptographic functionality provided by the Microsoft Win32®-based CryptoAPI.

System.Security.Principal
This namespace contains types that are used to support role-based security. They are
used to restrict which users can access classes and class members. The namespace
includes the IPrincipal and IIdentity interfaces. The types you are most likely to use
when building secure Web applications are:
● GenericPrincipal and GenericIdentity. Allow you to define your own roles and

user identities. These are typically used with custom authentication mechanisms.
● WindowsPrincipal and WindowsIdentity. Represents a user who is authenticated

with Windows authentication together with the user’s associated Windows group
(role) list.

142 Part III: Building Secure Web Applications

System.Security.Policy
This namespace contains types that are used to implement the code access security
policy system. It includes types to represent code groups, membership conditions,
policy levels, and evidence.

System.Security.Permissions
This namespace contains the majority of permission types that are used to
encapsulate the rights of code to access resources and perform privileged operations.
The following table shows the permission types that are defined in this namespace
(in alphabetical order).

Table 6.2 Permission Types Within the System.Security.Permissions Namespace

Permission Description
DirectoryServicesPermission Required to access Active Directory.

DNSPermission Required to access domain name system (DNS) servers on the
network.

EndpointPermission Defines an endpoint that is authorized by a SocketPermission
object.

EnvironmentPermission Controls read and write access to individual environment
variables. It can also be used to restrict all access to
environment variables.

EventLogPermission Required to access the event log.

FileDialogPermission Allows read-only access to files only if the file name is specified
by the interactive user through a system-provided file dialog box.
It is normally used when FileIOPermission is not granted.

FileIOPermission Controls read, write, and append access to files and directory
trees. It can also be used to restrict all access to the file
system.

IsolatedStorageFilePermission Controls the usage of an application’s private virtual file system
(provided by isolated storage). Isolated storage creates a unique
and private storage area for the sole use by an application or
component.

IsolatedStoragePermission Required to access isolated storage.

MessageQueuePermission Required to access Microsoft Message Queuing message
queues.

OdbcPermission Required to use the ADO.NET ODBC data provider. (Full trust is
also required.)

 Chapter 6: .NET Security Overview 143

Table 6.2 Permission Types Within the System.Security.Permissions Namespace (continued)
Permission Description
OleDbPermission Required to use the ADO.NET OLE DB data provider. (Full trust is

also required.)

OraclePermission Required to use the ADO.NET Oracle data provider. (Full trust is
also required.)

PerformanceCounterPermission Required to access system performance counters.

PrincipalPermission Used to restrict access to classes and methods based on the
identity and role membership of the user.

PrintingPermission Required to access printers.

ReflectionPermission Controls access to metadata. Code with the appropriate
ReflectionPermission can obtain information about the public,
protected, and private members of a type.

RegistryPermission Controls read, write, and create access to registry keys (including
subkeys). It can also be used to restrict all access to the registry.

SecurityPermission This is a meta-permission that controls the use of the security
infrastructure itself.

ServiceControllerPermission Can be used to restrict access to the Windows Service Control
Manager and the ability to start, stop, and pause services.

SocketPermission Can be used to restrict the ability to make or accept a
connection on a transport address.

SqlClientPermission Can be used to restrict access to SQL Server data sources.

UIPermission Can be used to restrict access to the clipboard and to restrict
the use of windows to “safe” windows in an attempt to avoid
attacks that mimic system dialog boxes that prompt for sensitive
information such as passwords.

WebPermission Can be used to control access to HTTP Internet resources.

The SecurityPermission class warrants special attention because it represents the
rights of code to perform privileged operations, including asserting code access
permissions, calling unmanaged code, using reflection, and controlling policy and
evidence, among others. The precise right determined by the SecurityPermission
class is determined by its Flags property, which must be set to one of the enumerated
values defined by the SecurityPermissionFlags enumerated type (for example,
SecurityPermissionFlags.UnmanagedCode).

144 Part III: Building Secure Web Applications

Summary
This chapter has introduced you to the .NET Framework security landscape by
contrasting user security and code security and by examining the security
namespaces. The .NET Framework refers to these two types of security as role-based
security and code access security, respectively. Both forms of security are layered on
top of Windows security.

Role-based security is concerned with authorizing user access to application-
managed resources (such as Web pages) and operations (such as business and data
access logic). Code access security is concerned with constraining privileged code
and controlling precisely which code can access resources and perform other
privileged operations. This is a powerful additional security mechanism for Web
applications because it restricts what an attacker is able to do, even if the attacker
manages to compromise the Web application process. It is also an extremely powerful
feature for providing application isolation. This is particularly true for hosting
companies or any organization that hosts multiple Web applications on the same
Web server.

Additional Resources
For more information, see the following resources:
● For more information about code access security, see Chapter 8, “Code Access

Security in Practice,” and Chapter 9, “Using Code Access Security with ASP.NET.”
● For information about code access security and role-based security, see the

MSDN article, “.NET Framework Security,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconnetframeworksecurity.asp

7
Building Secure Assemblies

In This Chapter
● Improving the security of your assemblies with simple, proven coding techniques.
● Reducing the attack surface through well-designed interfaces and solid object

oriented programming techniques.
● Using strong names and tamperproofing your assemblies.
● Reducing the risks associated with calling unmanaged code.
● Writing secure resource access code including file I/O, registry, event log,

database, and network access.

Overview
Assemblies are the building blocks of .NET Framework applications and are the unit
of deployment, version control, and reuse. They are also the unit of trust for code
access security (all the code in an assembly is equally trusted). This chapter shows
you how to improve the security design and implementation of your assemblies. This
includes evaluating deployment considerations, following solid object-oriented
programming practices, tamperproofing your code, ensuring that internal system
level information is not revealed to the caller, and restricting who can call your code.

Managed code, the .NET Framework, and the common language runtime eliminate
several important security related vulnerabilities often found in unmanaged code.
Type safe verification of code is a good example where the .NET Framework helps.
This makes it virtually impossible for buffer overflows to occur in managed code,
which all but eliminates the threat of stack-based code injection. However, if you call
unmanaged code, buffer overflows can still occur. In addition, you must also consider
many other issues when you write managed code.

146 Part III: Building Secure Web Applications

How to Use This Chapter
The following are recommendations on how to use this chapter:
● Use this chapter in conjunction with Chapter 8, “Code Access Security in

Practice.” Chapter 8 shows you how to use code access security features to further
improve the security of your assemblies.

● Use the corresponding checklist. For a summary checklist that summarizes the
best practices and recommendations for both chapters, see “Checklist: Security
Review for Managed Code” in the Checklists section of this guide.

Threats and Countermeasures
Understanding threats and the common types of attack helps you to identify
appropriate countermeasures and allows you to build more secure and robust
assemblies. The main threats are:
● Unauthorized access or privilege elevation, or both
● Code injection
● Information disclosure
● Tampering

Figure 7.1 illustrates these top threats.

Unauthorized
Access

Luring attacks

Assembly

Trusted Calling
Assembly

Information
Disclosure
Exceptions,

secrets in code

Code Injection
Buffer overflows,

untrusted
delegates

Tampering
MSIL attacks,

reverse
engineering

Unauthorized
Access

Figure 7.1
Assembly-level threats

 Chapter 7: Building Secure Assemblies 147

Unauthorized Access or Privilege Elevation, or both
The risk with unauthorized access, which can lead to privilege elevation, is that an
unauthorized user or unauthorized code can call your assembly and execute
privileged operations and access restricted resources.

Vulnerabilities

Vulnerabilities that can lead to unauthorized access and privileged elevation include:
● Weak or missing role-based authorization
● Internal types and type members are inadvertently exposed
● Insecure use of code access security assertions and link demands
● Non-sealed and unrestricted base classes, which allow any code to derive

from them

Attacks

Common attacks include:
● A luring attack where malicious code accesses your assembly through a trusted

intermediary assembly to bypass authorization mechanisms
● An attack where malicious code bypasses access controls by directly calling classes

that do not form part of the assembly’s public API

Countermeasures

Countermeasures that you can use to prevent unauthorized access and privilege
elevation include:
● Use role-based authorization to provide access controls on all public classes and

class members.
● Restrict type and member visibility to limit which code is publicly accessible.
● Sandbox privileged code and ensure that calling code is authorized with the

appropriate permission demands.
● Seal non-base classes or restrict inheritance with code access security.

Code Injection
With code injection, an attacker executes arbitrary code using your assembly’s
process level security context. The risk is increased if your assembly calls unmanaged
code and if your assembly runs under a privileged account.

148 Part III: Building Secure Web Applications

Vulnerabilities

Vulnerabilities that can lead to code injection include:
● Poor input validation, particularly where your assembly calls into

unmanaged code
● Accepting delegates from partially trusted code
● Over-privileged process accounts

Attacks

Common code injection attacks include:
● Buffer overflows
● Invoking a delegate from an untrusted source

Countermeasures

Countermeasures that you can use to prevent code injection include:
● Validate input parameters.
● Validate data passed to unmanaged APIs.
● Do not accept delegates from untrusted sources.
● Use strongly typed delegates and deny permissions before calling the delegate.
● To further reduce risk, run assemblies using least privileged accounts.

Information Disclosure
Assemblies can suffer from information disclosure if they leak sensitive data such as
exception details and clear text secrets to legitimate and malicious users alike. It is
also easier to reverse engineer an assembly’s Microsoft Intermediate Language
(MSIL) into source code than it is with binary machine code. This presents a threat to
intellectual property.

Vulnerabilities

Vulnerabilities that can lead to information disclosure include:
● Weak or no formal exception handling
● Hard-coded secrets in code

Attacks

Common attacks include:
● Attempting to cause errors by passing malformed input to the assembly
● Using ILDASM on an assembly to steal secrets

 Chapter 7: Building Secure Assemblies 149

Countermeasures

Countermeasures that you can use to prevent information disclosure include:
● Solid input validation
● Structured exception handling and returning generic errors to the client
● Not storing secrets in code
● Obfuscation tools to foil decompilers and protect intellectual property

Tampering
The risk with tampering is that your assembly is modified by altering the MSIL
instructions in the binary DLL or EXE assembly file.

Vulnerabilities

The primary vulnerability that makes your assembly vulnerable to tampering is the
lack of a strong name signature.

Attacks

Common attacks include:
● Direct manipulation of MSIL instructions
● Reverse engineering MSIL instructions

Countermeasures

To counter the tampering threat, use a strong name to sign the assembly with a
private key. When a signed assembly is loaded, the common language runtime
detects if the assembly has been modified in any way and will not load the assembly
if it has been altered.

Privileged Code
When you design and build secure assemblies, be able to identify privileged code.
This has important implications for code access security. Privileged code is managed
code that accesses secured resources or performs other security sensitive operations
such as calling unmanaged code, using serialization, or using reflection. It is referred
to as privileged code because it must be granted permission by code access security
policy to be able to function. Non-privileged code only requires the permission to
execute.

150 Part III: Building Secure Web Applications

Privileged Resources
The types of resources for which your code requires code access security permissions
include the file system, databases, registry, event log, Web services, sockets, DNS
databases, directory services, and environment variables.

Privileged Operations
Other privileged operations for which your code requires code access security
permissions include calling unmanaged code, using serialization, using reflection,
creating and controlling application domains, creating Principal objects, and
manipulating security policy.

For more information about the specific types of code access security permissions
required for accessing resources and performing privileged operations, see
“Privileged Code” in Chapter 8, “Code Access Security in Practice.”

Assembly Design Considerations
One of the most significant issues to consider at design time is the trust level of your
assembly’s target environment, which affects the code access security permissions
granted to your code and to the code that calls your code. This is determined by code
access security policy defined by the administrator, and it affects the types of
resources your code is allowed to access and other privileged operations it can
perform.

When designing your assembly, you should:
● Identify privileged code
● Identify the trust level of your target environment
● Sandbox highly privileged code
● Design your public interface

Identify Privileged Code
Identify code that accesses secured resources or performs security sensitive
operations. This type of code requires specific code access security permissions to
function.

 Chapter 7: Building Secure Assemblies 151

Identify Privileged Resources
Identify the types of resources your assembly needs to access; this allows you to
identify any potential problems that are likely to occur if the environment your
assembly ultimately runs in does not grant the relevant code access security
permissions. In this case you are forced either to update code access security policy
for your application if the administrator allows this, or you must sandbox your
privileged code. For more information about sandboxing, see Chapter 9, “Using Code
Access Security with ASP.NET.”

Identify Privileged Operations
Also identify any privileged operations that your assembly needs to perform, again
so that you know which code access permissions your code requires at runtime.

Identify the Trust Level of Your Target Environment
The target environment that your assembly is installed in is important because code
access security policy may constrain what your assembly is allowed to do. If, for
example, your assembly depends on the use of OLE DB, it will fail in anything less
than a full trust environment.

Full Trust Environments
Full trust means that code has an unrestricted set of code access security permissions,
which allows the code to access all resource types and perform privileged operations,
subject to operating system security. A full trust environment is the default
environment for a Web application and supporting assemblies installed on a Web
server, although this can be altered by configuring the <trust> element of the
application.

Partial Trust Environment
A partial trust environment is anything less than full trust. The .NET Framework has
several predefined trust levels that you can use directly or customize to meet your
specific security requirements. The trust level may also be diminished by the origin of
the code. For example, code on a network share is trusted less than code on the local
computer and as a result is limited in its ability to perform privileged operations.

152 Part III: Building Secure Web Applications

Supporting Partial Trust Callers

The risk of a security compromise increases significantly if your assembly supports
partial trust callers (that is, code that you do not fully trust.) Code access security has
additional safeguards to help mitigate the risk. For additional guidelines that apply
to assemblies that support partial trust callers, see Chapter 8, “Code Access Security
in Practice.” Without additional programming, your code supports partial trust
callers in the following two situations:
● Your assembly does not have a strong name.
● Your assembly has a strong name and includes the

AllowPartiallyTrustedCallersAttribute (APTCA) assembly level attribute.

Why Worry About the Target Environment?
The trust environment that your assembly runs in is important for the following
reasons:
● A partial trust assembly can only gain access to a restricted set of resources and

perform a restricted set of operations, depending upon which code access security
permissions it is granted by code access security policy.

● A partial trust assembly cannot call a strong named assembly unless it includes
AllowPartiallyTrustedCallersAttribute.

● Other partial trust assemblies may not be able to call your assembly because they
do not have the necessary permissions. The permissions that a calling assembly
must be able to call your assembly are determined by:
● The types of resources your assembly accesses
● The types of privileged operation your assembly performs

Sandbox Highly Privileged Code
To avoid granting powerful permissions to a whole application just to satisfy the
needs of a few methods that perform privileged operations, sandbox privileged code
and put it in a separate assembly. This allows an administrator to configure code
access security policy to grant the extended permissions to the code in the specific
assembly and not to the whole application.

For example, if your application needs to call unmanaged code, sandbox the
unmanaged calls in a wrapper assembly, so that an administrator can grant the
UnmanagedCodePermission to the wrapper assembly and not the whole
application.

Note Sandboxing entails using a separate assembly and asserting security permissions to prevent
full stack walks.

 Chapter 7: Building Secure Assemblies 153

For more information about sandboxing unmanaged API calls, see “Unmanaged
Code” in Chapter 8, “Code Access Security in Practice.”

Design Your Public Interface
Think carefully about which types and members form part of your assembly’s public
interface. Limit the assembly’s attack surface by minimizing the number of entry
points and using a well designed, minimal public interface.

Class Design Considerations
In addition to using a well defined and minimal public interface, you can further
reduce your assembly’s attack surface by designing secure classes. Secure classes
conform to solid object oriented design principles, prevent inheritance where it is not
required, limit who can call them, and which code can call them. The following
recommendations help you design secure classes:
● Restrict class and member visibility
● Seal non base classes
● Restrict which users can call your code
● Expose fields using properties

Restrict Class and Member Visibility
Use the public access modifier only for types and members that form part of the
assembly’s public interface. This immediately reduces the attack surface because only
public types are accessible by code outside the assembly. All other types and
members should be as restricted as possible. Use the private access modifier
wherever possible. Use protected only if the member should be accessible to derived
classes and use internal only if the member should be accessible to other classes in
the same assembly.

Note C# also allows you to combine protected and internal to create a protected internal member
to limit access to the current assembly or derived types.

Seal Non-Base Classes
If a class is not designed as a base class, prevent inheritance using the sealed
keyword as shown in the following code sample.

public sealed class NobodyDerivesFromMe
{}

154 Part III: Building Secure Web Applications

For base classes, you can restrict which other code is allowed to derive from your
class by using code access security inheritance demands. For more information, see
“Authorizing Code” in Chapter 8, “Code Access Security in Practice.”

Restrict Which Users Can Call Your Code
Annotate classes and methods with declarative principal permission demands to
control which users can call your classes and class members. In the following
example, only members of the specified Windows group can access the Orders class.
A class level attribute like this applies to all class members. Declarative principal
permission demands can also be used on individual methods. Method level attributes
override class level attributes.

[PrincipalPermission(SecurityAction.Demand,
 Role=@"DomainName\WindowsGroup")]
public sealed class Orders()
{
}

Expose Fields Using Properties
Make all fields private. To make a field value accessible to external types, use a read
only or a read/write property. Properties allow you to add additional constraints,
such as input validation or permission demands, as shown in the following code
sample.

public sealed class MyClass
{
 private string field; // field is private
 // Only members of the specified group are able to
 // access this public property
 [PrincipalPermission(SecurityAction.Demand,
 Role=@"DomainName\WindowsGroup")]
 public string Field
 {
 get {
 return field;
 }
 }
}

 Chapter 7: Building Secure Assemblies 155

Strong Names
An assembly strong name consists of a text name, a version number, optionally a
culture, a public key (which often represents your development organization), and a
digital signature. You can see the various components of the strong name by looking
into Machine.config and seeing how a strong named assembly is referenced.

The following example shows how the System.Web assembly is referenced in
Machine.config. In this example, the assembly attribute shows the text name, version,
culture and public key token, which is a shortened form of the public key.

<add assembly="System.Web, Version=1.0.5000.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />

Whether or not you should strong name an assembly depends on the way in which
you intend it to be used. The main reasons for wanting to add a strong name to an
assembly include:
● You want to ensure that partially trusted code is not able to call your assembly.

The common language runtime prevents partially trusted code from calling a
strong named assembly, by adding link demands for the FullTrust permission set.
You can override this behavior by using AllowPartiallyTrustedCallersAttribute
(APTCA) although you should do so with caution.
For more information about APTCA, see APTCA in Chapter 8, “Code Access
Security in Practice.”

● The assembly is designed to be shared among multiple applications.
In this case, the assembly should be installed in the global assembly cache. This
requires a strong name. The global assembly cache supports side-by-side
versioning which allows different applications to bind to different versions of the
same assembly.

● You want to use the strong name as security evidence.
The public key portion of the strong name gives cryptographically strong evidence
for code access security. You can use the strong name to uniquely identify the
assembly when you configure code access security policy to grant the assembly
specific code access permissions. Other forms of cryptographically strong
evidence include the Authenticode signature (if you have used X.509 certificates to
sign the assembly) and an assembly’s hash.

Note Authenticode evidence is not loaded by the ASP.NET host, which means you cannot use it
to establish security policy for ASP.NET Web applications.

For more information about evidence types and code access security, see
Chapter 8, “Code Access Security in Practice.”

156 Part III: Building Secure Web Applications

Security Benefits of Strong Names
Strong names provide a number of security advantages in addition to versioning
benefits:
● Strong named assemblies are signed with a digital signature. This protects the

assembly from modification. Any tampering causes the verification process that
occurs at assembly load time to fail. An exception is generated and the assembly is
not loaded.

● Strong named assemblies cannot be called by partially trusted code, unless you
specifically add AllowPartiallyTrustedCallersAttribute (APTCA.)

Note If you do use APTCA, make sure you read Chapter 8, “Code Access Security in Practice,”
for additional guidelines to further improve the security of your assemblies.

● Strong names provide cryptographically strong evidence for code access security
policy evaluation. This allows administrators to grant permissions to specific
assemblies. It also allows developers to use a StrongNameIdentityPermission to
restrict which code can call a public member or derive from a non-sealed class.

Using Strong Names
The .NET Framework includes the Sn.exe utility to help you strong name assemblies.
You do not need an X.509 certificate to add a strong name to an assembly.

� To strong name an assembly

1. Generate the key file in the assembly’s project directory by using the following
command.

sn.exe -k keypair.snk

2. Add an AssemblyKeyFile attribute to Assemblyinfo.cs to reference the generated
key file, as shown in the following code sample.

// The keypair file is usually placed in the project directory
[assembly: AssemblyKeyFile(@"..\..\keypair.snk")]

 Chapter 7: Building Secure Assemblies 157

Delay Signing
It is good security practice to delay sign your assemblies during application
development. This results in the public key being placed in the assembly, which
means that it is available as evidence to code access security policy, but the assembly
is not signed, and as a result is not yet tamper proof. From a security perspective,
delay signing has two main advantages:
● The private key used to sign the assembly and create its digital signature is held

securely in a central location. The key is only accessible by a few trusted
personnel. As a result, the chance of the private key being compromised is
significantly reduced.

● A single public key, which can be used to represent the development organization
or publisher of the software, is used by all members of the development team,
instead of each developer using his or her own public, private key pair, typically
generated by the sn –k command.

� To create a public key file for delay signing

This procedure is performed by the signing authority to create a public key file that
developers can use to delay sign their assemblies.
1. Create a key pair for your organization.

sn.exe -k keypair.snk

2. Extract the public key from the key pair file.

sn –p keypair.snk publickey.snk

3. Secure Keypair.snk, which contains both the private and public keys. For example,
put it on a floppy or CD and physically secure it.

4. Make Publickey.snk available to all developers. For example, put it on a network
share.

� To delay sign an assembly

This procedure is performed by developers.
1. Add an assembly level attribute to reference the key file that contains only the

public key.

// The keypair file is usually placed in the project directory
[assembly: AssemblyKeyFile(@"..\..\publickey.snk")]

2. Add the following attribute to indicate delay signing.

[assembly: AssemblyDelaySign(true)]

158 Part III: Building Secure Web Applications

3. The delay signing process and the absence of an assembly signature means that
the assembly will fail verification at load time. To work around this, use the
following commands on development and test computers.
● To disable verification for a specific assembly, use the following command.

sn -Vr assembly.dll

● To disable verification for all assemblies with a particular public key, use the
following command.

sn -Vr *,publickeytoken

● To extract the public key and key token (a truncated hash of the public key),
use the following command.

sn -Tp assembly.dll

Note Use a capital –T switch.

4. To fully complete the signing process and create a digital signature to make the
assembly tamper proof, execute the following command. This requires the private
key and as a result the operation is normally performed as part of the formal
build/release process.

sn -r assembly.dll keypair.snk

ASP.NET and Strong Names
At the time of this writing, it is not possible to use a strong name for an ASP.NET Web
page assembly because of the way it is dynamically compiled. Even if you use a code-
behind file to create a precompiled assembly that contains your page class
implementation code, ASP.NET dynamically creates and compiles a class that
contains your page’s visual elements. This class derives from your page class, which
again means that you cannot use strong names.

Note You can strong name any other assembly that is called by your Web page code, for example
an assembly that contains resource access, data access or business logic code, although the
assembly must be placed in the global assembly cache.

 Chapter 7: Building Secure Assemblies 159

Global Assembly Cache Requirements
Any strong named assembly called by an ASP.NET Web application configured for
partial trust should be installed in the global assembly cache. This is because the
ASP.NET host loads all strong-named assemblies as domain-neutral.

The code of a domain-neutral assembly is shared by all application domains in the
ASP.NET process. This creates problems if a single strong named assembly is used by
multiple Web applications and each application grants it varying permissions or if
the permission grant varies between application domain restarts. In this situation,
you may see the following error message: “Assembly <assembly>.dll security
permission grant set is incompatible between appdomains.”

To avoid this error, you must place strong named assemblies in the global assembly
cache and not in the application’s private \bin directory.

Authenticode vs. Strong Names
Authenticode and strong names provide two different ways to digitally sign an
assembly. Authenticode enables you to sign an assembly using an X.509 certificate. To
do so, you use the Signcode.exe utility, which adds the public key part of a full X.509
certificate to the assembly. This ensures trust through certificate chains and certificate
authorities. With Authenticode (unlike strong names,) the implementation of
publisher trust is complex and involves network communication during the
verification of publisher identity.

Authenticode signatures and strong names were developed to solve separate
problems and you should not confuse them. Specifically:
● A strong name uniquely identifies an assembly.
● An Authenticode signature uniquely identifies a code publisher.

Authenticode signatures should be used for mobile code, such as controls and
executables downloaded via Internet Explorer, to provide publisher trust and
integrity.

You can configure code access security (CAS) policy using both strong names and
Authenticode signatures in order to grant permissions to specific assemblies.
However, the Publisher evidence object, obtained from an Authenticode signature is
only created by the Internet Explorer host and not by the ASP.NET host. Therefore, on
the server side, you cannot use an Authenticode signature to identify a specific
assembly (through a code group.) Use strong names instead.

For more information about CAS, CAS policy and code groups, see Chapter 8, “Code
Access Security in Practice.”

160 Part III: Building Secure Web Applications

Table 7.1 compares the features of strong names and Authenticode signatures.

Table 7.1 A Comparison of Strong Names and Authenticode Signatures

Feature Strong Name Authenticode
Unique identification of
assembly

Yes No

Unique identification of
publisher

Not necessarily.

Depends on assembly developer using
a public key to represent the publisher

Yes

The public key of the publisher
can be revoked

No Yes

Versioning Yes No

Namespace and type name
uniqueness

Yes No

Integrity (checks assembly has
not been tampered with)

Yes Yes

Evidence used as input to CAS
policy

Yes IE host — Yes

ASP.NET host — No

User input required for trust
decision

No Yes (pop-up dialog box)

Authorization
There are two types of authorization that you can use in your assemblies to control
access to classes and class members:
● Role-based authorization to authorize access based on user identity and

role-membership. When you use role-based authorization in assemblies that are
part of an ASP.NET Web application or Web service, you authorize the identity
that is represented by an IPrincipal object attached to the current Web request and
available through Thread.CurrentPrincipal and HttpContext.Current.User. This
identity is either the authenticated end user identity or the anonymous Internet
user identity. For more information about using principal-based authorization in
Web applications, see “Authorization” in Chapter 10, “Building Secure ASP.NET
Pages and Controls.”

● Code access security to authorize calling code, based on evidence, such as
an assembly’s strong name or location. For more information, see the
“Authorization” section in Chapter 8, “Code Access Security in Practice.”

 Chapter 7: Building Secure Assemblies 161

Exception Management
Do not reveal implementation details about your application in exception messages
returned to the client. This information can help malicious users plan attacks on your
application. To provide proper exception management:
● Use structured exception handling.
● Do not log sensitive data.
● Do not reveal system or sensitive application information.
● Consider exception filter issues.
● Consider an exception management framework.

Use Structured Exception Handling
Microsoft Visual C# and Microsoft Visual Basic .NET provide structured exception
handling constructs. C# provides the try / catch and finally construct. Protect code by
placing it inside try blocks and implement catch blocks to log and process exceptions.
Also use the finally construct to ensure that critical system resources such as
connections are closed irrespective of whether an exception condition occurs.

try
{
 // Code that could throw an exception
}
catch (SomeExceptionType ex)
{
 // Code to handle the exception and log details to aid
 // problem diagnosis
}
finally
{
 // This code is always run, regardless of whether or not
 // an exception occurred. Place clean up code in finally
 // blocks to ensure that resources are closed and/or released.
}

Use structured exception handling instead of returning error codes from methods
because it is easy to forget to check a return code and as a result fail to an insecure
mode.

162 Part III: Building Secure Web Applications

Do Not Log Sensitive Data
The rich exception details included in Exception objects are valuable to developers
and attackers alike. Log details on the server by writing them to the event log to aid
problem diagnosis. Avoid logging sensitive or private data such as user passwords.
Also make sure that exception details are not allowed to propagate beyond the
application boundary to the client as described in the next topic.

Do Not Reveal Sensitive System or Application Information
Do not reveal too much information to the caller. Exception details can include
operating system and .NET Framework version numbers, method names, computer
names, SQL command statements, connection strings, and other details that are very
useful to attackers. Log detailed error messages at the server and return generic error
messages to the end user.

In the context of an ASP.NET Web application or Web service, this can be done with
the appropriate configuration of the <customErrors> element. For more information,
see Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

Consider Exception Filter Issues
If your code uses exception filters, your code is potentially vulnerable to security
issues because code in a filter higher up the call stack can run before code in a finally
block. Make sure you do not rely on state changes in the finally block because the
state change will not occur before the exception filter executes. For example, consider
the following code:

// Place this code into a C# class library project
public class SomeClass
{
 public void SomeMethod()
 {
 try
 {
 // (1) Generate an exception
 Console.WriteLine("1> About to encounter an exception condition");
 // Simulate an exception
 throw new Exception("Some Exception");
 }
 // (3) The finally block
 finally
 {
 Console.WriteLine("3> Finally");
 }
 }
}

 Chapter 7: Building Secure Assemblies 163

(continued)

// Place this code into a Visual Basic.NET console application project and
// reference the above class library code
Sub Main()
 Dim c As New SomeClass
 Try
 c.SomeMethod()
 Catch ex As Exception When Filter()
 ' (4) The exception is handled
 Console.WriteLine("4> Main: Catch ex as Exception")
 End Try
End Sub

' (2) The exception filter
Public Function Filter() As Boolean
 ' Malicious code could do something here if you are relying on a state
 ' change in the Finally block in SomeClass in order to provide security
 Console.WriteLine("2> Filter")
 Return True ' Indicate that the exception is handled
End Function

In the above example, Visual Basic .NET is used to call the C# class library code
because Visual Basic .NET supports exception filters, unlike C#.

If you create two projects and then run the code, the output produced is shown
below:

1> About to encounter an exception condition
2> Filter
3> Finally
4> Main: Catch ex as Exception

From this output, you can see that the exception filter executes before the code in the
finally block. If your code sets state that affects a security decision in the finally
block, malicious code that calls your code could add an exception filter to exploit this
vulnerability.

Consider an Exception Management Framework
A formalized exception management system can help improve system supportability
and maintainability and ensure that you detect, log, and process exceptions in a
consistent manner.

For information about how to create an exception management framework and
about best practice exception management for .NET applications, see “Exception
Management in .NET“ in the MSDN Library at http://msdn.microsoft.com/library
/en-us/dnbda/html/exceptdotnet.asp.

http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp
http://msdn.microsoft.com/library/en-us/dnbda/html/exceptdotnet.asp

164 Part III: Building Secure Web Applications

File I/O
Canonicalization issues are a major concern for code that accesses the file system. If
you have the choice, do not base security decisions on input file names because of the
many ways that a single file name can be represented. If your code needs to access a
file using a user-supplied file name, take steps to ensure your assembly cannot be
used by a malicious user to gain access to or overwrite sensitive data.

The following recommendations help you improve the security of your file I/O:
● Avoid untrusted input for file names.
● Do not trust environment variables.
● Validate input filenames.
● Constrain file I/O within your application’s context.

Avoid Untrusted Input for File Names
Avoid writing code that accepts file or path input from the caller and instead use
fixed file names and locations when reading and writing data. This ensures your code
cannot be coerced into accessing arbitrary files.

Do Not Trust Environment Variables
Try to use absolute file paths where you can. Do not trust environment variables to
construct file paths because you cannot guarantee the value of the environment
variable.

Validate Input File Names
If you do need to receive input file names from the caller, make sure that the filename
is strictly formed so that you can determine whether it is valid. Specifically, there are
two aspects to validating input file paths. You need to:
● Check for valid file system names.
● Check for a valid location, as defined by your application’s context. For example,

are they within the directory hierarchy of your application?

To validate the path and file name, use the System.IO.Path.GetFullPath method as
shown in the following code sample. This method also canonicalizes the supplied file
name.

 Chapter 7: Building Secure Assemblies 165

using System.IO;

public static string ReadFile(string filename)
{
 // Obtain a canonicalized and valid filename
 string name = Path.GetFullPath(filename);
 // Now open the file
}

As part of the canonicalization process, GetFullPath performs the following checks:
● It checks that the file name does not contain any invalid characters, as defined by

Path.InvalidPathChars.
● It checks that the file name represents a file and not an another device type such as

a physical drive, a named pipe, a mail slot or a DOS device such as LPT1, COM1,
AUX, and other devices.

● It checks that the combined path and file name is not too long.
● It removes redundant characters such as trailing dots.
● It rejects file names that use the //?/ format.

Constrain File I/O Within Your Application’s Context
After you know you have a valid file system file name, you often need to check that it
is valid in your application’s context. For example, you may need to check that it is
within the directory hierarchy of your application and to make sure your code cannot
access arbitrary files on the file system. For more information about how to use code
access security to constrain file I/O, see “File I/O” in Chapter 8, “Code Access
Security in Practice.”

Event Log
When you write event-logging code, consider the threats of tampering and
information disclosure. For example, can an attacker retrieve sensitive data by
accessing the event logs? Can an attacker cover tracks by deleting the logs or erasing
particular records?

Direct access to the event logs using system administration tools such as the Event
Viewer is restricted by Windows security. Your main concern should be to ensure that
the event logging code you write cannot be used by a malicious user for
unauthorizedaccess to the event log.

166 Part III: Building Secure Web Applications

To prevent the disclosure of sensitive data, do not log it in the first place. For
example, do not log account credentials. Also, your code cannot be exploited to read
existing records or to delete event logs if all it does is write new records using
EventLog.WriteEvent. The main threat to address in this instance is how to prevent a
malicious caller from calling your code a million or so times in an attempt to force a
log file cycle to overwrite previous log entries to cover tracks. The best way of
approaching this problem is to use an out-of-band mechanism, for example, by using
Windows instrumentation to alert operators as soon as the event log approaches its
threshold.

Finally, you can use code access security and the EventLogPermission to put specific
constraints on what your code can do when it accesses the event log. For example,
if you write code that only needs to read records from the event log it should be
constrained with an EventLogPermissin that only supports browse access. For
more information about how to constrain event logging code, see “Event Log” in
Chapter 8, “Code Access Security in Practice.”

Registry
The registry can provide a secure location for storing sensitive application
configuration data, such as encrypted database connection strings. You can store
configuration data under the single, local machine key (HKEY_LOCAL_MACHINE)
or under the current user key (HKEY_CURRENT_USER). Either way, make sure you
encrypt the data using DPAPI and store the encrypted data, not the clear text.

HKEY_LOCAL_MACHINE
If you store configuration data under HKEY_LOCAL_MACHINE, remember that
any process on the local computer can potentially access the data. To restrict access,
apply a restrictive access control list (ACL) to the specific registry key to limit access
to administrators and your specific process or thread token. If you use
HKEY_LOCAL_MACHINE, it does make it easier at installation time to store
configuration data and also to maintain it later on.

HKEY_CURRENT_USER
If your security requirements dictate an even less accessible storage solution, use a
key under HKEY_CURRENT_USER. This approach means that you do not have to
explicitly configure ACLs because access to the current user key is automatically
restricted based on process identity.

HKEY_CURRENT_USER allows more restrictive access because a process can only
access the current user key, if the user profile associated with the current thread or
process token is loaded.

 Chapter 7: Building Secure Assemblies 167

Version 1.1 of the .NET Framework loads the user profile for the ASPNET account on
Windows 2000. On Windows Server 2003, the profile for this account is only loaded if
the ASP.NET process model is used. It is not loaded explicitly by Internet Information
Services (IIS) 6 if the IIS 6 process model is used on Windows Server 2003.

Note Version 1.0 of the .NET Framework does not load the ASPNET user profile, which makes
HKEY_CURRENT_USER a less practical option.

Reading from the Registry
The following code fragment shows how to read an encrypted database connection
string from under the HKEY_CURRENT_USER key using the
Microsoft.Win32.Registry class.

using Microsoft.Win32;
public static string GetEncryptedConnectionString()
{
 return (string)Registry.
 CurrentUser.
 OpenSubKey(@"SOFTWARE\YourApp").
 GetValue("connectionString");
}

For more information about how to use the code access security RegistryPermission
to constrain registry access code for example to limit it to specific keys, see “Registry”
in Chapter 8, “Code Access Security in Practice.”

Data Access
Two of the most important factors to consider when your code accesses a database
are how to manage database connection strings securely and how to construct SQL
statements and validate input to prevent SQL injection attacks. Also, when you write
data access code, consider the permission requirements of your chosen ADO.NET
data provider. For detailed information about these and other data access issues, see
Chapter 14, “Building Secure Data Access.”

For information about how to use SqlClientPermission to constrain data access to
SQL Server using the ADO.NET SQL Server data provider, see “Data Access” in
Chapter 8, “Code Access Security in Practice.”

168 Part III: Building Secure Web Applications

Unmanaged Code
If you have existing COM components or Win32 DLLs that you want to reuse, use the
Platform Invocation Services (P/Invoke) or COM Interop layers. When you call
unmanaged code, it is vital that your managed code validates each input parameter
passed to the unmanaged API to guard against potential buffer overflows. Also, be
careful when handling output parameters passed back from the unmanaged API.

You should isolate calls to unmanaged code in a separate wrapper assembly. This
allows you to sandbox the highly privileged code and to isolate the code access
security permission requirements to a specific assembly. For more details about
sandboxing and about additional code access security related guidelines that you
should apply when calling unmanaged code, see “Unmanaged Code” in Chapter 8,
“Code Access Security in Practice.” The following recommendations help improve
the security of your unmanaged API calls, without using explicit code access security
coding techniques:
● Validate input and output string parameters.
● Validate array bounds.
● Check file path lengths.
● Compile unmanaged code with the /GS switch.
● Inspect unmanaged code for “dangerous” APIs.

Validate Input and Output String Parameters
String parameters passed to unmanaged APIs are a prime source of buffer overflows.
Check the length of any input string inside your wrapper code to ensure it does not
exceed the limit defined by the unmanaged API. If the unmanaged API accepts a
character pointer you may not know the maximum permitted string length, unless
you have access to the unmanaged source. For example, the following is a common
vulnerability.

void SomeFunction(char *pszInput)
{
 char szBuffer[10];
 // Look out, no length checks. Input is copied straight into the buffer
 // Check length or use strncpy
 strcpy(szBuffer, pszInput);
 . . .
}

If you cannot examine the unmanaged code because you do not own it, make sure
that you rigorously test the API by passing in deliberately long input strings.

If your code uses a StringBuilder to receive a string passed from an unmanaged API,
make sure that it can hold the longest string that the unmanaged API can hand back.

 Chapter 7: Building Secure Assemblies 169

Validate Array Bounds
If you pass input to an unmanaged API using an array, check that the managed
wrapper verifies that the capacity of the array is not exceeded.

Check File Path Lengths
If the unmanaged API accepts a file name and path, check that it does not exceed
260 characters. This limit is defined by the Win32 MAX_PATH constant. It is very
common for unmanaged code to allocate buffers of this length to manipulate file
paths.

Note Directory names and registry keys can only be a maximum of 248 characters long.

Compile Unmanaged Code With the /GS Switch
If you own the unmanaged code, compile it using the /GS switch to enable stack
probes to help detect buffer overflows. For more information about the /GS switch,
see Microsoft Knowledge Base article 325483, “WebCast: Compiler Security Checks:
The -GS compiler switch.”

Inspect Unmanaged Code for Dangerous APIs
If you have access to the source code for the unmanaged code that you are calling,
you should subject it to a thorough code review, paying particular attention to
parameter handling to ensure that buffer overflows are not possible and that it does
not use potentially dangerous APIs. For more information see Chapter 21, “Code
Review.”

Delegates
Delegates are the managed equivalent of type safe function pointers and are used by
the .NET Framework to support events. The delegate object maintains a reference to a
method, which is called when the delegate is invoked. Events allow multiple
methods to be registered as event handlers. When the event occurs, all event handlers
are called.

Do Not Accept Delegates from Untrusted Sources
If your assembly exposes a delegate or an event, be aware that any code can
associate a method with the delegate and you have no advance knowledge of
what the code does. The safest policy is not to accept delegates from untrusted
callers. If your assembly is strong named and does not include the
AllowPartiallyTrustedCallersAttribute, only Full Trust callers can pass you
a delegate.

170 Part III: Building Secure Web Applications

If your assembly supports partial trust callers, consider the additional threat of being
passed a delegate by malicious code. For risk mitigation techniques to address this
threat, see the “Delegates” section in Chapter 8, “Code Access Security in Practice.”

Serialization
You may need to add serialization support to a class if you need to be able to marshal
it by value across a .NET remoting boundary (that is, across application domains,
processes, or computers) or if you want to be able to persist the object state to create a
flat data stream, perhaps for storage on the file system.

By default, classes cannot be serialized. A class can be serialized if it is marked with
the SerializableAttribute or if it derives from ISerializable. If you use serialization:
● Do not serialize sensitive data.
● Validate serialized data streams.

Do Not Serialize Sensitive Data
Ideally, if your class contains sensitive data, do not support serialization. If you must
be able to serialize your class and it contains sensitive data, avoid serializing the
fields that contain the sensitive data. To do this, either implement ISerializable to
control the serialization behavior or decorate fields that contain sensitive data with
the [NonSerialized] attribute. By default, all private and public fields are serialized.

The following example shows how to use the [NonSerialized] attribute to ensure a
specific field that contains sensitive data cannot be serialized.

[Serializable]
public class Employee {
 // OK for name to be serialized
 private string name;
 // Prevent salary being serialized
 [NonSerialized] private double annualSalary;
 . . .
}

Alternatively, implement the ISerializable interface and explicitly control the
serialization process. If you must serialize the sensitive item or items of data, consider
encrypting the data first. The code that de-serializes your object must have access to
the decryption key.

Validate Serialized Data Streams
When you create an object instance from a serialized data stream, do not assume the
stream contains valid data. To avoid potentially damaging data being injected into
the object, validate each field as it is reconstituted as shown in the following code
sample.

 Chapter 7: Building Secure Assemblies 171

public void DeserializationMethod(SerializationInfo info, StreamingContext cntx)
{
 string someData = info.GetString("someName");
 // Use input validation techniques to validate this data.
}

For more information about input validation techniques, see “Input Validation” in
Chapter 10, “Building Secure ASP.NET Pages and Controls.”

Partial Trust Considerations
If your code supports partial trust callers, you need to address additional threats. For
example, malicious code might pass a serialized data stream or it might attempt to
serialize the data on your object. For risk mitigation techniques to address these
threats, see “Serialization” in Chapter 8, “Code Access Security in Practice.”

Threading
Bugs caused by race conditions in multithreaded code can result in security
vulnerabilities and generally unstable code that is subject to timing-related bugs. If
you develop multithreaded assemblies, consider the following recommendations:
● Do not cache the results of security checks.
● Consider impersonation tokens.
● Synchronize static class constructors.
● Synchronize Dispose methods.

Do Not Cache the Results of Security Checks
If your multithreaded code caches the results of a security check, perhaps in a static
variable, the code is potentially vulnerable as shown in the following code sample.

 public void AccessSecureResource()
 {
 _callerOK = PerformSecurityDemand();
 OpenAndWorkWithResource();
 _callerOK = false;
 }
 private void OpenAndWorkWithResource()
 {
 if (_callerOK)
 PerformTrustedOperation();
 else
 {
 PerformSecurityDemand();
 PerformTrustedOperation();
 }
 }

172 Part III: Building Secure Web Applications

If there are other paths to OpenAndWorkWithResource, and a separate thread calls
the method on the same object, it is possible for the second thread to omit the security
demand, because it sees _callerOK=true, set by another thread.

Consider Impersonation Tokens
When you create a new thread, it assumes the security context defined by the process
level token. If a parent thread is impersonating while it creates a new thread, the
impersonation token is not passed to the new thread.

Synchronize Static Class Constructors
If you use static class constructors, make sure they are not vulnerable to race
conditions. If, for example, they manipulate static state, add thread synchronization
to avoid potential vulnerabilities.

Synchronize Dispose Methods
If you develop non-synchronized Dispose implementations, the Dispose code may
be called more than once on separate threads. The following code sample shows an
example of this.

void Dispose()
{
 if (null != _theObject)
 {
 ReleaseResources(_theObject);
 _theObject = null;
 }
}

In this example, it is possible for two threads to execute the code before the first
thread has set _theObject reference to null. Depending on the functionality provided
by the ReleaseResources method, security vulnerabilities may occur.

Reflection
With reflection, you can dynamically load assemblies, discover information about
types, and execute code. You can also obtain a reference to an object and get or set its
private members. This has a number of security implications:
● If your code uses reflection to reflect on other types, make sure that only trusted

code can call you. Use code access security permission demands to authorize
calling code. For more information, see Chapter 8, “Code Access Security in
Practice.”

 Chapter 7: Building Secure Assemblies 173

● If you dynamically load assemblies, for example, by using
System.Reflection.Assembly.Load, do not use assembly or type names passed to
you from untrusted sources.

● If your assemblies dynamically generate code to perform operations for a caller,
make sure the caller is in no way able to influence the code that is generated. This
issue is more significant if the caller operates at a lower trust level than the
assembly that generates code.

● If your code generation relies on input from the caller, be especially vigilant for
security vulnerabilities. Validate any input string used as a string literal in your
generated code and escape quotation mark characters to make sure the caller
cannot break out of the literal and inject code. In general, if there is a way that the
caller can influence the code generation such that it fails to compile, there is
probable security vulnerability.

For more information, see “Secure Coding Guidelines for the .NET Framework“ in
the MSDN Library.

Obfuscation
If you are concerned with protecting intellectual property, you can make it extremely
difficult for a decompiler to be used on the MSIL code of your assemblies, by using
an obfuscation tool. An obfuscation tool confuses human interpretation of the MSIL
instructions and helps prevent successful decompilation.

Obfuscation is not foolproof and you should not build security solutions that rely on
it. However, obfuscation does address threats that occur because of the ability to
reverse engineer code. Obfuscation tools generally provide the following benefits:
● They help protect your intellectual property.
● They obscure code paths. This makes it harder for an attacker to crack security

logic.
● They mangle the names of internal member variables. This makes it harder to

understand the code.
● They encrypt strings. Attackers often attempt to search for specific strings to locate

key sensitive logic. String encryption makes this much harder to do.

A number of third-party obfuscation tools exist for the .NET Framework. One tool,
the Community Edition of the Dotfuscator tool by PreEmptive Solutions, is included
with the Microsoft Visual Studio® .NET 2003 development system. It is also available
from http://www.preemptive.com/dotfuscator. For more information, see the list of
obfuscator tools listed at http://www.gotdotnet.com/team/csharp/tools/default.aspx.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/seccodeguide.asp
http://www.preemptive.com/dotfuscator
http://www.gotdotnet.com/team/csharp/tools/default.aspx

174 Part III: Building Secure Web Applications

Cryptography
Cryptography is one of the most important tools that you can use to protect data.
Encryption can be used to provide data privacy and hash algorithms, which produce
a fixed and condensed representation of data, can be used to make data tamperproof.
Also, digital signatures can be used for authentication purposes.

You should use encryption when you want data to be secure in transit or in storage.
Some encryption algorithms perform better than others while some provide stronger
encryption. Typically, larger encryption key sizes increase security.

Two of the most common mistakes made when using cryptography are developing
your own encryption algorithms and failing to secure your encryption keys.
Encryption keys must be handled with care. An attacker armed with your encryption
key can gain access to your encrypted data.

The main issues to consider are:
● Use platform-provided cryptographic services
● Key generation
● Key storage
● Key exchange
● Key maintenance

Use Platform-provided Cryptographic Services
Do not create your own cryptographic implementations. It is extremely unlikely that
these implementations will be as secure as the industry standard algorithms provided
by the platform; that is, the operating system and the .NET Framework. Managed
code should use the algorithms provided by the System.Security.Cryptography
namespace for encryption, decryption, hashing, random number generating, and
digital signatures.

Many of the types in this namespace wrap the operating system CryptoAPI, while
others implement algorithms in managed code.

Key Generation
The following recommendations apply when you create encryption keys:
● Generate random keys.
● Use PasswordDeriveBytes for password-based encryption.
● Prefer large keys.

 Chapter 7: Building Secure Assemblies 175

Generate Random Keys
If you need to generate encryption keys programmatically, use
RNGCryptoServiceProvider for creating keys and initialization vectors and do
not use the Random class. Unlike the Random class, RNGCryptoServiceProvider
creates cryptographically strong random numbers which are FIPS-140 compliant.
The following code shows how to use this function.

using System.Security.Cryptography;
. . .
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
byte[] key = new byte[keySize];
rng.GetBytes(key);

Use PasswordDeriveBytes for Password-Based Encryption
The System.Security.Cryptography.DeriveBytes namespace provides
PasswordDeriveBytes for use when encrypting data based on a password the user
supplies. To decrypt, the user must supply the same password used to encrypt.

Note that this approach is not for password authentication. Store a password verifier
in the form of a hash value with a salt value order to authenticate a user’s password.
Use PasswordDeriveBytes to generate keys for password-based encryption.

PasswordDeriveBytes accepts a password, salt, an encryption algorithm, a hashing
algorithm, key size (in bits), and initialization vector data to create a symmetric key to
be used for encryption.

After the key is used to encrypt the data, clear it from memory but persist the salt and
initialization vector. These values should be protected and are needed to re-generate
the key for decryption.

For more information about storing password hashes with salt, see Chapter 14,
“Building Secure Data Access.”

Prefer Large Keys
When generating an encryption key or key pair, use the largest key size possible for
the algorithm. This does not necessarily make the algorithm more secure but
dramatically increases the time needed to successfully perform a brute force attack on
the key. The following code shows how to find the largest supported key size for a
particular algorithm.

176 Part III: Building Secure Web Applications

private int GetLargestSymKeySize(SymmetricAlgorithm symAlg)
{
 KeySizes[] sizes = symAlg.LegalKeySizes;
 return sizes[sizes.Length].MaxSize;
}

private int GetLargestAsymKeySize(AsymmetricAlgorithm asymAlg)
{
 KeySizes[] sizes = asymAlg.LegalKeySizes;
 return sizes[sizes.Length].MaxSize;
}

Key Storage
Where possible, you should use a platform-provided encryption solution that enables
you to avoid key management in your application. However, at times you need to
use encryption solutions that require you to store keys. Using a secure location to
store the key is critical. Use the following techniques to help prevent key storage
vulnerabilities:
● Use DPAPI to avoid key management.
● Do not store keys in code.
● Restrict access to persisted keys.

Use DPAPI to Avoid Key Management
DPAPI is a native encryption/decryption feature provided by Microsoft
Windows 2000. One of the main advantages of using DPAPI is that the encryption
key is managed by the operating system, because the key is derived from the
password that is associated with the process account (or thread account if the
thread is impersonating) that calls the DPAPI functions.

User Key vs. Machine Key

You can perform encryption with DPAPI using either the user key or the machine
key. By default, DPAPI uses a user key. This means that only a thread that runs under
the security context of the user account that encrypted the data can decrypt the data.
You can instruct DPAPI to use the machine key by passing the
CRYPTPROTECT_LOCAL_MACHINE flag to the CryptProtectData API. In this
event, any user on the current computer can decrypt the data.

The user key option can be used only if the account used to perform the encryption
has a loaded user profile. If you run code in an environment where the user profile is
not loaded, you cannot easily use the user store and should opt for the machine store
instead.

 Chapter 7: Building Secure Assemblies 177

Version 1.1 of the .NET Framework loads the user profile for the ASPNET account
used to run Web applications on Windows 2000. Version 1.0 of the .NET Framework
does not load the profile for this account, which makes using DPAPI with the user
key more difficult.

If you use the machine key option, you should use an ACL to secure the encrypted
data, for example in a registry key, and use this approach to limit which users have
access to the encrypted data. For added security, you should also pass an optional
entropy value to the DPAPI functions.

Note An entropy value is an additional random value that can be passed to the DPAPI
CryptProtectData and CryptUnprotectData functions. The same value that is used to encrypt the
data must be used to decrypt the data. The machine key option means that any user on the
computer can decrypt the data. With added entropy, the user must also know the entropy value.

The drawback with using entropy is that you must manage the entropy value as you
would manage a key. To avoid entropy management issues, use the machine store
without entropy and validate users and code (using code access security) thoroughly
before calling the DPAPI code.

For more information about using DPAPI from ASP.NET Web applications, see
“How To: Create a DPAPI Library,” in the How To section of “Building Secure
ASP.NET Applications,” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/SecNetHT07.asp.

Do Not Store Keys in Code
Do not store keys in code because hard-coded keys in your compiled assembly can be
disassembled using tools similar to ILDASM, which will render your key in plaintext.

Restrict Access to Persisted Keys
When storing keys in persistent storage to be used at runtime, use appropriate
ACLs and limit access to the key. Access to the key should be granted only to
Administrators, SYSTEM, and the identity of the code at runtime, for example
the ASPNET or Network Service account.

When backing up a key, do not store it in plain text, encrypt it using DPAPI or a
strong password and place it on removable media.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp

178 Part III: Building Secure Web Applications

Key Exchange
Some applications require the secure exchange of encryption keys over an insecure
network. You may need to verbally communicate the key or send it through secure
e-mail. A more secure method to exchange a symmetric key is to use public key
encryption. With this approach, you encrypt the symmetric key to be exchanged by
using the other party’s public key from a certificate that can be validated. A certificate
is considered valid when:
● It is being used within the date ranges as specified in the certificate.
● All signatures in the certificate chain can be verified.
● It is of the correct type. For example, an e-mail certificate is not being used as a

Web server certificate.
● It can be verified up to a trusted root authority.
● It is not on a Certificate Revocation List (CRL) of the issuer.

Key Maintenance
Security is dependent upon keeping the key secure over a prolonged period of time.
Apply the following recommendations for key maintenance:
● Cycle keys periodically.
● Protect exported private keys.

Cycle Keys Periodically
You should change your encryption keys from time to time because a static secret is
more likely to be discovered over time. Did you write it down somewhere? Did Bob
the administrator with the secrets change positions in your company or leave the
company? Are you using the same session key to encrypt communication for a long
time? Do not overuse keys.

Key Compromise

Keys can be compromised in a number of ways. For example, you may lose the key
or discover that an attacker has stolen or discovered the key.

If your private key used for asymmetric encryption and key exchange is
compromised, do not continue to use it, and notify the users of the public key that the
key has been compromised. If you used the key to sign documents, they need to be
re-signed.

If the private key of your certificate is compromised, contact the issuing certification
authority to have your certificate placed on a certificate revocation list. Also, change
the way your keys are stored to avoid a future compromise.

 Chapter 7: Building Secure Assemblies 179

Protect Exported Private Keys
Use PasswordDeriveBytes when you export an Rivest, Shamir, and Adleman (RSA)
or Digital Signature Algorithm (DSA) private key. The RSA and DSA classes contain
a ToXmlString method, which allows you to export the public or private key, or both,
from the key container. This method exports the private key in plain text. If you
export the private key to be installed on multiple servers in a Web farm, a
recommended method is to encrypt the key after exporting the private key by using
PasswordDeriveBytes to generate a symmetric key as shown in the following code
sample.

PasswordDeriveBytes deriver = new PasswordDeriveBytes(<strong password>, null);
byte[] ivZeros = new byte[8];//This is not actually used but is currently
required.
//Derive key from the password
byte[] pbeKey = deriver.CryptDeriveKey("TripleDES", "SHA1", 192, ivZeros);

Summary
This chapter has shown you how to apply various techniques to improve the security
of your managed code. The techniques in this chapter can be applied to all types of
managed assemblies including Web pages, controls, utility libraries, and others. For
specific recommendations that apply to specific types of assemblies, see the other
building chapters in Part III of this guide.

To further improve the security of your assemblies, you can use explicit code access
security coding techniques, which are particularly important if your assemblies
support partial trust callers. For more information about using code access security,
see Chapter 8, “Code Access Security in Practice.”

Additional Resources
For additional related reading, refer to the following resources:
● For more information about using DPAPI from ASP.NET Web applications, see

“How To: Create a DPAPI Library” in the “How To” section of “Microsoft patterns
& practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library
/en-us/dnnetsec/html/SecNetHT07.asp.

● For more information about secure coding guidelines for the .NET Framework,
see MSDN article, “Secure Coding Guidelines for the .NET Framework,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/seccodeguide.asp.

● Michael Howard discusses techniques for writing secure code and shows you
how to add them in your own applications in his MSDN column, “Code Secure,”
at http://msdn.microsoft.com/columns/secure.asp.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/columns/secure.asp

8
Code Access Security in Practice

In This Chapter
● Code access security explained
● Using APTCA
● Requesting permissions
● Sandboxing privileged code
● Authorizing code with identity demands
● Serialization, delegates, and threading
● Calling unmanaged code

Overview
Code access security is a resource constraint model designed to restrict the types of
system resource that code can access and the types of privileged operation that the
code can perform. These restrictions are independent of the user who calls the code
or the user account under which the code runs.

Code access security delivers three main benefits. By using code access security,
you can:
● Restrict what your code can do

For example, if you develop an assembly that performs file I/O you can use
code access security to restrict your code’s access to specific files or directories.
This reduces the opportunities for an attacker to coerce your code to access
arbitrary files.

182 Part III: Building Secure Web Applications

● Restrict which code can call your code
For example, you may only want your assembly to be called by other code
developed by your organization. One way to do this is to use the public key
component of an assembly’s strong name to apply this kind of restriction. This
helps prevent malicious code from calling your code.

● Identify code
To successfully administer code access security policy and restrict what code can
do, the code must be identifiable. Code access security uses evidence such as an
assembly’s strong name or its URL, or its computed hash to identify code
(assemblies.)

How to Use This Chapter
This chapter takes up where Chapter 7, “Building Secure Assemblies,” left off. It
shows how you can use code access security to further improve the security of your
managed code. To get the most out of this chapter:
● Read Chapter 6, “.NET Security Fundamentals” for an overview and comparison

of user (role)-based security versus code access security. Chapter 6 helps set the
scene for the current chapter.

● Read Chapter 7, “Building Secure Assemblies.” Read Chapter 7 before this
chapter if you have not already done so.

● Read Chapter 9, “Using Code Access Security with ASP.NET.” After you read
this chapter, read Chapter 9 if you are interested specifically in ASP.NET code
access security policy and ASP.NET trust levels.

Code Access Security Explained
To use code access security effectively, you need to know the basics such as the
terminology and how policy is evaluated. For further background information about
code access security, see the “Additional Resources” section at the end of this chapter.
If you are already familiar with code access security, you may want to skip this
section and go to the “APTCA” (AllowPartiallyTrustedCallersAttribute) section
later in this chapter.

Code access security consists of the following elements:
● Code
● Evidence
● Permissions
● Policy
● Code groups

 Chapter 8: Code Access Security in Practice 183

Code
All managed code is subject to code access security. When an assembly is loaded, it is
granted a set of code access permissions that determines what resource types it can
access and what types of privileged operations it can perform. The
Microsoft .NET Framework security system uses evidence to authenticate (identify)
code to grant permissions.

Note An assembly is the unit of configuration and trust for code access security. All code in the
same assembly receives the same permission grant and is therefore equally trusted.

Evidence
Evidence is used by the .NET Framework security system to identify assemblies.
Code access security policy uses evidence to help grant the right permissions to the
right assembly. Location-related evidence includes:
● URL. The URL that the assembly was obtained from. This is the codebase URL in

its raw form, for example, http://webserver/vdir/bin/assembly.dll or
file://C:/directory1/directory2/assembly.dll.

● Site. The site the assembly was obtained from, for example, http://webserver. The
site is derived from the codebase URL.

● Application directory. The base directory for the running application.
● Zone. The zone the assembly was obtained from, for example, LocalIntranet or

Internet. The zone is also derived from the codebase URL.

Author-related evidence includes:
● Strong name. This applies to assemblies with a strong name. Strong names are one

way to digitally sign an assembly using a private key.
● Publisher. The Authenticode signature; based on the X.509 certificate used to sign

code, representing the development organization.

Important Publisher evidence (the Authenticode signature) is ignored by the ASP.NET host and
therefore cannot be used to configure code access security policy for server-side Web
applications. This evidence is primarily used by the Internet Explorer host.

● Hash. The assembly hash is based on the overall content of the assembly and
allows you to detect a particular compilation of a piece of code, independent of
version number. This is useful for detecting when third party assemblies change
(without an updated version number) and you have not tested and authorized
their use for your build.

184 Part III: Building Secure Web Applications

Permissions
Permissions represent the rights for code to access a secured resource or perform a
privileged operation. The .NET Framework provides code access permissions and code
identity permissions. Code access permissions encapsulate the ability to access a
particular resource or perform a privileged operation. Code identity permissions are
used to restrict access to code, based on an aspect of the calling code’s identity such
as its strong name.

Your code is granted permissions by code access security policy that is configured by
the administrator. An assembly can also affect the set of permissions that it is
ultimately granted by using permission requests. Together, code access security
policy and permission requests determine what your code can do. For example, code
must be granted the FileIOPermission to access the file system, and code must be
granted the RegistryPermission to access the registry. For more information about
permission requests, see the “Requesting Permissions” section later in this chapter.

Note Permission sets are used to group permissions together to ease administration.

Restricted and Unrestricted Permissions
Permissions can be restricted or unrestricted. For example, in its unrestricted state, the
FileIOPermission allows code to read or write to any part of the file system. In a
restricted state, it might allow code to read files only from a specific directory.

Demands
If you use a class from the .NET Framework class library to access a resource or
perform another privileged operation, the class issues a permission demand to ensure
that your code, and any code that calls your code, is authorized to access the
resource. A permission demand causes the runtime to walk back up through the call
stack (stack frame by stack frame), examining the permissions of each caller in the
stack. If any caller is found not to have the required permission, a SecurityException
is thrown.

Link Demands
A link demand does not perform a full stack walk and only checks the immediate
caller, one stack frame further back in the call stack. As a result, there are additional
security risks associated with using link demands. You need to be particularly
sensitive to luring attacks.

Note With a luring attack, malicious code accesses the resources and operations that are exposed
by your assembly, by calling your code through a trusted intermediary assembly.

 Chapter 8: Code Access Security in Practice 185

For more information about how to use link demands correctly, see the “Link
Demands” section later in this chapter.

Assert, Deny, and PermitOnly Methods
Code access permission classes support the Assert, Deny, and PermitOnly methods.
You can use these methods to alter the behavior of a permission demand stack walk.
They are referred to as stack walk modifiers.

A call to the Assert method causes the stack walk for a matching permission to stop
at the site of the Assert call. This is most often used to sandbox privileged code. For
more information, see the “Assert and RevertAssert” section later in this chapter.

A call to the Deny method fails any stack walk that reaches it with a matching
permission. If you call some non-trusted code, you can use the Deny method to
constrain the capabilities of the code that you call.

A call to the PermitOnly method fails any unmatching stack walk. Like the Deny
method, it tends to be used infrequently but it can be used to constrain the actions of
some non-trusted code that you may call.

Policy
Code access security policy is configured by administrators and it determines the
permissions granted to assemblies. Policy can be established at four levels:
● Enterprise. Used to apply Enterprise-wide policy.
● Machine. Used to apply machine-level policy.
● User. Used to apply per user policy.
● Application Domain. Used to configure the application domain into which an

assembly is loaded.
ASP.NET implements application domain policy to allow you to configure code
access security policy for Web applications and Web services. For more
information about ASP.NET application domain policy, see Chapter 9, “Using
Code Access Security with ASP.NET.”

Policy settings are maintained in XML configuration files. The first three levels of
policy (Enterprise, Machine, and User) can be configured by using the .NET
Framework Configuration tool, which is located in the Administrative Tools program
group or the Caspol.exe command line utility. ASP.NET application domain level
policy must currently be edited with a text or XML-based editor.

For more information about policy files and locations, see Chapter 19, “Securing Your
ASP.NET Application and Web Services.”

186 Part III: Building Secure Web Applications

Code Groups
Each policy file contains a hierarchical collection of code groups. Code groups are
used to assign permissions to assemblies. A code group consists of two elements:
● A membership condition. This is based on evidence, for example, an assembly’s

zone or its strong name.
● A permission set. The permissions contained in the permission set are granted to

assemblies whose evidence matches the membership condition.

How Does It Work?
Figure 8.1 shows a simplified overview of code access security.

Load Assembly

`

Permission
Granted?

Continue with
privileged

operation (or
access resource)

Throw Security Exception

Enterprise
Machine

User
AppDomain
(ASP.NET)

Security
Policy

Gather Evidence

Grant Permission Sets
(yielding permissions)

Demand Permission

Hash
Strong Name
Publisher Sig

Zone
URL
Site

Yes

No

Administrator

Assembly performs
privileged operation

Figure 8.1
Code access security — a simplified view

 Chapter 8: Code Access Security in Practice 187

The steps shown in Figure 8.1 are summarized below.
1. An assembly is loaded.

This operation is performed by an application domain host. On a Web server
loading a Web application assembly, this is the ASP.NET host.

2. Evidence is gathered from the assembly and presented by the host.
3. Evidence is evaluated against the defined security policy.
4. The output from security policy evaluation is one or more named permission sets

that define the permission grant for the assembly.

Note An assembly can include permission requests, which can further reduce the
permission grant.

5. Code within the assembly demands an appropriate permission prior to accessing a
restricted resource or performing a privileged operation.
All of the .NET Framework base classes that access resources or perform
privileged operations contain the appropriate permission demands. For example,
the FileStream class demands the FileIOPermission, the Registry class demands
the RegistryPermission, and so on.

6. If the assembly (and its callers) have been granted the demanded permission, the
operation is allowed to proceed. Otherwise, a security exception is generated.

How Is Policy Evaluated?
When evidence is run through the policy engine, the output is a permission set that
defines the set of permissions granted to an assembly. The policy grant is calculated
at each level in the policy hierarchy: Enterprise, Machine, User, and Application
Domain. The policy grant resulting from each level is then combined using an
intersection operation to yield the final policy grant. An intersection is used to ensure
that policy lower down in the hierarchy cannot add permissions that were not
granted by a higher level. This prevents an individual user or application domain
from granting additional permissions that are not granted by the Enterprise
administrator.

188 Part III: Building Secure Web Applications

Figure 8.2 shows how the intersection operation means that the resulting permission
grant is determined by all levels of policy in the policy hierarchy.

Enterprise

Policy Leve ls

Machine

User

App Domain
(ASP. NET)

P1 P2 P3 P4 P5

P1 P2 P3

P1 P2 P3 P4 P5

P1 P4P3

Intersection
Resulting Policy Grant = P1 + P3

Figure 8.2
Policy intersection across policy levels

In Figure 8.2, you can see that the intersection operation ensures that only those
permissions granted by each level form part of the final permission grant.

How Do Permission Requests Affect the Policy Grant?
You can add security attributes to your assembly to specify its permission
requirements. You can specify the minimal set of permissions that your assembly
must be granted in order to run. These do not affect the permission grant. You can
also specify the optional permissions your assembly could make use of but does not
absolutely require, and what permissions you want to refuse. Refused permissions
are those permissions you want to ensure your assembly never has, even if they are
granted by security policy.

If you request optional permissions, the combined optional and minimal permissions
are intersected with the policy grant, to further reduce it. Then, any specifically
refused permissions are taken away from the policy grant. This is summarized by the
following formula where PG is the policy grant from administrator defined security
policy and Pmin , Popt , and Prefused are permission requests added to the assembly by the
developer.

Resulting Permission Grant = (PG ∩ (Pmin ∪ Popt)) – Prefused

For more information about how to use permission requests, their implications, and
when to use them, see the “Requesting Permissions” section later in this chapter.

 Chapter 8: Code Access Security in Practice 189

Policy Evaluation at a Policy Level
An individual policy file at each specific level consists of a hierarchical arrangement
of code groups. These code groups include membership conditions that are used to
determine which assemblies they apply to, and permission sets that are used to
determine the permissions that should be granted to matching assemblies. A
hierarchical structure enables multiple permission sets to be assigned to an assembly,
and it allows security policy to support simple AND and OR logic. For example,
consider the sample security policy shown in Figure 8.3.

Zone:
MyComputer

ps:
FullTrust

All Code
ps:

Nothing

Zone: Local
Intranet

ps:
LocalIntranet

Publisher:
Company2

ps:
Comp2PSet

URL:
https://

a.b.c.com
ps:

ABCPSet

Publisher:
Company1

ps:
Comp1PSet

Logical AND

Figure 8.3
Hierarchical code groups at a single policy level

Note The All Code code group is a special code group that matches all assemblies. It forms the
root of security policy and in itself grants no permissions, because it is associated with the
permission set named Nothing.

190 Part III: Building Secure Web Applications

Consider the granted permissions based on the security policy shown in Figure 8.3.
● Any assembly originating from the My_Computer_Zone (any locally installed

assembly), is granted the permissions defined by the FullTrust permission set.
This is a built-in permission set defined when the .NET Framework is installed
and represents the unrestricted set of all permissions.

● Assemblies authored by Company1 and originating from the intranet zone are
granted the permissions defined by the built-in LocalIntranet_Zone permission
set and the custom Comp1PSet permission set.

● Assemblies authored by Company2 are granted permissions defined by the
custom Comp2PSet permission set.

● Any assembly downloaded from a.b.c.com is granted permissions defined by the
custom ABCPSet permission set.

Note If the membership condition for a particular code group is not satisfied, none of its children
are evaluated.

Exclusive and Level Final Code Groups
Policy hierarchy processing and traversal can be fine-tuned using a couple of
attributes specified at the code group level, both of which can be set through the
.NET Framework Configuration Tool. These are:
● Exclusive

This indicates that no other sibling code groups should be combined with this
code group. You mark a code group as exclusive by selecting This policy level
will only have the permissions from the permission set associated with this
code group in the .NET Framework Configuration Tool.

● Level Final
This indicates that any lower level policies should be ignored. You mark a code
group as Level Final by selecting Policy levels below this level will not be
evaluated in the .NET Framework Configuration Tool. For example, if a matching
code group in the machine policy is marked Level Final, policy settings from the
user policy file is ignored.

Note The application domain level policy, for example, ASP.NET policy for server-side Web
applications, is always evaluated regardless of the level final setting.

 Chapter 8: Code Access Security in Practice 191

APTCA
An assembly that has a strong name cannot be called by a partial trust assembly (an
assembly that is not granted full trust), unless the strong named assembly contains
AllowPartiallyTrustedCallersAttribute (APTCA) as follows:

[assembly: AllowPartiallyTrustedCallersAttribute()]

This is a risk mitigation strategy designed to ensure your code cannot inadvertently
be exposed to partial trust (potentially malicious) code. The common language
runtime silently adds a link demand for the FullTrust permission set to all publicly
accessible members on types in a strong named assembly. If you include APTCA, you
suppress this link demand.

Avoid Using APTCA
If you use APTCA, your code is immediately more vulnerable to attack and, as a
result, it is particularly important to review your code for security vulnerabilities. Use
APTCA only where it is strictly necessary.

In the context of server-side Web applications, use APTCA whenever your assembly
needs to support partial trust callers. This situation can occur in the following
circumstances:
● Your assembly is to be called by a partial trust Web application. These are

applications for which the <trust> level is set to something other than Full. For
more information about partial trust Web applications and using APTCA in this
situation, see Chapter 9, “Using Code Access Security in ASP.NET.”

● Your assembly is to be called by another assembly that has been granted limited
permissions by the code access security administrator.

● Your assembly is to be called by another assembly that refuses specific
permissions by using SecurityAction.RequestRefuse or
SecurityAction.RequestOptional. These make the calling assembly a partial trust
assembly.

● Your assembly is to be called by another assembly that uses a stack walk modifier
(such as Deny or PermitOnly) to constrain downstream code.

192 Part III: Building Secure Web Applications

Diagnosing APTCA Issues
If you attempt to call a strong named assembly that is not marked with APTCA from
partial trust code such as a partial trust Web application, you see an exception similar
to the one shown in Figure 8.4. Notice that the exception details provide no
permission details and simply indicate that the required permissions (in this case,
FullTrust) cannot be acquired from the calling assembly. In this case, the somewhat
confusing description text means that the error occurred because the application’s
<trust> level was set to something other than Full.

Figure 8.4
The result of partial trust code calling a strong named assembly

To overcome this exception, either the calling code must be granted FullTrust or the
assembly being called must be annotated with APTCA. Note that individual types
within an assembly marked with APTCA might still require full trust callers, because
they include an explicit link demand or regular demand for full trust, as shown in the
following examples.

[PermissionSet(SecurityAction.LinkDemand, Name="FullTrust")]
[PermissionSet(SecurityAction.Demand, Unrestricted=true)]

 Chapter 8: Code Access Security in Practice 193

Privileged Code
When you design and build secure assemblies, you must be able to identify
privileged code. This has important implications for code access security. Privileged
code is managed code that accesses secured resources or performs other security-
sensitive operations, such as calling unmanaged code, using serialization, or using
reflection. Privileged code is privileged because code access security must grant it
specific permissions before it can function.

Privileged Resources
Privileged resources for which your code requires specific code access security
permissions are shown in the Table 8.1.

Table 8.1 Secure Resources and Associated Permissions

Secure Resource Requires Permission
Data access SqlClientPermission

OleDbPermission

OraclePermission

Note The ADO.NET OLE DB and Oracle-managed providers
currently require full trust.

Directory services DirectoryServicesPermission

DNS databases DnsPermission

Event log EventLogPermission

Environment variables EnvironmentPermission

File system FileIOPermission

Isolated storage IsolatedStoragePermission

Message queues MessageQueuePermission

Performance counters PerformanceCounterPermission

Printers PrinterPermission

Registry RegistryPermission

Sockets SocketPermission

Web services (and other HTTP
Internet resources)

WebPermission

194 Part III: Building Secure Web Applications

Privileged Operations
Privileged operations are shown in Table 8.2, together with the associated
permissions that calling code requires.

Table 8.2 Privileged Operations and Associated Permissions

Operation Requires Permission
Creating and controlling application
domains

SecurityPermission with
SecurityPermissionFlag.ControlAppDomain

Specifying policy application domains SecurityPermission with
SecurityPermissionFlag.ControlDomainPolicy

Asserting security permissions SecurityPermission with SecurityPermissionFlag.Assertion

Creating and manipulating evidence SecurityPermission with
SecurityPermissionFlag.ControlEvidence

Creating and manipulating principal
objects

SecurityPermission with
SecurityPermissionFlag.ControlPrincipal

Configuring types and channels
remoting

SecurityPermission with
SecurityPermissionFlag.RemotingConfiguration

Manipulating security policy SecurityPermission with
SecurityPermissionFlag.ControlPolicy

Serialization SecurityPermission with
SecurityPermissionFlag.SerializationFormatter

Threading operations SecurityPermission with
SecurityPermissionFlag.ControlThread

Reflection ReflectionPermission

Calling unmanaged code SecurityPermission with
SecurityPermissionFlag.UnmanagedCode

Requesting Permissions
When you design and develop your assemblies, create a list of all the resources that
your code accesses, and all the privileged operations that your code performs. At
deployment time, the administrator may need this information to appropriately
configure code access security policy and to diagnose security related problems.

The best way to communicate the permission requirements of your code is to use
assembly level declarative security attributes to specify minimum permission
requirements. These are normally placed in Assemblyinfo.cs or Assemblyinfo.vb.
This allows the administrator or the consumer of your assembly to check which
permissions it requires by using the Permview.exe tool.

 Chapter 8: Code Access Security in Practice 195

RequestMinimum
You can use SecurityAction.RequestMinimum method along with declarative
permission attributes to specify the minimum set of permissions your assembly
needs to run. For example, if your assembly needs to access the registry, but only
needs to retrieve configuration data from a specific key, use an attribute similar to the
following:

[assembly: RegistryPermissionAttribute(
 SecurityAction.RequestMinimum,
 Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\YourApp")]

If you know up front that your code will run in a full trust environment and will be
granted the full set of unrestricted permissions, using RequestMinimum is less
important. However, it is good practice to specify your assembly’s permission
requirements.

Note Permission attributes accept a comma-delimited list of properties and property values after
the mandatory constructor arguments. These are used to initialize the underlying permission object.
A quick way to find out what property names are supported is to use Ildasm.exe on the assembly
that contains the permission attribute type.

RequestOptional
If you use SecurityAction.RequestOptional method, no other permissions except
those specified with SecurityAction.RequestMinimum and
SecurityAction.RequestOptional will be granted to your assembly, even if your
assembly would otherwise have been granted additional permissions by code access
security policy.

RequestRefused
SecurityAction.RequestRefuse allows you to make sure that your assembly cannot
be granted permissions by code access security policy that it does not require. For
example, if your assembly does not call unmanaged code, you could use the
following attribute to ensure code access security policy does not grant your
assembly the unmanaged code permission.

[assembly: SecurityPermissionAttribute(SecurityAction.RequestRefuse,
 UnmanagedCode=true)]

196 Part III: Building Secure Web Applications

Implications of Using RequestOptional or RequestRefuse
If you use RequestOptional, the set of permissions that are specified with
RequestOptional and RequestMinimum are intersected with the permission grant
given to your assembly by policy. This means that all other permissions outside of the
RequestOptional and RequestMinimum sets are removed from your assembly’s
permission grant. Additionally, if you use RequestRefuse, the refused permissions
are also removed from your assembly’s permission grant.

So if you use RequestOptional or RequestRefuse, your assembly becomes a partial
trust assembly, which has implications when you call other assemblies. Use the
following considerations to help you decide whether you should use
SecurityAction.RequestOptional or SecurityAction.RequestRefuse:
● Do not use them if you need to directly call a strong named assembly without

AllowPartiallyTrustedCallersAttribute (APTCA) because this prevents you from
being able to call it.
Many strong named .NET Framework assemblies contain types that do not
support partial trust callers and do not include APTCA. For more information,
and a list of assemblies that support partial trust callers, see “Developing Partial
Trust Web Applications,” in Chapter 9, “Using Code Access Security with
ASP.NET.”
If you must call strong named assemblies without APTCA, let the administrators
who install your code know that your code must be granted full trust by code
access security policy to work properly.

● If you do not need to access any APTCA assemblies, then add permission requests
to refuse those permissions that you know your assembly does not need. Test your
code early to make sure you really do not require those permissions.

● If downstream code needs the permission you have refused, a method between
you and the downstream code needs to assert the permission. Otherwise, a
SecurityException will be generated when the stack walk reaches your code.

Authorizing Code
Code access security allows you to authorize the code that calls your assembly. This
reduces the risk of malicious code successfully calling your code. For example, you
can use identity permissions to restrict calling code based on identity evidence, such
as the public key component of its strong name. You can also use explicit code access
permission demands to ensure that the code that calls your assembly has the
necessary permissions to access the resource or perform the privileged operation that
your assembly exposes.

 Chapter 8: Code Access Security in Practice 197

Usually, you do not explicitly demand code access permissions. The .NET
Framework classes do this for you, and a duplicate demand is unnecessary. However,
there are occasions when you need to issue explicit demands, for example, if your
code exposes a custom resource by using unmanaged code or if your code accesses
cached data. You can authorize code in the following ways:
● Restrict which code can call your code.
● Restrict inheritance.
● Consider protecting cached data.
● Protect custom resources with custom permissions.

Restrict Which Code Can Call Your Code
A method marked as public can be called by any code outside of the current
assembly. To further restrict which other code can call your methods, you can use a
code access security identity permission demand as shown in the following example.

public sealed class Utility
{
 // Although SomeOperation() is a public method, the following
 // permission demand means that it can only be called by assemblies
 // with the specified public key.
 [StrongNameIdentityPermission(SecurityAction.LinkDemand,
 PublicKey="00240000048...97e85d098615")]
 public static void SomeOperation() {}
}

The above code shows a link demand. This results in the authorization of the
immediate caller. Therefore, your code is potentially open to luring attacks, where a
malicious assembly could potentially access the protected resources or operations
provided by your assembly through a trusted intermediary assembly with the
specified strong name.

Depending on the nature of the functionality provided by your class, you may need
to demand another permission to authorize the calling code in addition to using the
identity-based link demand. Alternatively, you can consider using a full demand in
conjunction with the StrongNameIdentityPermission, although this assumes that all
code in the call stack is strong name signed using the same private key.

Note Issuing a full stack walk demand for the StrongNameIdentityPermission does not work if your
assembly is called by a Web application or Web service. This is because it is not possible to strong
name the dynamically compiled classes associated with ASP.NET Web applications or Web services.

198 Part III: Building Secure Web Applications

� To extract a public key from an assembly

● Run the following command to obtain a hex representation of a public key from an
assembly:

secutil -hex -strongname yourassembly.dll

� To extract the public key from a key pair file

1. Generate the key pair file with the following command:

sn -k keypairfile

2. Extract the public key from the key pair file:

sn -p keypairfile publickeyfile

3. Obtain a hex representation of the public key:

sn -tp publickeyfile > publickeyhex.dat

Restrict Inheritance
If your class is designed as base class, you can restrict which other code is allowed
to derive from your class by using an inheritance demand coupled with a
StrongNameIdentityPermission as shown in the following example. This prevents
inheritance of your class from any assembly that is not signed with the private key
corresponding to the public key in the demand.

// The following inheritance demand ensures that only code within the
// assembly with the specified public key (part of the assembly's strong
// name can sub class SomeRestrictedClass
[StrongNameIdentityPermission(SecurityAction.InheritanceDemand,
 PublicKey="00240000048...97e85d098615")]
public class SomeRestrictedClass
{
}

 Chapter 8: Code Access Security in Practice 199

Consider Protecting Cached Data
If you access a resource by using one of the .NET Framework classes, a permission
demand appropriate for the resource type in question is issued by the class. If you
subsequently cache data for performance reasons, you should consider issuing an
explicit code access permission demand prior to accessing the cached data. This
ensures the calling code is authorized to access the specific type of resource. For
example, if you read data from a file and then cache it, and you want to ensure that
calling code is authorized, issue a FileIOPermission demand as shown in the
following example.

// The following demand assumes the cached data was originally retrieved from
// C:\SomeDir\SomeFile.dat
new FileIOPermission(FileIOPermissionAccess.Read,
 @"C:\SomeDir\SomeFile.dat").Demand();
// Now access the cache and return the data to the caller

Protect Custom Resources with Custom Permissions
If you expose a resource or operation by using unmanaged code, you should sandbox
your wrapper code and consider demanding a custom permission to authorize the
calling code.

Full trust callers are granted the custom permission automatically as long as the
permission type implements the IUnrestrictedPermission interface. Partial trust
callers will not have the permission unless it has been specifically granted by code
access security policy. This ensures that non-trusted code cannot call your assembly
to access the custom resources that it exposes. Sandboxing also means that you are
not forced to grant the powerful UnmanagedCodePermission to any code that needs
to call your code.

For more information about calling unmanaged code, see the “Unmanaged Code”
section later in this chapter. For an example implementation of a custom permission,
see “How To: Create a Custom Encryption Permission” in the “How To” section of
this guide.

Link Demands
A link demand differs from a regular permission demand in that the run-time
demands permissions only from the immediate caller and does not perform a full
stack walk. Link demands are performed at JIT compilation time and can only be
specified declaratively.

200 Part III: Building Secure Web Applications

Carefully consider before using a link demand because it is easy to introduce security
vulnerabilities if you use them. If you do use link demands, consider the following
issues:
● Luring attacks
● Performance and link demands
● Calling methods with link demands
● Mixing class and method level link demands
● Interfaces and link demands
● Structures and link demands
● Virtual methods and link demands

Luring Attacks
If you protect code with a link demand, it is vulnerable to luring attacks, where
malicious code gains access to the resource or operation exposed by your code
through a trusted intermediary as shown in Figure 8.5.

X

A B C

D

Can’t access

Luring attack
via intermediary

Link demand
protected

Figure 8.5
An example of a luring attack with link demands

In figure 8.5, methods in assembly X, which access a secure resource,
are protected with a link demand for a specific public key (using a
StrongNameIdentityPermission). Assemblies A, B, and C are signed with the private
key that corresponds to the public key that assembly X trusts, and so these assemblies
can call assembly X. Assemblies A, B, and C are subject to a luring attack if they do
not check their callers for specific evidence before making calls to assembly X. For
example, assembly D that is not signed with the same private key cannot call
assembly X directly. It could, however, access assembly X through the trusted
assembly A, if A does not check its callers, either with another link demand or
through a full demand.

 Chapter 8: Code Access Security in Practice 201

Only use link demands in an assembly when you trust the assembly’s callers not to
expose its functionality further (for example, when the caller is an application, not a
library) or when you know it is safe just to verify the immediate caller’s identity with
an identity permission demand.

Performance and Link Demands
Compared to other Web application performance issues such as network latency and
database access, the cost of a stack walk is small. Do not use link demands purely for
performance reasons. Full demands provide a much greater degree of security.

Calling Methods with Link Demands
If you call a link demand protected method, only your code will be checked by the
link demand. In this situation, you should make sure your code takes adequate
measures to authorize its callers, for example, by demanding a permission.

Mixing Class and Method Level Link Demands
Method level link demands override class level link demands. For example, in the
following code fragment, the link demand for FileIOPermission must be repeated on
the method declaration or the EnvironmentPermission link demand replaces the
class level FileIOPermission demand.

[FileIOPermission(SecurityAction.LinkDemand, Unrestricted=true)]
public sealed class SomeClass
{
 // The unrestricted FileIOPermission link demand must be restated at the
 // method level, if the method is decorated with another link demand.
 // Failure to do so means that (in this example) that the
 // EnvironmentPermission link demand would override the class level
 // FileIOPermission link demand
 [FileIOPermission(SecurityAction.LinkDemand, Unrestricted=true)]
 [EnvironmentPermission(SecurityAction.LinkDemand, Read="PATH")]
 public void SomeMethod()
 {
 }
}

202 Part III: Building Secure Web Applications

Interfaces and Link Demands
If your class implements an interface and one of the method implementations has a
link demand, make sure that the method declaration on the interface definition has
the same link demand. Otherwise, the caller simply has to call your method through
the interface to bypass the link demand. An example is shown below.

public interface IMyInterface
{
 // The link demand shown on the method implementation below
 // should be repeated here
 void Method1();
}

public class MyImplementation : IMyInterface
{
 // The method implementation has a link demand but the interface does not
 [SecurityPermission(SecurityAction.LinkDemand,
 Flags=SecurityPermissionFlag.ControlPrincipal)]
 public void Method1()
 {
 }
}

With the following code, the caller is subject to the link demand:

MyImplementation t = new MyImplementation();
t.Method1();

With the following code, the caller is not subject to the link demand:

IMyInterface i = new MyImplementation();
i.Method1();

Structures and Link Demands
Link demands do not prevent the construction of structures by untrusted callers.
This is because default constructors are not automatically generated for structures.
Therefore, the structure level link demand only applies if you use an explicit
constructor.

 Chapter 8: Code Access Security in Practice 203

For example:

[SecurityPermission(SecurityAction.LinkDemand,
 Flags=SecurityPermissionFlag.ControlPrincipal)]
public struct SomeStruct
{
 // This explicit constructor is protected by the link demand
 public SomeStruct(int i)
 {
 field = i;
 }
 private int field;
}

The following two lines of code both result in a new structure with the field
initialized to zero. However, only the first line that uses the explicit constructor is
subject to a link demand.

SomeStruct s = new SomeStruct(0);
SomeStruct s = new SomeStruct();

The second line is not subject to a link demand because a default constructor is not
generated. If this were a class instead of a structure, the compiler would generate a
default constructor annotated with the specified link demand.

Virtual Methods and Link Demands
If you use link demand to protect a method override in a derived class, make sure
you also put it on the corresponding virtual base class method. Otherwise, if the JIT
compiler sees a reference to the base class type where no link demand is present, no
link demand is performed.

Assert and RevertAssert
You can call the CodeAccessPermission.Assert method to prevent a demand
propagating beyond the current stack frame. By using Assert, you vouch for the
trustworthiness of your code’s callers. Because of the potential for luring attacks,
Assert needs to be used with caution.

Asserts are most often used to sandbox privileged code. If you develop code that calls
Assert, you need to ensure that there are alternate security measures in place to
authorize the calling code. The following recommendations help you to minimize the
risks.
● Use the demand / assert pattern
● Reduce the Assert duration

204 Part III: Building Secure Web Applications

Use the Demand / Assert Pattern
Demanding a specific permission before calling Assert is an effective way to
authorize upstream code. Sometimes you might be able to demand a built-in
permission type to authorize calling code.

Often, if your assembly is exposing functionality that is not provided by the .NET
Framework class library, such as calling the Data Protection API (DPAPI), you need to
develop a custom permission and demand the custom permission to authorize
callers. For example, you might develop a custom Encryption permission to
authorize callers to a managed DPAPI wrapper assembly. Demanding this permission
and then asserting the unmanaged code permission is an effective way to authorize
calling code.

For more information about this approach and about developing custom permissions,
see “How To: Create a Custom Encryption Permission” in the “How To” section of
this guide.

Reduce the Assert Duration
If you only need to call Assert to satisfy the demands of a single downstream method
that your code calls, then place the Assert immediately prior to the downstream
method call. Then immediately call RevertAssert to keep the assertion window as
small as possible, and to ensure that any subsequent code your method calls does not
inadvertently succeed because the Assert is still in effect.

A common practice is to place the call to RevertAssert in a finally block to ensure
that it always gets called even in the event of an exception.

Constraining Code
Constraining code and building least privileged code is analogous to using the
principle of least privilege when you configure user or service accounts. By
restricting the code access security permissions available to your code, you minimize
scope for the malicious use of your code.

There are two ways to constrain code to restrict which resources it can access and
restrict which other privileged operations it can perform:
● Using policy permission grants
● Using stack walk modifiers

 Chapter 8: Code Access Security in Practice 205

Using Policy Permission Grants
You can configure code access security policy to grant a restricted permission set to a
specific assembly. This constrains its ability to access resources or perform other
privileged operations. For more information, see “How To: Configure Code Access
Security Policy to Constrain an Assembly” in the “How To” section of this guide.

Using Stack Walk Modifiers
You can use stack walk modifiers to ensure that only specific permissions are
available to the code that you call. For example, you can use
SecurityAction.PermitOnly to ensure that your method and any methods that are
called only have a restricted permission set. The following example applies a very
restrictive permission set. The code only has the permission to execute. It cannot
access resources or perform other privileged operations.

[SecurityPermissionAttribute(SecurityAction.PermitOnly,
 Flags=SecurityPermissionFlag.Execution)]
public void SomeMethod()
{
 // The current method and downstream can only execute. They cannot access
 // resources or perform other privileged operations.
 SomeOtherMethod();
}

The following sections show you how to use code access security to constrain various
types of resource access including file I/O, event log, registry, data access, directory
services, environment variables, Web services, and sockets.

File I/O
To be able to perform file I/O, your assembly must be granted the FileIOPermission
by code access security policy. If your code is granted the unrestricted
FileIOPermission, it can access files anywhere on the file system, subject to Windows
security. A restricted FileIOPermission can be used to constrain an assembly’s ability
to perform file I/O, for example, by specifying allowed access rights (read,
read/write, and so on.)

Constraining File I/O within your Application’s Context
A common requirement is to be able to restrict file I/O to specific directory locations
such as your application’s directory hierarchy.

Note If your Web application is configured for Medium trust, file access is automatically restricted
to the application’s virtual directory hierarchy. For more information, see Chapter 9, “Using Code
Access Security with ASP.NET.”

206 Part III: Building Secure Web Applications

Configuring your application for Medium trust is one way to constrain file I/O,
although this also constrains your application’s ability to access other resource types.
There are two other ways you can restrict your code’s file I/O capabilities:
● Using PermitOnly to restrict File I/O
● Configuring code access security policy to restrict File I/O

Using PermitOnly to Restrict File I/O
You can use declarative attributes together with SecurityAction.PermitOnly as
shown in the following example to constrain file I/O.

// Allow the code only to read files from c:\YourAppDir
[FileIOPermission(SecurityAction.PermitOnly, Read=@"c:\YourAppDir\")]
[FileIOPermission(SecurityAction.PermitOnly, PathDiscovery=@"c:\YourAppDir\")]
public static string ReadFile(string filename)
{
 // Use Path.GetFilePath() to canonicalize the file name
 // Use FileStream.OpenRead to open the file
 // Use FileStream.Read to access and return the data
}

Note The second attribute that specifies PathDicovery access is required by the Path.GetFilePath
function that is used to canonicalize the input file name.

To avoid hard coding your application’s directory hierarchy, you can use imperative
security syntax, and use the HttpContext.Current.Request.MapPath(".") to retrieve
your Web application’s directory at runtime. You must reference the System.Web
assembly and add the corresponding using statement as shown in the following
example.

using System.Web;

public static string ReadFile(string filename)
{
 string appDir = HttpContext.Current.Request.MapPath(".");
 FileIOPermission f = new FileIOPermission(PermissionState.None);
 f.SetPathList(FileIOPermissionAccess.Read, appDir);
 f.SetPathList(FileIOPermissionAccess.PathDiscovery, appDir);
 f.PermitOnly();

 // Use Path.GetFilePath() to canonicalize the file name
 // Use FileStream.OpenRead to open the file
 // Use FileStream.Read to access and return the data
}

Note For a Windows application you can replace the call to MapPath with a call to
Directory.GetCurrentDirectory to obtain the application’s current directory.

 Chapter 8: Code Access Security in Practice 207

Configuring Code Access Security Policy to Restrict File I/O
An administrator can also configure code access security policy to restrict your code’s
ability to perform file I/O beyond your application’s virtual directory hierarchy.

For example, the administrator can configure Enterprise or Machine level code access
security policy to grant a restricted FileIOPermission to your assembly. This is most
easily done if your assembly contains a strong name, because the administrator can
use this cryptographically strong evidence when configuring policy. For assemblies
that are not strong named, an alternative form of evidence needs to be used. For more
information about how to configure code access security to restrict the file I/O
capability of an assembly, see “How To: Configure Code Access Security Policy to
Constrain an Assembly, “ in the “How To” section of this guide.

If your assembly is called by a Web application, a better approach is to configure
ASP.NET (application domain-level) code access security policy because you can use
$AppDirUrl$ which represents the application’s virtual directory root. For more
information about restricting File I/O using ASP.NET code access security policy,
see Chapter 9, “Using Code Access Security with ASP.NET.”

Requesting FileIOPermission
To help the administrator, if you know your assembly’s precise file I/O requirements
at build time (for example, you know directory names), declare your assembly’s
FileIOPermission requirements by using a declarative permission request as shown
in the following example.

[assembly: FileIOPermission(SecurityAction.RequestMinimum, Read=@"C:\YourAppDir")]

The administration can see this attribute by using permview.exe. The additional
advantage of using SecurityAction.RequestMinimum is that the assembly fails to
load if it is not granted sufficient permissions. This is preferable to a runtime security
exception.

Event Log
To be able to access the event log, your assembly must be granted the
EventLogPermission by code access security policy. If it is not, for example, because
it is running within the context of a medium trust Web application, you need to
sandbox your event logging code. For more information about sandboxing access to
the event log, see Chapter 9, “Using Code Access Security with ASP.NET.”

208 Part III: Building Secure Web Applications

Constraining Event Logging Code
If you want to constrain the actions of event log wrapper code — perhaps code
written by another developer or development organization — you can use declarative
attributes together with SecurityAction.PermitOnly as shown in the following
example.

The following attribute ensures that the WriteToLog method and any methods it calls
can only access the local computer’s event log and cannot delete event logs or event
sources. These operations are not permitted by
EventLogPermissionAccess.Instrument.

[EventLogPermission(SecurityAction.PermitOnly,
 MachineName=".",
 PermissionAccess=EventLogPermissionAccess.Instrument)]
public static void WriteToLog(string message)

To enforce read-only access to existing logs, use EventLogPermissionAccess.Browse.

Requesting EventLogPermission
To document the permission requirements of your code, and to ensure that your
assembly cannot load if it is granted insufficient event log access by code access
security policy, add an assembly level EventLogPermissionAttribute with
SecurityAction.RequestMinimum as shown in the following example.

// This attribute indicates that your code requires the ability to access the
// event logs on the local machine only (".") and needs instrumentation access
// which means it can read or write to existing logs and create new event sources
// and event logs
[assembly: EventLogPermissionAttribute(SecurityAction.RequestMinimum,
 MachineName=".",
 PermissionAccess=
 EventLogPermissionAccess.Instrument)]

Registry
Code that accesses the registry by using the Microsoft.Win32.Registry class must be
granted the RegistryPermission by code access security policy. This permission type
can be used to constrain registry access to specific keys and sub keys, and can also
control code’s ability to read, write, or create registry keys and named values.

 Chapter 8: Code Access Security in Practice 209

Constraining Registry Access
To constrain code to reading data from specific registry keys, you can use the
RegistryPermissionAttribute together with SecurityAction.PermitOnly. The
following attribute ensures that the code can only read from the YourApp key (and
subkeys) beneath HKEY_LOCAL_MACHINE\SOFTWARE.

[RegistryPermissionAttribute(SecurityAction.PermitOnly,
 Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\YourApp")]
public static string GetConfigurationData(string key, string namedValue)
{
 return (string)Registry.
 LocalMachine.
 OpenSubKey(key).
 GetValue(namedValue);
}

Requesting RegistryPermission
To document the permission requirements of your code, and to ensure your assembly
cannot load if it is granted insufficient registry access from code access security
policy, add an assembly level RegistryPermissionAttribute with
SecurityAction.RequestMinimum as shown in the following example.

[assembly: RegistryPermissionAttribute(SecurityAction.RequestMinimum,
 Read=@"HKEY_LOCAL_MACHINE\SOFTWARE\YourApp")]

Data Access
The ADO.NET SQL Server data provider supports partial trust callers. The other data
providers including the OLE DB, Oracle, and ODBC providers currently require full
trust callers.

If you connect to SQL Server using the SQL Server data provider, your data access
code requires the SqlClientPermission. You can use SqlClientPermission to restrict
the allowable range of name/value pairs that can be used on a connection string
passed to the SqlConnection object. In the following code, the
CheckProductStockLevel method has been enhanced with an additional security
check to ensure that blank passwords cannot be used in the connection string. If the
code retrieves a connection string with a blank password, a SecurityException is
thrown.

210 Part III: Building Secure Web Applications

[SqlClientPermissionAttribute(SecurityAction.PermitOnly,
 AllowBlankPassword=false)]
public static int CheckProductStockLevel(string productCode)
{
 // Retrieve the connection string from the registry
 string connectionString = GetConnectionString();
 . . .
}

For more information about how to sandbox data access code to allow the OLE DB
and other data providers to be used from partial trust Web applications, see
Chapter 9, “Using Code Access Security with ASP.NET.”

Directory Services
Currently, code that uses classes from the System.DirectoryServices namespace to
access directory services such as Active Directory must be granted full trust.
However, you can use the DirectoryServicesPermission to constrain the type of
access and the particular directory services to which code can connect.

Constraining Directory Service Access
To constrain code, you can use the DirectoryServicesPermissionAttribute together
with SecurityAction.PermitOnly. The following attribute ensures that the code can
only connect to a specific LDAP path and can only browse the directory.

[DirectoryServicesPermissionAttribute(SecurityAction.PermitOnly,
 Path="LDAP://rootDSE",
 PermissionAccess=DirectoryServicesPermissionAccess.Browse)]
public static string GetNamingContext(string ldapPath)
{
 DirectorySearcher dsSearcher = new DirectorySearcher(ldapPath);
 dsSearcher.PropertiesToLoad.Add("defaultNamingContext");
 dsSearcher.Filter = "";
 SearchResult result = dsSearcher.FindOne();
 return (string)result.Properties["adsPath"][0];
}

 Chapter 8: Code Access Security in Practice 211

Requesting DirectoryServicesPermission
To document the permission requirements of your code, and to ensure your assembly
cannot load if it is granted insufficient directory services access from code access
security policy, add an assembly level DirectoryServicesPermissionAttribute with
SecurityAction.RequestMinimum as shown in the following example.

[assembly: DirectoryServicesPermissionAttribute(SecurityAction.RequestMinimum,
 Path="LDAP://rootDSE",
 PermissionAccess=DirectoryServicesPermissionAccess.Browse)]

Environment Variables
Code that needs to read or write environment variables using the
System.Environment class must be granted the EnvironmentPermission by code
access security policy. This permission type can be used to constrain access to specific
named environment variables.

Constraining Environment Variable Access
To constrain code so that it can only read specific environment variables, you can use
the EnvironmentPermissionAttribute together with SecurityAction.PermitOnly.
The following attributes ensure that the code can only read from the username,
userdomain, and temp variables.

[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="username")]
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="userdomain")]
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="temp")]
public static string GetVariable(string name)
{
 return Environment.GetEnvironmentVariable(name);
}

Requesting EnvironmentPermission
To document the permission requirements of your code, and to ensure your assembly
cannot load if it is granted insufficient environment variable access from code access
security policy, add an assembly level EnvironmentPermissionAttribute with
SecurityAction.RequestMinimum as shown in the following code.

[assembly: EnvironmentPermissionAttribute(SecurityAction.RequestMinimum,
 Read="username"),
 EnvironmentPermissionAttribute(SecurityAction.RequestMinimum,
 Read="userdomain"),
 EnvironmentPermissionAttribute(SecurityAction.RequestMinimum,
 Read="temp")]

212 Part III: Building Secure Web Applications

Web Services
Code that calls Web services must be granted the WebPermission by code access
security policy. The WebPermission actually constrains access to any HTTP Internet-
based resources.

Constraining Web Service Connections
To restrict the Web services to which your code can access, use the
WebPermissionAttribute together with SecurityAction.PermitOnly. For example,
the following code ensures that the PlaceOrder method and any methods it calls can
only invoke Web services on the http://somehost site.

[WebPermissionAttribute(SecurityAction.PermitOnly,
 ConnectPattern=@"http://somehost/.*")]
[EnvironmentPermissionAttribute(SecurityAction.PermitOnly, Read="USERNAME")]
public static void PlaceOrder(XmlDocument order)
{
 PurchaseService.Order svc = new PurchaseService.Order();
 // Web service uses Windows authentication
 svc.Credentials = System.Net.CredentialCache.DefaultCredentials;
 svc.PlaceOrder(order);
}

In the prior example, the ConnectPattern property of the WebPermissionAttribute
class is used. This allows you to supply a regular expression that matches the range
of addresses to which a connection can be established. The
EnvironmentPermissionAttribute shown previously is required because the code
uses Windows authentication and default credentials.

The following example shows how to use the Connect attribute to restrict
connections to a specific Web service.

[WebPermissionAttribute(SecurityAction.PermitOnly,
 Connect=@"http://somehost/order.asmx")]

 Chapter 8: Code Access Security in Practice 213

Sockets and DNS
Code that uses sockets directly by using the System.Net.Sockets.Socket class must
be granted the SocketPermission by code access security policy. In addition, if your
code uses DNS to map host names to IP addresses, it requires the DnsPermission.

You can use SocketPermission to constrain access to specific ports on specific hosts.
You can also restrict whether the socket can be used to accept connections or initiate
outbound connections, and you can restrict the transport protocol, for example,
Transmission Control Protocol (TCP) or User Datagram Protocol (UDP).

Constraining Socket Access
To constrain code so that it can only use sockets in a restricted way, you can use the
SocketPermissionAttribute together with SecurityAction.PermitOnly. The
following attributes ensure that the code can connect only to a specific port on a
specific host using the TCP protocol. Because the code also calls Dns.Resolve to
resolve a host name, the code also requires the DnsPermission.

[SocketPermissionAttribute(SecurityAction.PermitOnly,
 Access="Connect",
 Host="hostname",
 Port="80",
 Transport="Tcp")]
[DnsPermissionAttribute(SecurityAction.PermitOnly, Unrestricted=true)]
public string MakeRequest(string hostname, string message)
{
 Socket socket = null;
 IPAddress serverAddress = null;
 IPEndPoint serverEndPoint = null;
 byte[] sendBytes = null, bytesReceived = null;
 int bytesReceivedSize = -1, readSize = 4096;

 serverAddress = Dns.Resolve(hostname).AddressList[0];
 serverEndPoint = new IPEndPoint(serverAddress, 80);
 socket = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream, ProtocolType.Tcp);
 bytesReceived = new byte[readSize];
 sendBytes = Encoding.ASCII.GetBytes(message);
 socket.Connect(serverEndPoint);
 socket.Send(sendBytes);
 bytesReceivedSize = socket.Receive(bytesReceived, readSize, 0);
 socket.Close();
 if(-1 != bytesReceivedSize)
 {
 return Encoding.ASCII.GetString(bytesReceived, 0, bytesReceivedSize);
 }
 return "";
}

214 Part III: Building Secure Web Applications

Requesting SocketPermission and DnsPermission
To document the permission requirements of your code, and to ensure your
assembly cannot load if it is granted insufficient socket or DNS access from code
access security policy, add an assembly level SocketPermissionAttribute and a
DnsPermissionAttribute with SecurityAction.RequestMinimum as shown in
the following example.

[assembly: SocketPermissionAttribute(SecurityAction.RequestMinimum,
 Access="Connect",
 Host="hostname",
 Port="80",
 Transport="Tcp")
 DnsPermissionAttribute(SecurityAction.PermitOnly, Unrestricted=true)]

Unmanaged Code
Code that calls unmanaged Win32 APIs or COM components requires the
unmanaged code permission. This should only be granted to highly trusted code.
It is defined by the SecurityPermission type with its Flags property set to
SecurityPermissionFlag.UnmanagedCode.

The following guidelines for calling unmanaged code build upon those introduced in
Chapter 7, “Building Secure Assemblies.”
● Use naming conventions to indicate risk.
● Request the unmanaged code permission.
● Sandbox unmanaged API calls.
● Use SupressUnmanagedCodeSecurityAttribute with caution.

Use Naming Conventions to Indicate Risk
Categorize your unmanaged code and prefix the types used to encapsulate the
unmanaged APIs by using the following naming convention.
● Safe. This identifies code that poses no possible security threat. It is harmless for

any code, malicious or otherwise, to call. An example is code that returns the
current processor tick count. Safe classes can be annotated with the
SuppressUnmanagedCode attribute which turns off the code access security
permission demand for full trust.

[SuppressUnmanagedCode]
class SafeNativeMethods {
 [DllImport("user32")]
 internal static extern void MessageBox(string text);
}

 Chapter 8: Code Access Security in Practice 215

● Native. This is potentially dangerous unmanaged code, but code that is protected
with a full stack walking demand for the unmanaged code permission. These are
implicitly made by the interop layer unless they have been suppressed with the
SupressUnmanagedCode attribute.

class NativeMethods {
 [DllImport("user32")]
 internal static extern void FormatDrive(string driveLetter);
}

● Unsafe. This is potentially dangerous unmanaged code that has the security
demand for the unmanaged code permission declaratively suppressed. These
methods are potentially dangerous. Any caller of these methods must do a full
security review to ensure that the usage is safe and protected because no stack
walk is performed.

[SuppressUnmanagedCodeSecurity]
class UnsafeNativeMethods {
 [DllImport("user32")]
 internal static extern void CreateFile(string fileName);
}

Request the Unmanaged Code Permission
Strong-named

[assembly: SecurityPermission(SecurityAction.RequestMinimum,
 UnmanagedCode=true)]

Sandbox Unmanaged API Calls
Isolate calls to unmanaged code in specific assemblies and keep the number of
assemblies that call unmanaged code to a minimum. Then, use the sandboxing
pattern to ensure that the unmanaged code permission is only granted to selected
assemblies.

� To sandbox your managed code that calls unmanaged code

1. Place your code that calls unmanaged code in a separate (wrapper) assembly.
2. Add a strong name to the assembly.

This allows custom code access security policy to be easily applied to the
assembly. For more information, see the “Strong Names” section in Chapter 7,
“Building Secure Assemblies.”

3. Request the unmanaged code permission (as described in the preceding section.)

216 Part III: Building Secure Web Applications

4. Authorize calling code with a full permission demand.
You typically need to use a custom permission that represents the unmanaged
resource being exposed by your assembly. For example:

(new EncryptionPermission(EncryptionPermissionFlag.Encrypt,
 storePermissionFlag.Machine)).Demand();

5. Assert the unmanaged code permission in your wrapper class:

(new SecurityPermission(SecurityPermissionFlag.UnmanagedCode)).Assert();

For a full example implementation that shows you how to call the unmanaged Win32
DPAPI functionality, see “How To: Create a Custom Encryption Permission,” in the
“How To” section of this guide.

Use SuppressUnmanagedCodeSecurity with Caution
If your assembly makes many calls to unmanaged code, the performance overhead
associated with multiple unmanaged code permission demands can become an issue.

In this case, you can use the SupressUnmanagedCodeSecurity attribute on the
P/Invoke method declaration. This causes the full demand for the unmanaged
permission to be replaced with a link demand which only occurs once at JIT
compilation time.

In common with the use of link demands, your code is now vulnerable to luring
attacks. To mitigate the risk, you should only suppress the unmanaged code
permission demand if your assembly takes adequate precautions to ensure it cannot
be coerced by malicious code to perform unwanted operations. An example of a
suitable countermeasure is if your assembly demands a custom permission that more
closely reflects the operation being performed by the unmanaged code

Using SuppressUnmanagedCodeSecurity with P/Invoke

The following code shows how to apply the SuppressUnmanagedCodeSecurity
attribute to a Platform Invocation Services (P/Invoke) method declaration.

public NativeMethods
{
 // The use of SuppressUnmanagedCodeSecurity here applies only to FormatMessage
 [DllImport("kernel32.dll"), SuppressUnmanagedCodeSecurity]
 private unsafe static extern int FormatMessage(
 int dwFlags,
 ref IntPtr lpSource,
 int dwMessageId,
 int dwLanguageId,
 ref String lpBuffer, int nSize,
 IntPtr *Arguments);
}

 Chapter 8: Code Access Security in Practice 217

Using SuppressUnmanagedCodeSecurity with COM Interop

For COM interop calls, the attribute must be used at the interface level, as shown in
the following example.

[SuppressUnmanagedCodeSecurity]
public interface IComInterface
{
}

Delegates
There is no way of knowing in advance what a delegate method is going to do when
you invoke it. If your assembly supports partial trust callers, you need to take extra
precautions when you invoke a delegate. You can use code access security to further
improve security.
● Consider restricting permissions for the delegate.
● Do not assert a permission before calling a delegate.

Consider Restricting Permissions for the Delegate
The permissions granted to the code that calls the delegate determine the capabilities
of the delegate. If your code has more permissions than the code that gives you the
delegate, this provides a way for the caller to execute code using elevated
permissions. To address this issue, you can either authorize the external code at the
point it passes you the delegate with an appropriate permission demand, or you can
restrict the permissions of the delegate just prior to calling it by using a deny or
permit only stack modifier. For example, the following code only grants the delegate
code execution permission to constrain its capabilities.

// Delegate definition
public delegate void SomeDelegate();
. . .
// Permit only execution, prior to calling the delegate. This prevents the
// delegate code accessing resources or performing other privileged
// operations
new SecurityPermission(SecurityPermissionFlag.Execution).PermitOnly();
// Now call the "constrained" delegate
SomeDelegate();
// Revert the permit only stack modifier
CodeAccessPermission.RevertPermitOnly();

218 Part III: Building Secure Web Applications

Do Not Assert a Permission Before Calling a Delegate
Asserting a permission before calling a delegate is dangerous to do because you have
no knowledge about the nature or trust level of the code that will be executed when
you invoke the delegate. The code that passes you the delegate is on the call stack
and can therefore be checked with an appropriate security demand. However, there is
no way of knowing the trust level or permissions granted to the delegate code itself.

For more guidelines about using delegates securely, see the “Delegates” section in
Chapter 7, “Building Secure Assemblies.”

Serialization
Code that supports serialization must be granted a SecurityPermission with its
Flag attribute set to SerializationFormatter. If you develop classes that support
serialization and your code supports partial trust callers, you should consider using
additional permission demands to place restrictions on which code can serialize your
object’s state.

Restricting Serialization
If you create a class that implements the ISerializable interface, which allows
your object to be serialized, you can add a permission demand to your
ISerializable.GetObjectData implementation to authorize the code that is
attempting to serialize your object. This is particularly important if your code
supports partial trust callers.

For example, the following code fragment uses a StrongNameIdentityPermission
demand to ensure that only code signed with a particular private key corresponding
to the public key in the demand can serialize your object’s state.

[StrongNameIdentityPermission(SecurityAction.Demand,
 PublicKey="00240000048...97e85d098615")]
public override void GetObjectData(SerializationInfo info,
 StreamingContext context)

For more guidelines about using serialization securely, see the “Serialization” section
in Chapter 7, “Building Secure Assemblies.”

 Chapter 8: Code Access Security in Practice 219

Summary
Code access security allows you to restrict what your code can do, restrict which code
can call your code, and identify code. In full trust environments where your code and
the code that calls you have the unrestricted set of all permissions, code access
security is of less significance.

If your code supports partial trust callers, the security risks are that much greater. In
partial trust scenarios, code access security enables you to mitigate some of the
additional risks and allows you to constrain privileged code.

Additional Resources
For more information, see the following resources:
● “Security in .NET: The Security Infrastructure of the CLR Provides Evidence,

Policy, Permissions, and Enforcement Services” by Don Box, MSDN Magazine,
September 2002, at http://msdn.microsoft.com/msdnmag.

● “Security in .NET: Enforce Code Access Rights with the Common
Language Runtime” by Keith Brown, MSDN Magazine, February 2001,
at http://msdn.microsoft.com/msdnmag.

● .NET Framework Security by LaMacchia, Lange, Lyons, Martin and Price, published
by Addison Wesley.

http://msdn.microsoft.com/msdnmag
http://msdn.microsoft.com/msdnmag

9
Using Code Access Security
with ASP.NET

In This Chapter
● Configuring Web application trust levels and ASP.NET code access security policy
● Developing partial-trust Web applications
● Sandboxing privileged code
● Writing to the event log from medium-trust Web applications
● Calling OLE DB data sources from medium-trust Web applications
● Calling Web services from medium-trust Web applications

Overview
Code access security is a resource constraint model that allows administrators to
determine if and how particular code is able to access specified resources and
perform other privileged operations. For example, an administrator might decide that
code downloaded from the Internet should not be given permission to access any
resources, while Web application code developed by a particular company should be
offered a higher degree of trust and, for example, be allowed to access the file system,
the event log, and Microsoft SQL Server databases.

222 Part III: Building Secure Web Applications

Traditional principal-based security, such as that provided by the operating system,
authorizes access to resources based on user identity. For example, programs
launched by a local administrator have no limitations on the local machine.
Unfortunately, if the administrator’s identity is spoofed and a malicious user is able
to execute code using the administrator’s security context, the malicious user also has
no restrictions. This is where code access security is important because it can provide
additional restrictions and security based on the code itself, rather than the user
running the code.

With Microsoft .NET Framework version 1.1, administrators can configure policy for
ASP.NET Web applications and Web services, which might consist of multiple
assemblies. They can also grant code access security permissions to allow the
application to access specific resource types and to perform specific privileged
operations.

Note Web applications and Web services built using .NET Framework version 1.0 always run with
unrestricted code access permissions. This is not configurable.

Using code access security with Web applications helps you provide application
isolation in hosted environments where multiple Web applications run on the same
Web server. Internet service providers (ISPs) that run multiple applications from
different companies can use code access security to:
● Isolate applications from each other.

For example, code access security can be used to ensure that one Web application
cannot write to another Web application’s directories.

● Isolate applications from system resources.
For example, code access security can restrict access to the file system, registry,
event logs, and network resources, as well as other system resources.

Code access security is one mechanism that can be used to help provide application
isolation. Microsoft Windows Server™ 2003 and Internet Information Services (IIS)
6.0 also provide process isolation for Web applications. Process isolation combined
with code access security provides the recommended model for application isolation.
For more information, see Chapter 20, “Hosting Multiple ASP.NET Applications.”

 Chapter 9: Using Code Access Security with ASP.NET 223

How to Use This Chapter
This chapter does not cover the fundamentals of code access security. A certain
amount of prerequisite knowledge is assumed, although key concepts are reiterated
where appropriate. For more information about how code access security works, see
Chapter 8, “Code Access Security in Practice.”

The current chapter focuses on ASP.NET code access security policy configuration
and shows you how to overcome some of the main hurdles that you might encounter
when you develop partial-trust Web applications.

Resource Access
All resource access from ASP.NET applications and managed code in general is
subject to the following two security layers:
● Code access security. This security layer verifies that all of the code in the current

call stack, leading up to and including the resource access code, is authorized to
access the resource. An administrator uses code access security policy to grant
permissions to assemblies. The permissions determine precisely which resource
types the assembly can access. Numerous permission types correspond to the
different resource types that can be accessed. These types include the file system,
registry, event log, directory services, SQL Server, OLE DB data sources, and
network resources.
For a full list of code access permissions, see Chapter 8, “Code Access Security in
Practice.”

● Operating System/Platform Security. This security layer verifies that the security
context of the requesting thread can access the resource. If the thread is
impersonating, then the thread impersonation token is used. If not, then the
process token is used and is compared against the access control list (ACL) that is
attached to the resource to determine whether or not the requested operation can
be performed and the resource can be accessed.

Both checks must succeed for the resource to be successfully accessed. All of the
resource types that are exposed by the .NET Framework classes are protected with
code access permissions. Figure 9.1 shows a range of common resource types that are
accessed by Web applications, as well as the associated code access permission that is
required for the access attempt to succeed.

224 Part III: Building Secure Web Applications

Web
Services

Web
Application

Unmanaged
Code

DNS
Database

Windows
Event Log

Remote
Servers

Registry

File
System

SQL
Server

OLEDB
Data

Source
RegistryPermission

SecurityPermission.
UnmanagedCode

WebPermission

DnsPermission

SocketsPermission

FileIOPermission

EventLogPermission

OleDbClientPermission

SqlClientPermission

Environment
Variables

Environment
Permission

Figure 9.1
Common resource types accessed from ASP.NET Web applications and associated permission types

Full Trust and Partial Trust
By default, Web applications run with full trust. Full-trust applications are granted
unrestricted code access permissions by code access security policy. These
permissions include built-in system and custom permissions. This means that code
access security will not prevent your application from accessing any of the secured
resource types that Figure 9.1 shows. The success or failure of the resource access
attempt is determined purely by operating system-level security. Web applications
that run with full trust include all ASP.NET applications built using .NET Framework
version 1.0. By default, .NET Framework version 1.1 applications run with full trust,
but the trust level can be configured using the <trust> element, which is described
later in this chapter.

 Chapter 9: Using Code Access Security with ASP.NET 225

If an application is configured with a trust level other than “Full,” it is referred to as a
partial-trust application. Partial-trust applications have restricted permissions, which
limit their ability to access secured resources.

Important Web applications built on .NET Framework version 1.0 always run with full trust because
the types in System.Web demand full-trust callers.

Configuring Code Access Security in ASP.NET
By default, Web applications run with full trust and have unrestricted permissions. To
modify code access security trust levels in ASP.NET, you have to set a switch in
Machine.config or Web.config and configure the application as a partial-trust
application.

Configuring Trust Levels
The <trust> element in Machine.config controls whether or not code access security is
enabled for a Web application. Open Machine.config, search for “<trust>“, and you
will see the following.

<system.web>
 <!-- level="[Full|High|Medium|Low|Minimal]" -->
 <trust level="Full" originUrl=""/>
</system.web>

With the trust level set to “Full,” code access security is effectively disabled because
permission demands do not stand in the way of resource access attempts. This is the
only option for ASP.NET Web applications built on .NET Framework version 1.0. As
you go through the list from “Full” to “Minimal,” each level takes away more
permissions, which further restricts your application’s ability to access secured
resources and perform privileged operations. Each level gives greater degrees of
application isolation. Table 9.1 shows the predefined trust levels and indicates the
major restrictions in comparison to the previous level.

226 Part III: Building Secure Web Applications

Table 9.1 Restrictions Imposed by the ASP.NET Trust Levels

ASP.NET
Trust Level

Main Restrictions

Full Unrestricted permissions. Applications can access any resource that is subject to
operating system security. All privileged operations are supported.

High Not able to call unmanaged code

Not able to call serviced components

Not able to write to the event log

Not able to access Microsoft Message Queuing queues

Not able to access OLE DB data sources

Medium In addition to the above, file access is restricted to the current application directory
and registry access is not permitted.

Low In addition to the above, the application is not able to connect to SQL Server and
code cannot call CodeAccessPermission.Assert (no assertion security permission).

Minimal Only the execute permission is available.

Locking the Trust Level
If a Web server administrator wants to use code access security to ensure application
isolation and restrict access to system level resources, the administrator must be able
to define security policy at the machine level and prevent individual applications
from overriding it.

Application service providers or anyone responsible for running multiple Web
applications on the same server should lock the trust level for all Web applications.
To do this, enclose the <trust> element in Machine.config within a <location> tag,
and set the allowOverride attribute to false, as shown in the following example.

<location allowOverride="false">
 <system.web>
 <!-- level="[Full|High|Medium|Low|Minimal]" -->
 <trust level="Medium" originUrl=""/>
 </system.web>
</location>

You can also use a path attribute on the <location> element to apply a configuration
to a specific site or Web application that cannot be overridden. For more information
about the <location> element, see Chapter 19, “Securing Your ASP.NET Application
and Web Services.”

 Chapter 9: Using Code Access Security with ASP.NET 227

ASP.NET Policy Files
Each trust level is mapped to an individual XML policy file and the policy file lists
the set of permissions granted by each trust level. Policy files are located in the
following directory:

%windir%\Microsoft.NET\Framework\{version}\CONFIG

Trust levels are mapped to policy files by the <trustLevel> elements in
Machine.config, which are located just above the <trust> element, as shown in the
following example.

<location allowOverride="true">
 <system.web>
 <securityPolicy>
 <trustLevel name="Full" policyFile="internal"/>
 <trustLevel name="High" policyFile="web_hightrust.config"/>
 <trustLevel name="Medium" policyFile="web_mediumtrust.config"/>
 <trustLevel name="Low" policyFile="web_lowtrust.config"/>
 <trustLevel name="Minimal" policyFile="web_minimaltrust.config"/>
 </securityPolicy>
 <!-- level="[Full|High|Medium|Low|Minimal]" -->
 <trust level="Full" originUrl=""/>
 </system.web>
</location>

Note No policy file exists for the full-trust level. This is a special case that simply indicates the
unrestricted set of all permissions.

ASP.NET policy is fully configurable. In addition to the default policy levels,
administrators can create custom permission files and configure them using the
<trust> element, which is described later in this chapter. The policy file associated
with the custom level must also be defined by a <trustLevel> element in
Machine.config.

ASP.NET Policy
Code access security policy is hierarchical and is administered at multiple levels.
Policy can be created for the enterprise, machine, user, and application domain levels.
ASP.NET code access security policy is an example of application domain-level
policy.

228 Part III: Building Secure Web Applications

Settings in a separate XML configuration file define the policy for each level.
Enterprise, machine, and user policy can be configured using the Microsoft .NET
Framework configuration tool, but ASP.NET policy files must be edited manually
using an XML or text editor.

The individual ASP.NET trust-level policy files say which permissions might be
granted to applications configured at a particular trust level. The actual permissions
that are granted to an ASP.NET application are determined by intersecting the
permission grants from all policy levels, including enterprise, machine, user, and
ASP.NET (application domain) level policy.

Because policy is evaluated from enterprise level down to ASP.NET application level,
permissions can only be taken away. You cannot add a permission at the ASP.NET
level without a higher level first granting the permission. This approach ensures that
the enterprise administrator always has the final say and that malicious code that
runs in an application domain cannot request and be granted more permissions than
an administrator configures.

For more information about policy evaluation, see Chapter 8, “Code Access Security
in Practice.”

Inside an ASP.NET Policy File
To see which permissions are defined by a particular trust level, open the relevant
policy file in Notepad or (preferably) an XML editor and locate the “ASP.NET”
named permission set. This permission set lists the permissions that are configured
for the application at the current trust level.

Note You will also see the “FullTrust” and “Nothing” permission sets. These sets contain no
permission elements because “FullTrust” implies all permissions and “Nothing” contains no
permissions.

The following fragment shows the major elements of an ASP.NET policy file:

<configuration>
 <mscorlib>
 <security>
 <policy>
 <PolicyLevel version="1">
 <SecurityClasses>
 ... list of security classes, permission types,
 and code group types ...
 </SecurityClasses>
 <NamedPermissionSets>
 <PermissionSet Name="FullTrust" ... />
 <PermissionSet Name="Nothing" .../>
 <PermissionSet Name="ASP.NET" ...
 ... This is the interesting part ...
 ... List of individual permissions...

 Chapter 9: Using Code Access Security with ASP.NET 229

(continued)

 <IPermission
 class="AspNetHostingPermission"
 version="1"
 Level="High" />
 <IPermission
 class="DnsPermission"
 version="1"
 Unrestricted="true" />
 ...Continued list of permissions...
 </PermissionSet>
 </PolicyLevel version="1">
 </policy>
 </security>
 </mscorlib>
</configuration>

Notice that each permission is defined by an <IPermission> element, which defines
the permission type name, version, and whether or not it is in the unrestricted state.

Permission State and Unrestricted Permissions
Many permissions include state, which is used to fine-tune the access rights specified
by the permission. The state determines precisely what the permission allows your
application to do. For example, a FileIOPermission might specify a directory and an
access type (read, write, and so on). The following permission demand requires that
calling code is granted read permission to access the C:\SomeDir directory:

(new FileIOPermission(FileIOPermissionAccess.Read, @"C:\SomeDir")).Demand();

In its unrestricted state, the FileIOPermission allows any type of access to any area
on the file system (of course, operating system security still applies). The following
permission demand requires that the calling code be granted the unrestricted
FileIOPermission:

(new FileIOPermission(PermissionState.Unrestricted)).Demand();

The ASP.NET Named Permission Set
ASP.NET policy files contain an “ASP.NET” named permission set. This defines the
set of permissions that is granted by application domain policy to associated
applications.

230 Part III: Building Secure Web Applications

ASP.NET policy also introduces a custom AspNetHostingPermission, which has an
associated Level attribute that corresponds to one of the default levels. All public
types in the System.Web and System.Web.Mobile are protected with demands for
the Minimum level of this permission. This risk mitigation strategy is designed to
ensure that Web application code cannot be used in other partial-trust environments
without specific policy configuration by an administrator.

Substitution Parameters
If you edit one of the ASP.NET policy files, you will notice that some of the
permission elements contain substitution parameters ($AppDirUrl$, $CodeGen$, and
Gac). These parameters allow you to configure permissions to assemblies that are
part of your Web application, but are loaded from different locations. Each
substitution parameter is replaced with an actual value at security policy evaluation
time, which occurs when your Web application assembly is loaded for the first time.
Your Web application might consist of the following three assembly types:
● Private assemblies that are compiled at build time and deployed in the

application’s bin directory

Important This type of assembly cannot be strong named. Strong named assemblies used by
ASP.NET Web applications must be installed in the global assembly cache. This restriction is
necessary because of the internal workings of the multi-application domain worker process.

● Dynamically compiled assemblies that are generated in response to a page request
● Shared assemblies that are loaded from the computer’s global assembly cache

Each of these assembly types has an associated substitution parameter, which
Table 9.2 summarizes.

Table 9.2 ASP.NET Code Access Security Policy Substitution Parameters

Parameter Represents
$AppDirUrl$ The application’s virtual root directory. This allows permissions to be applied to

code that is located in the application’s bin directory.

For example, if a virtual directory is mapped to C:\YourWebApp, then
$AppDirUrl$ would equate to C:\YourWebApp.

$CodeGen$ The directory that contains dynamically generated assemblies (for example, the
result of .aspx page compiles). This can be configured on a per application basis
and defaults to %windir%\Microsoft.NET\Framework\{version}\Temporary
ASP.NET Files.

$CodeGen$ allows permissions to be applied to dynamically generated
assemblies.

Gac Any assembly that is installed in the computer’s global assembly cache (GAC)
(%windir%\assembly). This allows permissions to be granted to strong named
assemblies loaded from the GAC by the Web application.

 Chapter 9: Using Code Access Security with ASP.NET 231

Developing Partial Trust Web Applications
Partial trust Web applications are applications that do not have full trust and have a
restricted set of code access permissions determined by code access security policy.
As a result, partial-trust applications are limited in their ability to access secured
resources and perform other privileged operations. Certain permissions are denied to
partial-trust applications, so resources requiring those permissions cannot be directly
accessed. Other permissions are granted in a restricted way, so resources that require
those permissions might be accessible, but in a limited way. For example, a restricted
FileIOPermission might specify that the application can access the file system, but
only in directories beneath the application’s virtual directory root.

Why Partial Trust?
By configuring a Web application or Web service for partial trust, you can restrict the
application’s ability to access crucial system resources or resources that belong to
other Web applications. By granting only the permissions that the application
requires and no more, you can build least privileged Web applications and limit
damage potential should the Web application be compromised by a code injection
attack.

Problems You Might Encounter
If you take an existing Web application and reconfigure it to run at a partial-trust
level, you are likely to run into the following issues, unless the application is
extremely limited in the resources it accesses:
● Your application is unable to call strong named assemblies that are not annotated

with AllowPartiallyTrustedCallersAttribute (APTCA). Without APTCA, strong
named assemblies issue a demand for full trust, which will fail when the demand
reaches your partial-trust Web application. Many system assemblies only support
full-trust callers. The following list shows which .NET Framework assemblies
support partial-trust callers and can be called directly by partial-trust Web
applications without necessitating sandboxed wrapper assemblies.

Note Sandboxing is discussed in detail later in this chapter.

The following system assemblies have APTCA applied, which means that they can
be called by partial-trust Web applications or any partially trusted code:
● System.Windows.Forms.dll
● System.Drawing.dll
● System.dll
● Mscorlib.dll
● IEExecRemote.dll

232 Part III: Building Secure Web Applications

● Accessibility.dll
● Microsoft.VisualBasic.dll
● System.XML.dll
● System.Web.dll
● System.Web.Services.dll
● System.Data.dll
If your partial-trust application fails because it calls a strong named assembly that
is not marked with APTCA, a generic SecurityException is generated. In this
circumstance, the exception contains no additional information to indicate that the
call failed because of a failed demand for full trust.

● Permission demands might start to fail. The configured trust level might not grant
the necessary permission for your application to access a specific resource type.
The following are some common scenarios where this could prove problematic:
● Your application uses the event log or registry. Partial trust Web applications do

not have the necessary permissions to access these system resources. If your
code does so, a SecurityException will be generated.

● Your application uses the ADO.NET OLE DB data provider to access a data
source. The OLE DB data provider requires full-trust callers.

● Your application calls a Web service. Partial-trust Web applications have a
restricted WebPermission, which affects the ability of the application to call
Web services located on remote sites.

Trust Levels
If you plan to migrate an existing application to a partial-trust level, a good approach
is to reduce permissions incrementally so that you can see what parts of your
application break. For example, start by setting the trust level attribute to High, then
Medium, and so on. Ultimately, the trust level you should target depends on the
degree of restriction you want to place on the application. Use the following as
guidance:
● Applications configured for high, medium, low, or minimal trust will be unable to

call unmanaged code or serviced components, write to the event log, access
Message Queuing queues, or access OLE DB data sources.

● Applications configured for high trust have unrestricted access to the file system.
● Applications configured for medium trust have restricted file system access. They

can only access files in their own application directory hierarchy.
● Applications configured for low or minimal trust cannot access SQL Server

databases.
● Minimal trust applications cannot access any resources.

 Chapter 9: Using Code Access Security with ASP.NET 233

Table 9.3 identifies the permissions that each ASP.NET trust level grants. The full
level is omitted from the table because it grants all of the permissions in their
unrestricted state.

Table 9.3 Default ASP.NET Policy Permissions and Trust Levels

Permission and State High Medium Low Minimal
AspNetHosting
 Level

High

Medium

Low

Minimal

DnsPermission
 Unrestricted

EnvironmentPermission
 Unrestricted
 Read
 Write

TEMP; TMP;
USERNAME; OS;
COMPUTERNAME

EventLogPermission

FileIOPermission
 Unrestricted
 Read
 Write
 Append
 PathDiscovery

$AppDir$
$AppDir$
$AppDir$
$AppDir$

$AppDir$

$AppDir$

IsolatedStorageFilePermission
 Unrestricted
 AssemblyIsolationByUser-
 Unrestricted UserQuota

1MB
(can vary
with site)

OleDbClientPermission
 Unrestricted

PrintingPermission
 Unrestricted
 DefaultPrinting

ReflectionPermission
 Unrestricted
 ReflectionEmit

RegistryPermission
 Unrestricted

(continued)

234 Part III: Building Secure Web Applications

Table 9.3 Default ASP.NET Policy Permissions and Trust Levels (continued)
Permission and State High Medium Low Minimal
SecurityPermission
 Unrestricted
 Assertion
 Execution
 ControlThread
 ControlPrinicipal
 RemotingConfiguration

SocketPermission
 Unrestricted

SqlClientPermission
 Unrestricted

WebPermission
 Unrestricted

$OriginHost$

Approaches for Partial Trust Web Applications
If you develop a partial-trust application or enable an existing application to run at a
partial-trust level, and you run into problems because your application is trying to
access resources for which the relevant permissions have not been granted, you can
use two basic approaches:
● Customize policy

Customize policy to grant the required permissions to your application. This
might not be possible, for example in hosting environments, where policy
restrictions are rigid.

● Sandbox privileged code
Place resource access code in a wrapper assembly, grant the wrapper assembly full
trust (not the Web application), and sandbox the permission requirements of
privileged code.

The right approach depends on what the problem is. If the problem is related to the
fact that you are trying to call a system assembly that does not contain
AllowPartiallyTrustedCallersAttribute, the problem becomes how to give a piece of
code full trust. In this scenario, you should use the sandboxing approach and grant
the sandboxed wrapper assembly full trust.

Note Customizing policy is the easier of the two approaches because it does not require any
development effort.

 Chapter 9: Using Code Access Security with ASP.NET 235

Customize Policy
If your Web application contains code that requires more permissions than are
granted by a particular ASP.NET trust level, the easiest option is customizing a policy
file to grant the additional code access security permission to your Web application.
You can either modify an existing policy file and grant additional permissions or
create a new one based on an existing policy file.

Note If you modify one of the built-in policy files, for example, the medium-trust
Web_mediumtrust.config policy file, this affects all applications that are configured to run with
medium trust.

� To customize policy for a specific application

1. Copy one of the existing policy files to create a new policy file. For example, copy
the medium trust policy file and create a new policy file such as the following:

%windir%\Microsoft.NET\Framework\{version}\CONFIG\web_yourtrust.config

2. Add the required permission to the ASP.NET permission set in the policy file or,
alternatively, modify an existing permission to grant a less restrictive permission.

3. Add a new <trustLevel> mapping beneath <securityPolicy> in Machine.config
for the new trust level file, as follows:

<securityPolicy>
 <trustLevel name="Custom" policyFile="web_yourtrust.config"/>
 . . .
</securityPolicy>

4. Configure your application to run with the new trust level by configuring the
<trust> element in the application’s Web.config file, as follows:

<system.web>
 <trust level="Custom" originUrl=""/>
</system.web>

236 Part III: Building Secure Web Applications

Sandbox Privileged Code
Another approach that does not require an update to ASP.NET code access security
policy is wrapping your resource access code in its own wrapper assembly and
configuring machine-level code access security policy to grant the specific assembly
the appropriate permission. Then you can sandbox the higher-privileged code using
the CodeAccessPermission.Assert method so you do not have to change the overall
permission grant of the Web application. The Assert method prevents the security
demand issued by the resource access code from propagating back up the call stack
beyond the boundaries of the wrapper assembly.

A Sandboxing Pattern
You can apply the following pattern to any privileged code that needs to access a
restricted resource or perform another privileged operation for which the parent Web
application does not have sufficient permissions:
1. Encapsulate the resource access code in a wrapper assembly.

Make sure the assembly is strong named so that it can be installed in the GAC.
2. Assert the relevant permission prior to accessing the resource.

This means that the caller must have the assertion security permission
(SecurityPermission with SecurityPermissionFlag.Assertion). Applications
configured for Medium or higher trust levels have this permission.
Asserting permissions is a dangerous thing to do because it means that the code
that calls your code can access the resource that is encapsulated by your assembly
without requiring the relevant resource access permission. The Assert statement
says that your code can vouch for the legitimacy of its callers. To do this, your
code should demand an alternate permission so that it can authorize the calling
code prior to calling Assert. In this way, you only allow code that has been
granted the alternate permission to access the resource that your assembly
exposes.
The .NET Framework might not provide a suitable permission to demand. In this
case, you can create and demand a custom permission. For more information
about how to create a custom permission, see “How To: Create a Custom
Encryption Permission” in the “How To” section of this guide.

3. Annotate the wrapper assembly with APTCA.
This allows the partial-trust Web application to call the assembly.

 Chapter 9: Using Code Access Security with ASP.NET 237

4. Install the wrapper assembly in the GAC.
This gives full trust to the wrapper, but not the Web application. The ASP.NET
policy files contain the following code group, which grants full trust to any
assembly located in the GAC:

<CodeGroup
 class="UnionCodeGroup"
 version="1"
 PermissionSetName="FullTrust">
 <IMembershipCondition
 class="UrlMembershipCondition"
 Url="Gac/*"
 version="1"
 />
</CodeGroup>

Note Default enterprise and local machine policy also grant full trust to any code located in the
My Computer zone, which includes code installed in the GAC. This is important because granted
permissions are intersected across policy levels.

5. Configure the Web application trust level (for example, set it to “Medium”).

Figure 9.2 shows the sandboxing approach.

Partial Trust
Web

Application

<trust
level=”Medium”
originUrl=”” />

Wrapper
Assembly

(Strong Named
in the GAC)

Sandboxed Code

Resource
Access

Demand then
Assert

Secured
Resource

Figure 9.2
Sandboxing privileged code in its own assembly, which asserts the relevant permission

It is good practice to use separate assemblies to encapsulate resource access and
avoid placing resource access code in .aspx files or code behind files. For example,
create a separate data access assembly to encapsulate database access. This makes it
easier to migrate applications to partial-trust environments.

238 Part III: Building Secure Web Applications

Deciding Which Approach to Take
The right approach depends upon the problem you are trying to solve and whether
or not you have the option of modifying security policy on the Web server.

Customizing Policy
This approach is the easier of the two and does not require any developer effort.
However, you might not be permitted to modify policy on the Web server and, in
certain scenarios, your code that calls the .NET Framework class library might
require full trust. In these situations, you must use sandboxing. For example, the
following resources demand full trust, and you must sandbox your resource access
code when it accesses them:
● Event log (through the EventLog class)
● OLE DB data sources (through the ADO.NET OLE DB data provider)
● ODBC data sources (through the ADO.NET ODBC .NET data provider)
● Oracle databases (through the ADO.NET Oracle .NET data provider)

Note This list is not exhaustive but it includes commonly used resource types that currently require
full trust.

Sandboxing
If you sandbox your privileged application code in a separate assembly, you can
grant additional permissions to the assembly. Alternatively, you can grant it full trust
without requiring your entire application to run with extended permissions.

For example, consider code that uses the ADO.NET OLE DB data provider and
interacts with the System.Data.OleDb.OleDbCommand class. This code requires full
trust. Although the System.Data.dll assembly is marked with
AllowPartiallyTrustedCallersAttribute, the System.Data.OleDb.OleDbCommand
class, among others, cannot be called by partial-trust callers because it is protected
with a link demand for full trust. To see this, run the following command using the
permview utility from the %windir%\Microsoft.NET\Framework\{version}
directory:

permview /DECL /OUTPUT System.Data.Perms.txt System.Data.dll

The output in System.Data.Perms.txt includes the following output:

class System.Data.OleDb.OleDbCommand LinktimeDemand permission set:
<PermissionSet class="System.Security.PermissionSet"
 version="1" Unrestricted="true"/>

 Chapter 9: Using Code Access Security with ASP.NET 239

This illustrates that an unrestricted permission set (full trust) is used in a link demand
that protects the System.Data.OleDb.OleDbCommand class. In scenarios such as
this, it is not sufficient to configure policy to grant specific unrestricted permissions,
such as OleDbPermission, to your partial-trust code. Instead, you must sandbox
your resource access code and grant it full trust, and the easiest way to do this is to
install it in the GAC. Use Permview.exe to find out about the permission
requirements of other classes, although this only shows declarative security
attributes. If a class imperatively demands full trust, you cannot see this through
Permview.exe. In this event, test the security requirements of the class by calling it
from partial-trust code and diagnosing any security exceptions.

Note Just because an assembly is marked with APTCA, it does not mean all of the contained
classes support partial-trust callers. Some classes may include explicit demands for full trust.

Medium Trust
If you host Web applications, you may choose to implement a medium trust security
policy to restrict privileged operations. This section focuses on running medium trust
applications, and shows you how to overcome the problems you are likely to
encounter.

Running at medium trust has the following two main benefits:
● Reduced attack surface
● Application isolation

Reduced Attack Surface
Since medium trust does not grant the application unrestricted access to all
permissions, your attack surface is reduced by granting the application a subset of
the full permission set. Many of the permissions granted by medium trust policy are
also in a restricted state. If an attacker is somehow able to take control of your
application, the attacker is limited in what he or she can do.

Application Isolation
Application isolation with code access security restricts access to system resources
and resources owned by other applications. For example, even though the process
identity might be allowed to read and write files outside of the Web application
directory, the FileIOPermission in medium trust applications is restricted. It only
permits the application to read or write to its own application directory hierarchy.

240 Part III: Building Secure Web Applications

Medium Trust Restrictions
If your application runs at medium trust, it faces a number of restrictions, the most
significant of which are:
● It cannot directly access the event log.
● It has restricted file system access and can only access files in the application’s

virtual directory hierarchy.
● It cannot directly access OLE DB data sources (although medium trust

applications are granted the SqlClientPermission, which allows them to access
SQL Server).

● It has limited access to Web services.
● It cannot directly access the Windows registry.

This section shows you how to access the following resource types from a medium-
trust Web application or Web service:
● OLE DB
● Event log
● Web services
● Registry

OLE DB
Medium-trust Web applications are not granted the OleDbPermission. Furthermore,
the OLE DB .NET data provider currently demands full-trust callers. If you have an
application that needs to access OLE DB data sources while running at medium trust,
use the sandboxing approach. Place your data access code in a separate assembly,
strong name it, and install it in the GAC, which gives it full trust.

Note Modifying policy does not work unless you set the trust level to “Full” because the OLE DB
managed provider demands full trust.

Figure 9.3 shows the arrangement.

 Chapter 9: Using Code Access Security with ASP.NET 241

Data
Source

Partial-Trust
Web

Application

<trust level=”Medium”
originUrl=”” />

Wrapper
Assembly

(GAC)

Sandboxed
Full-Trust Code

OLE DB

Asserts Full Trust

ADO.NET OLE DB
Data Provider

demands Full Trust

Figure 9.3
Sandboxing OLE DB resource access

Sandboxing
In this approach, you create a wrapper assembly to encapsulate OLE DB data source
access. This assembly is granted full-trust permissions, which are required to use the
ADO.NET OLE DB managed provider.

� To build a sandboxed wrapper assembly to call OLE DB data sources

1. Create an assembly for your data access code. Configure the assembly version,
strong name the assembly, and mark it with the
AllowPartiallyTrustedCallersAttribute, as follows:

[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyKeyFile(@"..\..\oledbwrapper.snk")]
[assembly:AllowPartiallyTrustedCallersAttribute()]

You must annotate any strong named assembly with
AllowPartiallyTrustedCallersAttribute if you want to support partial-trust
callers. This suppresses an implicit link demand for full trust made by the .NET
Framework whenever code from a strong named assembly is loaded and JIT-
compiled.

2. Request full trust. Although not strictly necessary, requesting full trust is a good
practice because it allows an administrator to view the assembly’s permission
requirements by using tools like Permview.exe. To request full trust, request the
unrestricted permission set as follows:

[assembly: PermissionSet(SecurityAction.RequestMinimum, Unrestricted=true)]

242 Part III: Building Secure Web Applications

3. Wrap database calls with an Assert statement to assert full trust. Wrap a matching
RevertAssert call to reverse the effect of the assert. Although not strictly necessary,
it is a good practice to place the call to RevertAssert in a finally block.
Because the OLE DB provider demands full trust, the wrapper must assert
full-trust. Asserting an OleDbPermission is not sufficient. Step 7 explains how
to improve the security of using CodeAccessPermission.Assert.

public OleDbDataReader GetProductList()
{
 try
 {
 // Assert full trust (the unrestricted permission set)
 new PermissionSet(PermissionState.Unrestricted).Assert();
 OleDbConnection conn = new OleDbConnection(
 "Provider=SQLOLEDB; Data Source=(local);" +
 "Integrated Security=SSPI; Initial Catalog=Northwind");
 OleDbCommand cmd = new OleDbCommand("spRetrieveProducts", conn);
 cmd.CommandType = CommandType.StoredProcedure;
 conn.Open();
 OleDbDataReader reader =
 cmd.ExecuteReader(CommandBehavior.CloseConnection);
 return reader;
 }
 catch(OleDbException dbex)
 {
 // Log and handle exception
 }
 catch(Exception ex)
 {
 // Log and handle exception
 }
 finally
 {
 CodeAccessPermission.RevertAssert();
 }
 return null;
}

4. Build the assembly and install it in the GAC with the following command:

gacutil -i oledbwrapper.dll

To ensure that the assembly is added to the GAC after each subsequent rebuild,
add the following post build event command line (available from the project’s
properties in Visual Studio.NET) to your wrapper assembly project:

"C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin\gacutil.exe"
/i $(TargetPath)

 Chapter 9: Using Code Access Security with ASP.NET 243

Note Any strong named assembly that is called by an ASP.NET Web application or Web service
must be installed in the GAC. In this instance, you should install the assembly in the GAC to
ensure that it is granted full trust.

5. Configure your Web application for medium trust. Add the following code to
Web.config or place it in Machine.config inside a <location> element that points to
your application:

<trust level="Medium" originUrl=""/>

6. Reference the data access assembly from your ASP.NET Web application.
Since a strong named assembly must be in the GAC and not the \bin directory of a
Web application, you must add the assembly to the list of assemblies used in the
application if you are not using code behind files. You can obtain the
PublicKeyToken of your assembly by using the following command:

sn -Tp oledbwrapper.dll

Note Use a capital –T switch.

Then add the following to Machine.config or Web.config:

<compilation debug="false" >
 <assemblies>
 <add assembly="oledbwrapper, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=4b…06"/>
 </assemblies>
</compilation>

Note In between successive rebuilds of your wrapper assembly, you might need to recycle the
ASP.NET worker process because your wrapper assembly, which is installed in the GAC is cached
by the ASP.NET process. To recycle the ASP.NET worker process (Aspnet_wp.exe) you can run the
IISreset.exe utility.

7. Protect the code that calls Assert.
The Assert call means that any code that calls the data access wrapper can interact
with the OLE DB data source. To prevent malicious code from calling the data
access component and potentially using it to attack the database, you can issue a
full demand for a custom permission prior to calling Assert and update the
medium-trust policy file to grant your Web application the custom permission.
This solution entails a reasonable amount of developer effort.
For more information about developing a custom permission, see “How To: Create
a Custom Encryption Permission” in the “How To” section of this guide.

244 Part III: Building Secure Web Applications

Event Log
The EventLogPermission class is designed to encapsulate the rights of code to access
the event log. Currently, however, code must be granted full trust to be able to access
the event log. This means that a medium trust Web application cannot directly access
the event log. To do so, you must sandbox your event logging code.

Accessing the Event Log
First, ensure that the process account that is used to run your Web application (or the
thread identity if your application is impersonating) is able to create event sources.
For this, the process or thread identity must be able to create registry keys beneath
the following key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

At minimum, the ASP.NET process identity of any impersonated identity must have
the following permissions on this registry key:
● Query key value
● Set key value
● Create subkey
● Enumerate subkeys
● Notify
● Read

These settings must be applied to the key shown above and subkeys. Alternatively,
you can create event sources at installation time when administrative privileges are
available. For more information about this approach, see “Auditing and Logging” in
Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

Sandboxing
To sandbox your event logging code, you create a wrapper assembly to encapsulate
event log access. You then install the wrapper assembly in the global assembly cache
so that is granted full trust by code access security policy.

 Chapter 9: Using Code Access Security with ASP.NET 245

� To build a sandboxed wrapper assembly to write to the event log

1. Create an assembly for your event log code. Configure the assembly version,
strong name the assembly, and mark it with the
AllowPartiallyTrustedCallersAttribute, as shown in the following example.

[[assembly: AssemblyVersion("1.0.0.0")]
[assembly: AssemblyKeyFile(@"..\..\eventlogwrapper.snk")]
[assembly:AllowPartiallyTrustedCallersAttribute()]

You must annotate any strong named assembly with
AllowPartiallyTrustedCallersAttribute if you want to support partial-trust
callers. This suppresses an implicit link demand for full trust made by the .NET
Framework whenever code from a strong named assembly is loaded and JIT-
compiled.

Note AllowPartiallyTrustedCallersAttribute is defined in the System.Security namespace, so
you must reference this namespace with a using statement.

2. Request appropriate permissions.
Although not strictly necessary, requesting appropriate permissions is a good
practice because it allows an administrator to view the assembly’s permission
requirements by using tools like Permview.exe. Since the event log assembly can
be accessed from partial-trust callers, this assembly does not need to request a full
trust permission set. The assembly in this example only writes to the event log on
a specific machine and, therefore, only needs the following permission request:

[assembly:EventLogPermissionAttribute(SecurityAction.RequestMinimum,
MachineName="<machine name>",
PermissionAccess=EventLogPermissionAccess.Instrument)]

However, if your assembly needs to request full trust, request the unrestricted
permission set as follows:

[assembly: PermissionSet(SecurityAction.RequestMinimum, Unrestricted=true)]

246 Part III: Building Secure Web Applications

3. Wrap event log calls with an Assert statement that asserts full trust and a
matching RevertAssert that reverses the effect of the assert. Although not strictly
necessary, it is a good practice to place the call to RevertAssert in a finally block.
The following code writes an Information entry to the Application log with the
text “Writing to the event log”:

try
{
 string source = "Event Source";
 string log = "Application";
 string eventText = "Writing to the event log";
 EventLogEntryType eventType = EventLogEntryType.Information;

 //Assert permission
 EventLogPermission eventPerm;
 eventPerm = new EventLogPermission(EventLogPermissionAccess.Instrument,
"<machinename>");
 eventPerm.Assert();

 //Check to see if the source exists.
 if(!EventLog.SourceExists(source))
 {//The keys do not exist, so register your application as a source
 EventLog.CreateEventSource(source, log);
 }

 //Write to the log.
 EventLog.WriteEntry(source, eventText, eventType);
 }
 catch(Exception ex)
 {/*Handle exception*/}
 finally
 {
 CodeAccessPermission.RevertAssert();
 }

4. Build the assembly and install it in the GAC with the following command:

gacutil -i eventlogwrapper.dll

To ensure that the assembly is added to the GAC after each subsequent rebuild,
add the following post build event command line (available from the project’s
properties in Visual Studio.NET) to your wrapper assembly project:

"C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1\Bin\gacutil.exe"
/i $(TargetPath)

Note Any strong named assembly called by an ASP.NET Web application or Web service must
be installed in the GAC. Assemblies that are installed in the GAC are granted full trust by default
code access security policy.

 Chapter 9: Using Code Access Security with ASP.NET 247

5. Configure your Web application for medium trust. Add the following to
Web.config or place it in Machine.config inside a <location> element that points to
your application:

<trust level="Medium" originUrl=""/>

6. Reference the event log assembly from your ASP.NET Web application.
Since a strong named assembly must be in the GAC and not the \bin directory of a
Web application, then you must add the assembly to the list of assemblies used in
the application if you are not using code behind files. You can obtain the
PublicKeyToken of your assembly by using the following command:

sn -Tp eventlogwapper.dll

Note Use a capital –T switch.

Then add the following code to Machine.config or Web.config:

<compilation debug="false" >
 <assemblies>
 <add assembly="eventlogwrapper, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=4b…06"/>
 </assemblies>
</compilation>

Note In between successive rebuilds of your wrapper assembly, you might need to recycle the
ASP.NET worker process because your wrapper assembly, which is installed in the GAC is cached
by the ASP.NET process. To recycle the ASP.NET worker process (Aspnet_wp.exe) you can run the
iisreset.exe utility.

7. Protect the code that calls the Assert method. The Assert call means that any code
that calls the event log wrapper is able to interact with the event log. To prevent
malicious code from calling the event log wrapper and potentially using it to fill
the event log, you can issue a full demand for a custom permission prior to calling
Assert and update the medium trust policy file to grant your Web application the
custom permission. This solution entails a reasonable amount of developer effort.
For more information about how to develop a custom permission, see “How To:
Create a Custom Encryption Permission” in the “How To” section of this guide.

248 Part III: Building Secure Web Applications

Web Services
By default, medium-trust policy grants ASP.NET Web applications a restricted
WebPermission. To be able to call Web services from your Web application, you must
configure the originUrl attribute on your application’s <trust> element.

� To call a single Web service from a medium trust Web application

1. Configure the application to run at medium trust.
2. Set the originUrl to point to the Web service you want to be able to call, as follows:

<trust level="Medium" originUrl="http://servername/.*"/>

The originUrl value is used in the constructor for a System.Text.RegEx regular
expression class so that in can perform a match on the URLs that are accessible by the
Web service. This RegEx class is used in conjunction with a WebPermission class.
The “.*” matches any URL beginning with “http://servername/”.

The originUrl attribute is used when ASP.NET policy is evaluated. It gives a value for
the $OriginHost$ substitution parameter. Here is the WebPermission definition from
Web_mediumtrust.config:

<IPermission
 class="WebPermission"
 version="1">
 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 </ConnectAccess>
</IPermission>

If you do not specify the Web servers accessed by your application, any Web service
request will fail with a SecurityException. To call a Web service on the local Web
server, use the following configuration:

<trust level="Medium" originUrl="http://localhost/.*" />

If your application needs to access multiple Web services on different servers, you
need to customize ASP.NET policy because you can only specify one originUrl on the
<trust> element in Web.config or Machine.config.

 Chapter 9: Using Code Access Security with ASP.NET 249

� To call multiple Web services from a medium-trust application

1. Copy the Web_mediumtrust.config file, which is in the following directory, to a
file called Web_mediumtrust_WebService.config, which is located in the same
directory.

%windir%\Microsoft.NET\Framework\{version}\CONFIG

2. Locate WebPermission and add a <URI> element for each server you will be
accessing, as follows:

<IPermission class="WebPermission" version="1">
 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 <URI uri="http://server1/.*"/>
 <URI uri="http://server2/.*"/>
 <URI uri="http://server3/.*"/>
 </ConnectAccess>
</IPermission>

If you call the Web service using its NetBIOS) name, DNS name, and/or IP
address, you must have a separate <URI> element for each URI as shown in the
following example.

<IPermission class="WebPermission" version="1">
 <ConnectAccess>
 <URI uri="$OriginHost$"/>
 <URI uri="http://servername.yourDomain.com/.*"/>
 <URI uri="http:// servername/.*"/>
 <URI uri="http://127.0.0.1/.*"/>
 </ConnectAccess>
</IPermission>

3. Save the file.
4. Update your application’s Web.config file to point to the newly created policy file.

This requires that you create a new trust level and map it to the new policy file.
Next, configure the <trust> element of your application to use the new level.
The following fragment shows the necessary additions to Web.config:

<system.web>
 <securityPolicy>
 <trustLevel name="MediumPlusWebPermission"
 policyFile="web_mediumtrust_WebService.config"/>
 </securityPolicy>
 <trust level=" MediumPlusWebPermission" originUrl=""/>
</system.web>

250 Part III: Building Secure Web Applications

Using Default Credentials
You might need to call a Web service that uses Windows authentication and specify
authentication credentials through the proxy credential cache. For example:

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

In this case, the ASP.NET application requires the EnvironmentPermission with read
access to the USERNAME environment variable. Default medium-trust policy grants
this permission to Web applications.

In an ASP.NET server-side scenario, the credentials are obtained from the ASP.NET
application’s thread or process-level token. If DefaultCredentials are used from a
desktop application, the current interactive user’s token is used. The demand for
EnvironmentPermission is a risk mitigation strategy designed to ensure that code
cannot use the local user’s credentials at will and expose them to the network.

Registry
By default, medium-trust Web applications are not granted the RegistryPermission.
To configure your application to access the registry, you must either modify ASP.NET
policy to grant this permission to your application or develop a sandboxed wrapper
assembly that has the necessary permission.

The sandboxing approach is the same as described earlier for OLE DB data sources
and the event log.

Customizing Policy
The easiest way to customize policy is to create a custom policy file based on the
medium-trust policy file and configure your application to use the custom policy.
The custom policy grants RegistryPermission to the application.

 Chapter 9: Using Code Access Security with ASP.NET 251

� To create a custom policy to allow registry access

1. Copy the Web_mediumtrust.config file, which is in the following directory, to a
file called Web_mediumtrust_Registry.config, which is located in the same
directory.

%windir%\Microsoft.NET\Framework\{version}\CONFIG

By making a copy and creating a custom policy file, you avoid making changes
directly to the Web_mediumtrust.config file. Making changes directly to the
default medium trust file affects every application on the machine that is
configured for medium trust.

2. Locate the <SecurityClasses> element and add the following to register the
RegistryPermission class:

<SecurityClass Name="RegistryPermission"
 Description="System.Security.Permissions.RegistryPermission,
 mscorlib, Version=1.0.5000.0, Culture=neutral,
 PublicKeyToken=b77a5c561934e089"/>

3. Locate the ASP.NET permission set and add the unrestricted RegistryPermission
to the permission set as follows:

<IPermission class="RegistryPermission" version="1" Unrestricted="true" />

4. Save the file.
5. Update Machine.config to create a new trust level that is mapped to the new

policy file.

<system.web>
 <securityPolicy>
 <trustLevel name="MediumPlusRegistry"
 policyFile="web_mediumtrust_Registry.config "/>
 </securityPolicy>

6. Update your application’s Web.config to configure the application’s <trust> level.

<system.web>
 <trust level="MediumPlusRegistry" originUrl=""/>
</system.web>

252 Part III: Building Secure Web Applications

Summary
Code access security is a resource constraint security model that can be used to help
provide application isolation. Applications can be configured to run at various
partial-trust levels. The trust level determines the permissions that are granted to the
ASP.NET Web application or Web service. This determines the resource types that can
be accessed, and the other types of privileged operation that can be performed. Note
that all resource access is ultimately subject to operating system security.

The recommended isolation model uses IIS 6.0 application pools on Windows
Server 2003 and provides process level isolation in addition to code access security.
On Windows 2000, isolation can only be achieved using code access security and
separate thread identities.

Migrating an application to run with partial trust usually requires a certain amount of
reengineering. You might need to reengineer if the application accesses resources that
are not permitted by the partial trust level or if it calls strong named assemblies that
do not contain APTCA. In these cases, you can sandbox privileged resource access in
separate wrapper assemblies. In some scenarios, you might be able to create and use
custom policy files, although this depends on your Web server’s security policy.

It is a good design practice to place resource access code in separate assemblies and
avoid placing this code in .aspx files and code behind files. The use of separate
assemblies allows code access security policy to be applied to the assembly
independently from the Web application and it allows you to develop sandboxed
trusted code to perform resource access.

Additional Resources
For more information, see the following resources:
● “Security in .NET: The Security Infrastructure of the CLR Provides Evidence,

Policy, Permissions, and Enforcement Services” in MSDN Magazine at
http://msdn.microsoft.com/msdnmag/issues/02/09/SecurityinNET/default.aspx.

● “Security in .NET: Enforce Code Access Rights with the Common Language
Runtime” in MSDN Magazine at http://msdn.microsoft.com/msdnmag/issues/01/02
/CAS/default.aspx.

● LaMacchia, Lange, Lyons, Martin, and Price. .NET Framework Security. Addison
Wesley Professional, 2002.

● “How To: Create a Custom Encryption Permission” in the “How To” section of
this guide.

http://msdn.microsoft.com/msdnmag/issues/02/09/SecurityinNET/default.aspx
http://msdn.microsoft.com/msdnmag/issues/01/02/CAS/default.aspx
http://msdn.microsoft.com/msdnmag/issues/01/02/CAS/default.aspx

10
Building Secure ASP.NET Pages
and Controls

In This Chapter
● Preventing cross-site scripting (XSS) attacks
● Partitioning sites into public and restricted areas
● Preventing session hijacking and cookie replay attacks
● Developing secure Forms authentication
● Preventing rich exception details from reaching the client
● Validating input in Web pages and controls

Overview
Web pages and controls are in your application’s front line of defense and can be
subject to intense probing by attackers who are intent on compromising your
application’s security. These attacks are often ultimately aimed at back-end systems
and data stores.

Input data validation should be a top consideration when you build Web pages
because the majority of top application-level attacks rely on vulnerabilities in this
area. One of the most prevalent attacks today is cross-site scripting (XSS), which is
more of an attack on your application’s users than on the application itself, but it
exploits server-side application vulnerabilities all the same. The results can be
devastating and can lead to information disclosure, identity spoofing, and elevation
of privilege.

254 Part III: Building Secure Web Applications

How to Use This Chapter
To build secure Web pages and controls, you need to follow the correct programming
practices that this chapter discusses. In addition to secure programming practices, use
the corresponding chapters in this guide to help you build secure ASP.NET pages and
controls.
● Implement the steps in Chapter 19, “Securing Your ASP.NET Application and

Web Services.” The chapter helps you configure ASP.NET appropriately with
secure settings in Machine.config and Web.config.

● Use the accompanying checklist in the checklist section of this guide.
“Checklist: Securing ASP.NET” ties the recommendations made in this chapter
and in Chapter 19 together. Make sure you implement the guidance.

● Understand the threats and attacks that are specific to ASP.NET pages and
controls. Apply countermeasures according to guidelines in this chapter.

● Read Chapter 4, “Design Guidelines for Secure Web Applications.” Many of the
recommendations in this chapter (Chapter 10) are based on the design guidelines
discussed in Chapter 4.

● Architects should use the “Design Considerations” section of this chapter.
● Developers should apply the guidance in this chapter to their development

process.
● Learn the controls from a programmatic standpoint to fine-tune ASP.NET pages

and controls security.
● Use the application vulnerability categories as a means to tackle common

problems. Application vulnerability categories provide a useful way to approach
and group problems.

Threats and Countermeasures
Most Web application attacks require that malicious input is passed within HTTP
requests. The general goal is either to coerce the application into performing
unauthorized operations or to disrupt its normal operation. This is why thorough
input validation is an essential countermeasure to many attacks and should be made
a top priority when you develop ASP.NET Web pages and controls. Top threats
include:
● Code injection
● Session hijacking
● Identity spoofing
● Parameter manipulation
● Network eavesdropping
● Information disclosure

 Chapter 10: Building Secure ASP.NET Pages and Controls 255

Figure 10.1 highlights the most common threats to Web applications.

Web AppClient

Firewall

Code Injection
Cross site scripting

Buffer overflows

Network
Eavesdropping

Password sniffing
Sensitive app data

Parameter
Manipulation

Form fields
Query strings

Cookies
View State

HTTP headers

Session Hijacking
Identity Spoofing

Information
Disclosure

Figure 10.1
Common threats to ASP.NET Web pages and controls

Code Injection
Code injection occurs when an attacker causes arbitrary code to run using your
application’s security context. The risk increases if your application runs using a
privileged account.

Attacks

There are various types of code injection attacks. These include:
● Cross-site scripting. Malicious script is sent to a Web application as input. It is

echoed back to a user’s browser, where it is executed.
● Buffer overflows. The type safe verification of managed code reduces the risk

significantly, but your application is still vulnerable, especially where it calls
unmanaged code. Buffer overflows can allow an attacker to execute arbitrary code
inside your Web application process, using its security context.

● SQL injection. This attack targets vulnerable data access code. The attacker sends
SQL input that alters the intended query or executes completely new queries in
the database. Forms authentication logon pages are common targets because the
username and password are used to query the user store.

256 Part III: Building Secure Web Applications

Vulnerabilities

Vulnerabilities that can lead to successful code injection attacks include:
● Weak or missing input validation or reliance on client-side input validation
● Including unvalidated input in HTML output
● Dynamically constructing SQL statements that do not use typed parameters
● Use of over-privileged process accounts and database logins

Countermeasures

The following countermeasures can be used to prevent code injection:
● Validate input so that an attacker cannot inject script code or cause buffer

overflows.
● Encode all output that includes input. This prevents potentially malicious script

tags from being interpreted as code by the client’s browser.
● Use stored procedures that accept parameters to prevent malicious SQL input

from being treated as executable statements by the database.
● Use least privileged process and impersonation accounts. This mitigates risk and

reduces the damage that can be done if an attacker manages to execute code using
the application’s security context.

Session Hijacking
Session hijacking occurs when the attacker captures an authentication token and takes
control of another user’s session. Authentication tokens are often stored in cookies or
in URLs. If the attacker captures the authentication token, he can transmit it to the
application along with a request. The application associates the request with the
legitimate user’s session, which allows the attacker to gain access to the restricted
areas of the application that require authenticated access. The attacker then assumes
the identity and privileges of the legitimate user.

Vulnerabilities

Common vulnerabilities that make your Web pages and controls susceptible to
session hijacking include:
● Unprotected session identifiers in URLs
● Mixing personalization cookies with authentication cookies
● Authentication cookies passed over unencrypted links

 Chapter 10: Building Secure ASP.NET Pages and Controls 257

Attacks

Session hijacking attacks include:
● Cookie replay. The attacker captures the authentication cookie either by using

network monitoring software or by some other means, for example, by exploiting
an XSS scripting vulnerability.

● Query string manipulation. A malicious user changes the session identifier that is
clearly visible in the URL query string.

Countermeasures

You can employ the following countermeasures to prevent session hijacking:
● Separate personalization and authentication cookies.
● Only transmit authentication cookies over HTTPS connections.
● Do not pass session identifiers that represent authenticated users in query strings.
● Re-authenticate the user before critical operations, such as order placement,

money transfers, and so on, are performed.

Identity Spoofing
Identity spoofing occurs when a malicious user assumes the identity of a legitimate
user so that he can access the application.

Vulnerabilities

Common vulnerabilities that make your Web pages and controls susceptible to an
identity spoofing attack include:
● Authentication credentials that are passed over unencrypted links
● Authentication cookies that are passed over unencrypted links
● Weak passwords and policies
● Weak credential storage in the user store

Attacks

Identity spoofing attacks include:
● Cookie replay. The attacker steals the authentication cookie either by using

network monitoring software or by using an XSS attack. The attacker then sends
the cookie to the application to gain spoofed access.

● Brute force password attacks. The attacker repeatedly tries username and
password combinations.

● Dictionary attacks. In this automated form of a brute force password attack, every
word in a dictionary is tried as a password.

258 Part III: Building Secure Web Applications

Countermeasures

You can employ the following countermeasures to prevent identity spoofing:
● Only transmit authentication credentials and cookies over HTTPS connections.
● Enforce strong passwords. Regular expressions can be used to ensure that user-

supplied passwords meet suitable complexity requirements.
● Store password verifiers in the database. Store non-reversible password hashes

combined with a random salt value to mitigate the risk of dictionary attacks.

For more information about storing password hashes and other secrets in the
database, see Chapter 14, “Building Secure Data Access.”

Parameter Manipulation
Parameters are the items of data that are passed from the client to the server over the
network. They include form fields, query strings, view state, cookies, and HTTP
headers. If sensitive data or data that is used to make security decisions on the server
are passed using unprotected parameters, your application is potentially vulnerable
to information disclosure or unauthorized access.

Vulnerabilities

Vulnerabilities that can lead to parameter manipulation include:
● Using hidden form fields or query strings that contain sensitive data
● Passing cookies that contain security-sensitive data over unencrypted connections

Attacks

Parameter manipulation attacks include:
● Cookie replay attacks. The attacker captures and alters a cookie and then replays

it to the application. This can easily lead to identity spoofing and elevation or
privileges if the cookie contains data that is used for authentication or
authorization on the server.

● Manipulation of hidden form fields. These fields contain data used for security
decisions on the server.

● Manipulation of query string parameters.

 Chapter 10: Building Secure ASP.NET Pages and Controls 259

Countermeasures

You can employ the following countermeasures to prevent parameter manipulation:
● Do not rely on client-side state management options. Avoid using any of the client-

side state management options such as view state, cookies, query strings or
hidden form fields to store sensitive data.

● Store sensitive data on the server. Use a session token to associate the user’s
session with sensitive data items that are maintained on the server.

● Use a message authentication code (MAC) to protect the session token. Pair this
with authentication, authorization, and business logic on the server to ensure that
the token is not being replayed.

Network Eavesdropping
Network eavesdropping involves using network monitoring software to trace packets of
data sent between browser and Web server. This can lead to the disclosure of
application-specific confidential data, the retrieval of logon credentials, or the capture
of authentication cookies.

Vulnerabilities

Vulnerabilities that can lead to successful network eavesdropping include:
● Lack of encryption when sending sensitive data
● Sending authentication cookies over unencrypted channels

Attacks

Network eavesdropping attacks are performed by using packet sniffing tools that are
placed on the network to capture traffic.

Countermeasures

To counter network eavesdropping, use Secure Sockets Layer (SSL) to provide an
encrypted communication channel between browser and Web server. It is imperative
that SSL is used whenever credentials, authentication tickets, or sensitive application
data are sent over the network.

Information Disclosure
Information disclosure occurs when an attacker probes your Web pages looking for
ways to cause exception conditions. This can be a fruitful exercise for the attacker
because exception details, which often are returned as HTML and displayed in the
browser, can divulge extremely useful information, such as stack traces that contain
database connection strings, database names, database schema information, SQL
statements, and operating system and platform versions.

260 Part III: Building Secure Web Applications

Vulnerabilities

Vulnerabilities that lead to information disclosure include:
● Weak exception handling
● Letting raw exception details propagate to the client

Attacks

There are many attacks that can result in information disclosure. These include:
● Buffer overflows.
● Sending deliberately malformed input.

Countermeasures

To prevent information disclosure:
● Use structured exception handling.
● Return generic error pages to the client.
● Use default redirect pages that contain generic and harmless error messages.

Design Considerations
Before you develop Web pages and controls, there are a number of important issues
that you should consider at design time. The following are the key considerations:
● Use server-side input validation.
● Partition your Web site.
● Consider the identity that is used for resource access.
● Protect credentials and authentication tickets.
● Fail securely.
● Consider authorization granularity.
● Place Web controls and user controls in separate assemblies.
● Place resource access code in a separate assembly.

Use Server-Side Input Validation
At design time, identify all the various sources of user input that your Web pages and
controls process. This includes form fields, query strings, and cookies received from
the Web user, as well as data from back-end data sources. The Web user clearly lives
outside your application’s trust boundary, so all of the input from that source must be
validated at the server. Unless you can absolutely trust the data retrieved from back-
end data sources, that data should also be validated and sanitized before it is sent to
the client. Make sure your solution does not rely on client-side validation because this
is easily bypassed.

 Chapter 10: Building Secure ASP.NET Pages and Controls 261

Partition Your Web Site
Your Web site design should clearly differentiate between publicly accessible areas
and restricted areas that require authenticated access. Use separate subdirectories
beneath your application’s virtual root directory to maintain restricted pages, such as
checkout functionality in a classic e-commerce Web site that requires authenticated
access and transmits sensitive data such as credit card numbers. Separate
subdirectories allow you to apply additional security (for example, by requiring SSL)
without incurring SSL performance overhead across the entire site. It also allows you
to mitigate the risk of session hijacking by restricting the transmission of
authentication cookies to HTTPS connections. Figure 10.2 shows a typical
partitioning.

Application v-dir
public pages
web.config

Web.config
<system.web>
 <authorization>
 <allow users="*" />
 </authorization>
</system.web>

<location path="Restricted" >
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

Restricted Subfolder
restricted pages

login.aspx

All pages require SSL
IIS Metabase property
AccessSSL=true

URLAuthorization
allows anonymous
access

URLAuthorization
denies unauthenticated
users and forces a login

Figure 10.2
A Web site partitioned into public and secure areas

Note that in Figure 10.2, the restricted subfolder is configured in Internet Information
Services (IIS) to require SSL access. The first <authorization> element in Web.config
allows all users to access the public area, while the second element prevents
unauthenticated users from accessing the contents of the secured subfolder and
forces a login.

For more information about restricting authentication cookies so that they are
passed only over HTTPS connections and about how to navigate between
restricted and non-restricted pages, see “Use Absolute URLs for Navigation” in
the “Authentication” section of this chapter.

262 Part III: Building Secure Web Applications

Consider the Identity That Is Used for Resource Access
By default, ASP.NET applications do not impersonate, and the least privileged
ASPNET process account is used to run ASP.NET Web applications and for resource
access. The default is the recommended configuration. There are several situations in
which you may want to use a different Windows security context for resource access.
These include:
● Hosting multiple applications on the same server

You can use IIS to configure each application to use a separate anonymous
Internet user account and then enable impersonation. Each application then has
a distinct identity for resource access. For more information about this approach,
see Chapter 20, “Hosting Multiple Web Applications.”

● Accessing a remote resource with specific authentication requirements
If you need to access a specific remote resource (for example, a file share) and have
been given a particular Windows account to use, you can use configure this
account as the anonymous Web user account for your application. Then you can
use programmatic impersonation prior to accessing the specific remote resource.
For more information, see “Impersonation” later in this chapter.

Protect Credentials and Authentication Tickets
Your design should factor in how to protect credentials and authentication tickets.
Credentials need to be secured if they are passed across the network and while they
are in persistent stores such as configuration files. Authentication tickets must be
secured over the network because they are vulnerable to hijacking. Encryption
provides a solution. SSL or IPSec can be used to protect credentials and tickets over
the network and DPAPI provides a good solution for encrypting credentials in
configuration files.

Fail Securely
If your application fails with an unrecoverable exception condition, make sure that it
fails securely and does not leave the system wide open. Make sure the exception
details that are valuable to a malicious user are not allowed to propagate to the client
and that generic error pages are returned instead. Plan to handle errors using
structured exception handling, rather than relying on method error codes.

 Chapter 10: Building Secure ASP.NET Pages and Controls 263

Consider Authorization Granularity
Consider the authorization granularity that you use in the authenticated parts of your
site. If you have configured a directory to require authentication, should all users
have equal access to the pages in that directory? If necessary, you can apply different
authorization rules for separate pages based on the identity, or more commonly, the
role membership of the caller, by using multiple <authorization> elements within
separate <location> elements.

For example, two pages in the same directory can have different <allow> and
<deny> elements in Web.config.

Place Web Controls and User Controls in Separate Assemblies
When Web controls and user controls are put in their own assemblies, you can
configure security for each assembly independently by using code access security
policy. This provides additional flexibility for the administrator and it means that you
are not forced to grant extended permissions to all controls just to satisfy the
requirements of a single control.

Place Resource Access Code in a Separate Assembly
Use separate assemblies and call them from your page classes rather than embedding
resource access code in your page class event handlers. This provides greater
flexibility for code access security policy and is particularly important for building
partial-trust Web applications. For more information, see Chapter 9, “Using Code
Access Security with ASP.NET.”

Input Validation
If you make unfounded assumptions about the type, length, format, or range of
input, your application is unlikely to be robust. Input validation can become a
security issue if an attacker discovers that you have made unfounded assumptions.
The attacker can then supply carefully crafted input that compromises your
application. The misplaced trust of user input is one of the most common and
devastating vulnerabilities in Web applications.

264 Part III: Building Secure Web Applications

Constrain, Then Sanitize
Start by constraining input and check for known good data by validating for type,
length, format, and range. Sometimes you also need to sanitize input and make
potentially malicious input safe. For example, if your application supports free-
format input fields, such as comment fields, you might want to permit certain “safe”
HTML elements, such as and <i>, and strip out any other HTML elements. The
following table summarizes the options that are available for constraining and
sanitizing data:

Table 10.1 Options for Constraining and Sanitizing Data

Requirement Options
Type checks .NET Framework type system. Parse string data, convert to a strong type, and

then handle FormatExceptions.

Regular expressions. Use ASP.NET RegularExpressionValidator control or
Regex class.

Length checks Regular expressions

String.Length property

Format checks Regular expressions for pattern matching

.NET Framework type system

Range checks ASP.NET RangeValidator control (supports currency, date, integer, double, and
string data)

Typed data comparisons

Regular Expressions
You can use regular expressions to restrict the range of valid characters, to strip
unwanted characters, and to perform length and format checks. You can constrain
input format by defining patterns that the input must match. ASP.NET provides the
RegularExpressionValidator control and the Regex class is available from the
System.Text.RegularExpressions namespace.

If you use the validator controls, validation succeeds if the control is empty. For
mandatory fields, use a RequiredFieldValidator. Also, the regular expression
validation implementation is slightly different on the client and server. On the client,
the regular expression syntax of Microsoft JScript development software is used. On
the server, System.Text.RegularExpressions.Regex syntax is used. Since JScript
regular expression syntax is a subset of System.Text.RegularExpressions.Regex
syntax, it is recommended that JScript regular expression syntax be used to yield the
same results on both the client and the server.

 Chapter 10: Building Secure ASP.NET Pages and Controls 265

For more information about the full range of ASP.NET validator controls, refer to the
.NET Framework documentation.

RegularExpressionValidator Control
To validate Web form field input, you can use the RegularExpressionValidator
control. Drag the control onto a Web form and set its ValidationExpression,
ControlToValidate, and ErrorMessage properties.

You can set the validation expression using the properties window in Microsoft
Visual Studio .NET or you can set the property dynamically in the Page_Load event
handler. The latter approach allows you to group together all of the regular
expressions for all controls on the page.

Regex Class
If you use regular HTML controls with no runat=“server” property (which rules out
using the RegularExpressionValidator control), or you need to validate input from
other sources such as query strings or cookies, you can use the Regex class either in
your page class or in a validation helper method, possibly in a separate assembly.
Some examples are shown later in this section.

Regular Expression Comments
Regular expressions are much easier to understand if you use the following syntax
and comment each component of the expression using #. To enable comments, you
must also specify RegexOptions.IgnorePatternWhitespace, which means that non-
escaped white space is ignored.

Regex regex = new Regex(@"
 ^ # anchor at the start
 (?=.*\d) # must contain at least one digit
 (?=.*[a-z]) # must contain one lowercase
 (?=.*[A-Z]) # must contain one uppercase
 .{8,10} # From 8 to 10 characters in length
 $ # anchor at the end",
 RegexOptions.IgnorePatternWhitespace);

String Fields
To validate string fields, such as names, addresses, tax identification numbers, and so
on, use regular expressions to do the following:
● Constrain the acceptable range of input characters.
● Apply formatting rules. For example, pattern-based fields, such as tax

identification numbers, ZIP codes, or postal codes, require specific patterns of
input characters.

● Check lengths.

266 Part III: Building Secure Web Applications

Names
The following example shows a RegularExpressionValidator control that has been
used to validate a name field.

<form id="WebForm" method="post" runat="server">
 <asp:TextBox id="txtName" runat="server"></asp:TextBox>
 <asp:RegularExpressionValidator id="nameRegex"runat="server"
 ControlToValidate="txtName"
 ValidationExpression="[a-zA-Z'.`-´\s]{1,40}"
 ErrorMessage="Invalid name">
 </asp:regularexpressionvalidator>
</form>

The preceding validation expression constrains the input name field to alphabetic
characters (lowercase and uppercase), the single apostrophe for names such as
O’Dell, and the dot character. In addition, the field length is constrained to 40
characters.

Social Security Numbers
The following example shows the HTML code that is generated for a
RegularExpressionValidator control that has been used to validate a U.S. social
security number form field:

<form id="WebForm" method="post" runat="server">
 <asp:TextBox id="txtSSN" runat="server"></asp:TextBox>
 <asp:RegularExpressionValidator id="ssnRegex" runat="server"
 ErrorMessage="Invalid social security number"
 ValidationExpression="\d{3}-\d{2}-\d{4}"
 ControlToValidate="txtSSN">
 </asp:RegularExpressionValidator>
</form>

The preceding validation expression is one of the standard expressions that Visual
Studio .NET provides. It validates the format of the supplied input field as well as its
type and length. The input must consist of three numeric digits followed by a dash,
then two digits followed by a dash, and then four digits.

If you are not using server controls (which rule out the validator controls), or you
need to validate input from sources other than form fields, you can use the
System.Text.RegularExpression.Regex class in your method code. The following
example shows how to validate the same field by using the static Regex.IsMatch
method directly in the page class rather than using a validator control:

if (!Regex.IsMatch(txtSSN.Text, @"\d{3}-\d{2}-\d{4}"))
{
 // Invalid Social Security Number
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 267

Date Fields
Input fields that have an equivalent .NET Framework type can be type checked by
the.NET Framework type system. For example, to validate a date, you can convert
the input value to a variable of type System.DateTime and handle any resulting
format exceptions if the input data is not compatible, as follows.

try
{
 DateTime dt = DateTime.Parse(txtDate.Text).Date;
}
// If the type conversion fails, a FormatException is thrown
catch(FormatException ex)
{
 // Return invalid date message to caller
}

In addition to format and type checks, you might need to perform a range check on a
date field. This is easily performed using the DateTime variable, as follows.

// Exception handling is omitted for brevity
 DateTime dt = DateTime.Parse(txtDate.Text).Date;
 // The date must be today or earlier
 if (dt > DateTime.Now.Date)
 throw new ArgumentException("Date must be in the past");

Numeric Fields
If you need to validate numeric data, for example, an age, perform type checks using
the int type. To convert string input to integer form you can use Int32.Parse or
Convert.ToIn32, and then handle any FormatException that occurs with an invalid
data type, as follows:

try
{
 int i = Int32.Parse(txtAge.Text);
 . . .
}
catch(FormatException)
{
 . . .
}

268 Part III: Building Secure Web Applications

Range Checks
Sometimes you need to validate that input data falls within a predetermined range.
The following code uses an ASP.NET RangeValidator control to constrain input to
whole numbers between 0 and 255. This example also uses the
RequiredFieldValidator. Without the RequiredFieldValidator, the other validator
controls accept blank input.

<form id="WebForm3" method="post" runat="server">
 <asp:TextBox id="txtNumber" runat="server"></asp:TextBox>
 <asp:RequiredFieldValidator
 id="rangeRegex"
 runat="server"
 ErrorMessage="Please enter a number between 0 and 255"
 ControlToValidate="txtNumber"
 style="LEFT: 10px; POSITION: absolute; TOP: 47px" >
 </asp:RequiredFieldValidator>
 <asp:RangeValidator
 id="RangeValidator1"
 runat="server"
 ErrorMessage="Please enter a number between 0 and 255"
 ControlToValidate="TextBox1"
 Type="Integer"
 MinimumValue="0"
 MaximumValue="255"
 style="LEFT: 10px; POSITION: absolute; TOP: 47px" >
 </asp:RangeValidator>
 <asp:Button id="Button1" style="LEFT: 10px; POSITION: absolute; TOP: 100px"
 runat="server" Text="Button"></asp:Button>
</form>

The following example shows how to validate range using the Regex class:

try
{
 // The conversion will raise an exception if not valid.
 int i = Convert.ToInt32(sInput);
 if ((0 <= i && i <= 255) == true)
 {
 // data is valid, use the number
 }
}
catch(FormatException)
{
 . . .
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 269

Sanitizing Input
Sanitizing is about making potentially malicious data safe. It can be helpful when the
range of allowable input cannot guarantee that the input is safe. This might include
stripping a null from the end of a user-supplied string or escaping values so they are
treated as literals. If you need to sanitize input and convert or strip specific input
characters, use Regex.Replace.

Note Use this approach for defense in depth. Always start by constraining input to the set of known
“good” values.

The following code strips out a range of potentially unsafe characters, including < > \
" ' % ; () &.

private string SanitizeInput(string input)
{
 Regex badCharReplace = new Regex(@"([<>""'%;()&])");
 string goodChars = badCharReplace.Replace(input, "");
 return goodChars;
}

For more information about sanitizing free format input fields, such as comment
fields, see “Sanitizing Free Format Input” under “Cross-Site Scripting,” later in this
chapter.

Validating HTML Controls
If you do not use server controls — that is, controls with the runat=“server” attribute
— and instead use regular HTML controls, you cannot use the ASP.NET validator
controls. Instead, you can validate your Web pages’ content by using regular
expressions in the Page_Load event handler, as follows.

using System.Text.RegularExpressions;
. . .
private void Page_Load(object sender, System.EventArgs e)
{
 // Note that IsPostBack applies only for
 // server forms (with runat="server")
 if (Request.RequestType == "POST") // non-server forms
 {
 // Validate the supplied email address
 if(!Regex.Match(Request.Form["email"],
 @"\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*",
 RegexOptions.None).Success)
 {
 // Invalid email address
 }

(continued)

270 Part III: Building Secure Web Applications

(continued)

 // Validate the supplied name
 if (!RegEx.Match(Request.Form["name"],
 @"[A-Za-z'\-]",
 RegexOptions.None).Success)
 {
 // Invalid name
 }
 }
}

Validating Input Used for Data Access
If you are generating dynamic SQL queries based on user input, a SQL injection
attack can inject malicious SQL commands that can be executed by the database. In a
typical Web-based data access scenario, the following defense in depth strategy can
be used:
● Use regular expressions to constrain input within your page class.
● Sanitize or reject input. For defense in depth, you can choose to use a helper

method to strip null characters or other known bad characters.
● Use parameterized stored procedures for data access to ensure that type and

length checks are performed on the data used in SQL queries.

For more information about using parameters for data access and about writing
secure data access code, see Chapter 14, “Building Secure Data Access.”

Validating Input Used For File I/O
In general, you should avoid writing code that accepts file input or path input from
the caller. Instead, use fixed file names and locations when reading and writing data.
This ensures that your code cannot be coerced into accessing arbitrary files. It also
ensures that your code is not vulnerable to canonicalization bugs.

If you do need to accept input file names, there are two main challenges. First, is the
resulting file path and name a valid file system name? Second, is the path valid in the
context of your application? For example, is it beneath the application’s virtual
directory root?

To canonicalize the file name, use System.IO.Path.GetFullPath. To check that the file
path is valid in the context of your application, you can use .NET code access security
to grant the precise FileIOPermission to your code so that is able to access only files
from specific directories. For more information, see the “File I/O” sections in
Chapter 7, “Building Secure Assemblies” and Chapter 8, “Code Access Security in
Practice.”

 Chapter 10: Building Secure ASP.NET Pages and Controls 271

Using MapPath
If you use MapPath to map a supplied virtual path to a physical path on the server,
use the overload of Request.MapPath that accepts a bool parameter so that you can
prevent cross application mapping, as follows:

try
{
 string mappedPath = Request.MapPath(inputPath.Text,
 Request.ApplicationPath, false);
}
catch (HttpException)
{
 // Cross-application mapping attempted
}

The final false parameter prevents cross-application mapping. This means that a user
cannot successfully supply a path that contains “..” to traverse outside of your
application’s virtual directory hierarchy. Any attempt to do so results in an exception
of type HttpException.

Note Server controls can use the Control.MapPathSecure method to read files. This method
requires that the calling code is granted full trust by code access security policy; otherwise an
HttpException is thrown. For more information, see Control.MapPathSecure in the .NET Framework
SDK documentation.

Common Regular Expressions
Visual Studio .NET provides a set of useful regular expressions. To access them, add a
RegularExpresssionValidator control to a Web form and click the ellipsis button in
the control’s Expression property field. The following table shows several additional
useful expressions for commonly used Web page fields.

Table 10.2 Useful Regular Expression Fields

Field

Expression

Format
Samples

Description

Name [a-zA-Z’`-´\s]{1,40} John Doe

O’Dell

Validates a name. Allows up to 40
uppercase and lowercase characters
and a few special characters that
are common to some names. This
list can be tailored.

Numbers ^\D?(\d{3})\D?\D?(\d{3})
\D?(\d{4})$

(425)-555-0123

425-555-0123

425 555 0123

Validates a U.S. phone number.

(continued)

272 Part III: Building Secure Web Applications

Table 10.2 Useful Regular Expression Fields (continued)

Field

Expression

Format
Samples

Description

E-mail \w+([-+.]\w+)*@\w+
([-.]\w+)*\.\w+([-.]\w+)*

someone@
example.com

Validates an e-mail address.

URL ^(http|https|ftp)\://[a-zA-Z
0-9\-\.]+\.[a-zA-Z]{2,3}
(:[a-zA-Z0-9]*)?/?([a-zA-Z
0-9\-\._\?\,\'/\\\+&%\$#
\=~])*$

 Validates a URL.

Zip Code ^(\d{5}-\d{4}|\d{5}|\d{9})
$|^([a-zA-Z]\d[a-zA-Z]
\d[a-zA-Z]\d)$

 Validates a U.S. ZIP code allowing 5
or 9 digits.

Password ^(?=.*\d)(?=.*[a-z])(?=.*
[A-Z]).{8,10}$

 Validates a strong password. Must
be between 8 and 10 characters.
Must contain a combination of
uppercase, lowercase, and numeric
digits, with no special characters.

Non-
negative
integers

\d+ 0

986

Validates for integers greater than
zero.

Currency
(non-
negative)

"\d+(\.\d\d)?" Validates for a positive currency
amount. Requires two digits after
the decimal point.

Currency
(positive or
negative)

"(-)?\d+(\.\d\d)?" Validates for a positive or negative
currency amount. Requires two digits
after the decimal point.

Cross-Site Scripting
XSS attacks exploit vulnerabilities in Web page validation by injecting client-side
script code. This code is subsequently sent back to an unsuspecting user and
executed by the browser. Because the browser downloads the script code from a
trusted site, the browser has no way of identifying that the code is not legitimate, and
Internet Explorer security zones provide no defense. XSS attacks also work over
HTTP or HTTPS (SSL) connections. One of the most serious exploits occurs when an
attacker writes script to retrieve the authentication cookie that provides access to the
trusted site and posts it to a Web address known to the attacker. This allows the
attacker to spoof the legitimate user’s identity and gain illicit access to the Web site.

mailto:test@test.com
mailto:test@test.com

 Chapter 10: Building Secure ASP.NET Pages and Controls 273

Use the following countermeasures to prevent XSS attacks:
● Validate input
● Encode output

Validate Input
Validate any input that is received from outside your application’s trust boundary for
type, length, format, and range using the various techniques described previously in
this chapter.

Encode Output
If you write text output to a Web page and you do not know with absolute certainty
that the text does not contain HTML special characters (such as <, >, and &), then
make sure to pre-process it using the HttpUtility.HtmlEncode method. Do this even
if the text came from user input, a database, or a local file. Similarly, use
HttpUtility.UrlEncode to encode URL strings.

The HtmlEncode method replaces characters that have special meaning in HTML to
HTML variables that represent those characters. For example, < is replaced with <
and " is replaced with ". Encoded data does not cause the browser to execute
code. Instead, the data is rendered as harmless HTML.

Response.Write(HttpUtility.HtmlEncode(Request.Form["name"]));

Data-Bound Controls
Data-bound Web controls do not encode output. The only control that encodes output
is the TextBox control when its TextMode property is set to MultiLine. If you bind
any other control to data that has malicious XSS code, the code will be executed on
the client. As a result, if you retrieve data from a database and you cannot be certain
that the data is valid (perhaps because it is a database that is shared with other
applications), encode the data before you pass it back to the client.

Sanitizing Free Format Input
If your Web page includes a free-format text box, such as a “comments” field, in
which you want to permit certain safe HTML elements such as and <i>, you can
handle this safely by first pre-processing with HtmlEncode, and then selectively
removing the encoding on the permitted elements, as follows:

StringBuilder sb = new StringBuilder(HttpUtility.HtmlEncode(userInput)) ;
sb.Replace("", "");
sb.Replace("", "");
sb.Replace("<i>", "<i>");
sb.Replace("</i>", "</i>");
Response.Write(sb.ToString());

274 Part III: Building Secure Web Applications

Defense in Depth Countermeasures
In addition to the techniques discussed earlier, use the following countermeasures for
defense in depth to prevent XSS:
● Set the correct character encoding.
● Use the ASP.NET version 1.1 validateRequest option.
● Install URLScan on your Web server.
● Use the HttpOnly cookie option.
● Use the <frame> security attribute.
● Use the innerText property.

Set the Correct Character Encoding
To successfully restrict what data is valid for your Web pages, it is important to limit
the ways in which the input data can be represented. This prevents malicious users
from using canonicalization and multi-byte escape sequences to trick your input
validation routines.

ASP.NET allows you to specify the character set at the page level or at the application
level by using the <globalization> element in Web.config. Both approaches are
shown below using the ISO-8859-1 character encoding, which is the default in early
versions of HTML and HTTP.

To set the character encoding at the page level, use the <meta> element or the
ResponseEncoding page-level attribute as follows:

<meta http-equiv="Content Type"
 content="text/html; charset=ISO-8859-1" />

OR

<% @ Page ResponseEncoding="ISO-8859-1" %>

To set the character encoding in Web.config, use the following configuration:

<configuration>
 <system.web>
 <globalization
 requestEncoding="ISO-8859-1"
 responseEncoding="ISO-8859-1"/>
 </system.web>
</configuration>

 Chapter 10: Building Secure ASP.NET Pages and Controls 275

Validating Unicode Characters

Use the following code to validate Unicode characters in a page:

using System.Text.RegularExpressions;
. . .
private void Page_Load(object sender, System.EventArgs e)
{
 // Name must contain between 1 and 40 alphanumeric characters
 // together with (optionally) special characters '`´ for names such
 // as D'Angelo
 if (!Regex.IsMatch(Request.Form["name"], @"^[\p{L}\p{Zs}\p{Lu}\p{Ll}]{1,40}$"))
 throw new ArgumentException("Invalid name parameter");
 // Use individual regular expressions to validate other parameters
 . . .
}

The following explains the regular expression shown in the preceding code:
● {<name>} specifies a named Unicode character class.
● \p{<name>} matches any character in the named character class specified by

{<name>}.
● {L} performs a left-to-right match.
● {Lu} performs a match of uppercase.
● {Ll} performs a match of lowercase.
● {Zs} matches separator and space.
● {1,40} means no less that 1 and no more than 40 characters.
● {Mn} matches mark and non-spacing characters.
● {Zs} matches separator and space.
● * specifies zero or more matches.
● $ means stop looking at this position.

Use the ASP.NET validateRequest Option
The validateRequest attribute is a .NET Framework version 1.1 feature. This attribute
is set to true by default on the <pages> element in Machine.config. It instructs
ASP.NET to examine all data received from the browser for potentially malicious
input, for example, input that contains <script> elements. ASP.NET examines input
received from HTML form fields, cookies, and query strings. .NET Framework
version 1.0 does not provide any equivalent functionality, but the IIS URLScan
Internet Server Application Programming Interface (ISAPI) filter can perform a
similar job. You can also apply the setting to each page using the @ Page tag, as
follows:

<% @ Page validateRequest="True" %>

276 Part III: Building Secure Web Applications

Install URLScan on Your Web Server
URLScan is an ISAPI filter that is installed when you run the IISLockdown tool. This
helps mitigate the threat of XSS attacks by rejecting potentially malicious input. For
more information about IISLockdown and URLScan, see Chapter 16, “Securing Your
Web Server.”

Note IIS 6.0 on Windows Server 2003 has functionality equivalent to URLScan built in.

Use the HttpOnly Cookie Option
Internet Explorer 6 Service Pack 1 supports a new HttpOnly cookie attribute, which
prevents client-side script from accessing the cookie from the document.cookie
property. Instead, an empty string is returned. The cookie is still sent to the server
whenever the user browses to a Web site in the current domain.

Note Web browsers that do not support the HttpOnly cookie attribute either ignore the cookie or
ignore the attribute, which means it is still subject to XSS attacks.

The System.Net.Cookie class does not currently support an HttpOnly property. To
add an HttpOnly attribute to the cookie, you need to use an ISAPI filter, or if you
want a managed code solution, add the following code to your application’s
Application_EndRequest event handler in Global.asax:

protected void Application_EndRequest(Object sender, EventArgs e)
{
 string authCookie = FormsAuthentication.FormsCookieName;
 foreach (string sCookie in Response.Cookies)
 {
 // Just set the HttpOnly attribute on the Forms authentication cookie
 // Skip this check to set the attribute on all cookies in the collection
 if (sCookie.Equals(authCookie))
 {
 // Force HttpOnly to be added to the cookie header
 Response.Cookies[sCookie].Path += ";HttpOnly";
 }
 }
}

Note A future version of the .NET Framework is likely to have an HttpOnly property on the
Cookie class.

 Chapter 10: Building Secure ASP.NET Pages and Controls 277

Use the <frame> Security Attribute
Internet Explorer 6 and later supports a new security attribute on the <frame> and
<iframe> elements. You can use the security attribute to apply the user’s Restricted
Sites Internet Explorer security zone settings to an individual frame or iframe. By
default, the Restricted Sites zone doesn’t support script execution. If you use the
security attribute, it must currently be set to “restricted” as shown below:

<frame security="restricted" src="http://www.somesite.com/somepage.htm"></frame>

Use the innerText Property
If you create a page with untrusted input, use the innerText property instead of
innerHTML. The innerText property renders content safe and ensures that script is
not executed.

Authentication
Weak authentication increases the identity spoofing threat. If a user’s logon
credentials fall into the wrong hands, an attacker can spoof the user’s identity and
gain access to the application. The attacker shares all of the user’s privileges in the
application. Credentials must be protected as they are passed over the network and
while they are persistent, for example, in the application’s user store. The
authentication cookie that represents an authenticated identity to the application after
the initial logon must also be protected to mitigate the risk of session hijacking and
cookie replay attacks.

Forms Authentication
The threat of session hijacking and cookie replay attacks is particularly significant for
applications that use Forms authentication. You must take particular care when
querying the database using the user-supplied credentials to ensure that you are not
vulnerable to SQL injection. Additionally, to prevent identity spoofing, you should
make sure that the user store is secure and that strong passwords are enforced.

The following fragment shows a “secure” Forms authentication configuration in
Web.config:

 <forms loginUrl="Restricted\login.aspx" Login page in an SSL protected folder
 protection="All" Privacy and integrity
 requireSSL="true" Prevents cookie being sent over http
 timeout="10" Limited session lifetime
 name="AppNameCookie" Unique per-application name
 path="/FormsAuth" and path
 slidingExpiration="true" > Sliding session lifetime
 </forms>

278 Part III: Building Secure Web Applications

The following recommendations help you build a secure Forms authentication
solution:
● Partition your Web site.
● Secure restricted pages with SSL.
● Use URL Authorization.
● Secure the authentication cookie.
● Use absolute URLs for navigation.
● Use secure credential management.

Partition Your Web Site
In your site design, make sure that secure pages that require authenticated access are
placed in a subdirectory that is separate from the anonymously accessible pages.
Figure 10.3 shows a typical arrangement in the Visual Studio .NET Solution Explorer
window. Notice how the Forms login page is placed along with other restricted pages
in a separate subdirectory.

Figure 10.3
Subdirectory for restricted pages that require authenticated access

Note If you are using Server.Transfer in your application to transfer from an anonymous page to a
secure page, .NET Framework version 1.1 or earlier bypasses authentication checks, so code that
uses Server.Transfer should be verified to ensure that it does not transfer to a secure directory.

 Chapter 10: Building Secure ASP.NET Pages and Controls 279

Secure Restricted Pages with SSL
To ensure that SSL is used to protect the logon credentials that are posted from the
login form, and that the authentication cookie passed on subsequent requests to
restricted pages, configure the secure folders in IIS to require SSL. This sets the
AccessSSL=true attribute for the folder in the IIS metabase. Requests for pages in the
secured folders will only be successful if https is used on the request URL.

For SSL, you must have a server certificate installed on the Web server. For more
information, see “How To: Setup SSL on a Web Server” in the “How To” section
of “Microsoft patterns & practices Volume I, Building Secure ASP.NET
Applications: Authentication, Authorization, and Secure Communication” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

Use URL Authorization
To allow anonymous access to public pages, use the following <authorization>
element.

<system.web>
 <!-- The virtual directory root folder contains general pages.
 Unauthenticated users can view them and they do not need
 to be secured with SSL. -->
 <authorization>
 <allow users="*" />
 </authorization>
</system.web>

Use the following <authorization> element inside a <location> element in
Web.config to deny access to unauthenticated users and force a redirect to the login
page that is specified on the <forms> element:

<!-- The restricted folder is for authenticated and SSL access only. -->
<location path="Secure" >
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

280 Part III: Building Secure Web Applications

Secure the Authentication Cookie
To prevent session hijacking and cookie replay attacks, secure the cookie by making
sure that it is only passed over SSL connections using the HTTPS protocol. For
additional risk mitigation, encrypt the cookie before sending it to the client and limit
the period for which the cookie is valid. To secure the authentication cookie:
● Restrict the authentication cookie to HTTPS connections.
● Encrypt the cookie.
● Limit cookie lifetime.
● Consider using a fixed expiration period.
● Do not persist authentication cookies.
● Keep authentication and personalization cookies separate.
● Use distinct cookie names and paths.

Restrict the Authentication Cookie-to-HTTPS Connections
Cookies support a “secure” property that determines whether or not browsers should
send the cookie back to the server. With the secure property set, the cookie is sent by
the browser only to a secure page that is requested using an HTTPS URL.

If you are using .NET Framework version 1.1, set the secure property by using
requireSSL=“true” on the <forms> element as follows:

<forms loginUrl="Secure\Login.aspx"
 requireSSL="true" . . . />

If you are using .NET Framework version 1.0, set the secure property manually in the
Application_EndRequest event handler in Global.asax using the following code:

protected void Application_EndRequest(Object sender, EventArgs e)
{
 string authCookie = FormsAuthentication.FormsCookieName;

 foreach (string sCookie in Response.Cookies)
 {
 if (sCookie.Equals(authCookie))
 {
 // Set the cookie to be secure. Browsers will send the cookie
 // only to pages requested with https
 Response.Cookies[sCookie].Secure = true;
 }
 }
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 281

Encrypt the Cookie
Encrypt the cookie contents even if you are using SSL. This prevents an attacker from
viewing or modifying the cookie if he or she manages to steal it through a XSS
exploit. In this event, the attacker can still use the cookie to gain access to your
application. The best way to mitigate this risk is to implement the appropriate
countermeasures to prevent XSS attacks (described under “Cross-Site Scripting”
earlier in this chapter), and limit the cookie lifetime as described in the next
recommendation.

To provide privacy and integrity for the cookie, set the protection attribute on the
<forms> element as follows:

<forms protection="All" Privacy and integrity

Limit Cookie Lifetime
Limit the cookie lifetime to reduce the time window in which an attacker can use a
captured cookie to gain spoofed access to your application.

<forms timeout="10" Reduced cookie lifetime (10 minutes)

Consider Using a Fixed Expiration Period
Consider setting slidingExpiration=“false” on the <forms> element to fix the cookie
expiration, rather than resetting the expiration period after each Web request. This is
particularly important if you are not using SSL to protect the cookie.

Note This feature is available with .NET Framework version 1.1.

Do not Persist Authentication Cookies
Do not persist authentication cookies because they are stored in the user’s profile and
can be stolen if an attacker gets physical access to the user’s computer. You can
specify a non-persistent cookie when you create the FormsAuthenticationTicket as
follows:

FormsAuthenticationTicket ticket =
 new FormsAuthenticationTicket(
 1, // version
 Context.User.Identity.Name, // user name
 DateTime.Now, // issue time
 DateTime.Now.AddMinutes(15), // expires every 15 mins
 false, // do not persist the cookie
 roleStr); // user roles

282 Part III: Building Secure Web Applications

Keep Authentication and Personalization Cookies Separate
Keep personalization cookies that contain user-specific preferences and non-sensitive
data separate from authentication cookies. A stolen personalization cookie might not
represent a security threat, whereas an attacker can use a stolen authentication cookie
to gain access to your application.

Use Distinct Cookie Names and Paths
Use unique name and path attribute values on the <forms> element. By ensuring
unique names, you prevent possible problems that can occur when hosting multiple
applications on the same server. For example, if you don’t use distinct names, it is
possible for a user who is authenticated in one application to make a request to
another application without being redirected to that application’s logon page.

For more information, see Microsoft Knowledge Base articles 313116, “PRB: Forms
Authentication Requests Are Not Directed to loginUrl Page,” and 310415, “PRB:
Mobile Forms Authentication and Different Web Applications.”

Use Absolute URLs for Navigation
Navigating between the public and restricted areas of your site (that is, between
HTTP and HTTPS pages) is an issue because a redirect always uses the protocol
(HTTPS or HTTP) of the current page, not the target page.

Once a user logs on and browses pages in a directory that is secured with SSL,
relative links such as “..\publicpage.aspx” or redirects to HTTP pages result in
the pages being served using the https protocol, which incurs an unnecessary
performance overhead. To avoid this, use absolute links such as “http://servername
/appname/publicpage.aspx” when redirecting from an HTTPS page to an HTTP
page.

Similarly, when you redirect to a secure page (for example, the login page) from
a public area of your site, you must use an absolute HTTPS path, such as
“https://servername/appname/secure/login.aspx”, rather than a relative path,
such as restricted/login.aspx. For example, if your Web page provides a logon
button, use the following code to redirect to the secure login page.

private void btnLogon_Click(object sender, System.EventArgs e)
{
 // Form an absolute path using the server name and v-dir name
 string serverName =
 HttpUtility.UrlEncode(Request.ServerVariables["SERVER_NAME"]);
 string vdirName = Request.ApplicationPath;
 Response.Redirect("https://" + serverName + vdirName +
 "/Restricted/Login.aspx");
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 283

Use Secure Credential Management
Identity spoofing is one of the most common authentication-related threats to your
application. Identity spoofing occurs when an attacker gains access to the application
under the guise of another user. One way to do this is to hijack the session cookie, but
if you have secured the authentication cookie as described earlier, the risk is
significantly reduced. In addition, you must build secure credential management and
a secure user store to mitigate the risk posed by brute force password attacks,
dictionary attacks, and SQL injection attacks.

The following recommendations help you reduce risk:
● Use one-way hashes for passwords.
● Use strong passwords.
● Prevent SQL injection.

Use One-Way Hashes for Passwords
If your user store is SQL Server, store one-way password digests (hash values) with
an added random salt value. The added salt value mitigates the risk of brute force
password cracking attempts, for example, dictionary attacks. The digest approach
means you never actually store passwords. Instead, you retrieve the password from
the user and validate it by recalculating the digest and comparing it with the stored
value.

Use Strong Passwords
Use regular expressions to ensure that user passwords conform to strong password
guidelines. The following regular expression can be used to ensure that passwords
are between 8 and 10 characters in length and contain a mixture of uppercase,
lowercase, numeric, and special characters. This further mitigates the dictionary
attack risk.

private bool IsStrongPassword(string password)
{

return Regex.IsMatch(password, @"^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{8,10}$");
}

Prevent SQL Injection
Forms authentication is especially prone to vulnerabilities that lead to SQL injection
attacks because of the way that the user-supplied logon credentials are used to query
the database. To mitigate the risk:
● Thoroughly validate the supplied credentials. Use regular expressions to make

sure they do not include SQL characters.
● Use parameterized stored procedures to access the user store database.
● Use a login to the database that is restricted and least privileged.

284 Part III: Building Secure Web Applications

For more information about preventing SQL injection, see Chapter 14, “Building
Secure Data Access.”

Authorization
You can use authorization to control access to directories, individual Web pages, page
classes, and methods. If required, you can also include authorization logic in your
method code. When you build authorization into your Web pages and controls,
consider the following recommendations:
● Use URL authorization for page and directory access control.
● Use File authorization with Windows authentication.
● Use principal demands on classes and methods.
● Use explicit role checks for fine-grained authorization.

Use URL Authorization for Page and Directory Access Control
For page-level and directory-level access control, use URL authorization, which is
configured by the <authorization> element. To restrict access to specific files or
directories, place the <authorization> element inside a <location> element.

For more information, see “Authorization” in Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

Use File Authorization with Windows Authentication
If ASP.NET is configured for Windows authentication, the FileAuthorizationModule
checks all requests for ASP.NET file types. This includes ASP.NET page files (.aspx),
user controls (.ascx), and any other file type mapped by IIS to the ASP.NET ISAPI
filter.

To configure the FileAuthorizationModule, set the appropriate Windows access
control lists (ACLs) on the ASP.NET files.

Use Principal Demands on Classes and Methods
Principal permission demands allow you to make authorization decisions based on
the identity and role membership of the caller. The caller’s identity and role
membership is maintained by the principal object that is associated with the current
Web request (accessed through HttpContext.User). Use declarative security attributes
to provide access controls on classes and methods, as follows:

// Declarative syntax
[PrincipalPermission(SecurityAction.Demand,
 Role=@"DomainName\WindowsGroup")]
public void SomeRestrictedMethod()
{
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 285

Use Explicit Role Checks for Fine-Grained Authorization
Declarative security checks prevent a user from accessing a class or calling a specific
method. If you need additional logic inside a method to make authorization
decisions, either use imperative principal permission demands or explicit role checks
using IPrincipal.IsInRole. These approaches allow you to use additional runtime
variables to fine tune the authorization decision. The following example shows the
use of an imperative principal permission demand:

// Imperative syntax
public void SomeRestrictedMethod()
{
 // Only callers that are members of the specified Windows group
 // are allowed access
 PrincipalPermission permCheck = new PrincipalPermission(
 null, @"DomainName\WindowsGroup");
 permCheck.Demand();
 // Some restricted operations (omitted)
}

The following example shows the use of IPrincipal.IsInRole:

public void TransferMoney(string fromAccount,
 string toAccount, double amount)
{
 // Extract the authenticated user from the current HTTP context.
 // The User variable is equivalent to HttpContext.Current.User if you
 // are using an .aspx page (or .asmx)
 WindowsPrincipal authenticatedUser = User as WindowsPrincipal;
 if (null != authenticatedUser)
 {
 // Note: To retrieve the authenticated user's username, use the
 // following line of code
 // string username = authenticatedUser.Identity.Name;
 // If the amount exceeds a threshold value, manager approval is required
 if (amount > thresholdValue) {
 // Perform a role check
 if (authenticatedUser.IsInRole(@"DomainName\Manager"))
 {
 // OK to proceed with transfer
 }
 else
 {
 throw new Exception("Unauthorized funds transfer");
 }
 }
 else
 {
 . . .
 }
 }
}

286 Part III: Building Secure Web Applications

You may also have a method that allows callers from several different roles.
However, you might want to subsequently call a different method, which is not
possible with declarative security.

Impersonation
By default, ASP.NET applications usually do not impersonate the original caller for
design, implementation, and scalability reasons. For example, impersonating
prevents effective middle-tier connection pooling, which can have a severe impact on
application scalability.

In certain scenarios, you might require impersonation (for example, if you require an
alternate identity (non-process identity) for resource access). In hosting
environments, multiple anonymous identities are often used as a form of application
isolation. For example, if your application uses Forms or Passport authentication, you
can impersonate the anonymous Internet user account associated by IIS with your
application’s virtual directory.

You can impersonate the original caller, which might be the anonymous Internet user
account or a fixed identity. To impersonate the original caller (the IIS authenticated
identity), use the following configuration:

<identity impersonate="true" />

To impersonate a fixed identity, use additional userName and password attributes on
the <identity> element, but make sure you use Aspnet_setreg.exe to store encrypted
credentials in the registry. For more information about encrypting credentials in
configuration files and about Aspnet_setreg.exe, see Chapter 19, “Securing Your
ASP.NET Application and Web Services.”

Using Programmatic Impersonation
If you do not want to impersonate an account for the entire request, you can use
programmatic impersonation to impersonate for a portion of the request. For
example, you want to use the ASP.NET process account to access you application’s
primary resources and downstream database, but you need to access an alternate
resource, such as another remote database or a remote file share, using an alternate
identity.

To do this, use IIS to configure the anonymous user account as the trusted alternate
identity. Then use the following code to create an impersonation token using the
anonymous account only while you execute your remote resource access code:

 Chapter 10: Building Secure ASP.NET Pages and Controls 287

HttpContext context = HttpContext.Current;
// Get the service provider from the context
IServiceProvider iServiceProvider = context as IServiceProvider;
//Get a Type which represents an HttpContext
Type httpWorkerRequestType = typeof(HttpWorkerRequest);
// Get the HttpWorkerRequest service from the service provider
// NOTE: When trying to get a HttpWorkerRequest type from the HttpContext
// unmanaged code permission is demanded.
HttpWorkerRequest httpWorkerRequest =
 iServiceProvider.GetService(httpWorkerRequestType) as HttpWorkerRequest;
// Get the token passed by IIS
IntPtr ptrUserToken = httpWorkerRequest.GetUserToken();
// Create a WindowsIdentity from the token
WindowsIdentity winIdentity = new WindowsIdentity(ptrUserToken);
// Impersonate the user
Response.Write("Before impersonation: " +
 WindowsIdentity.GetCurrent().Name + "
");
WindowsImpersonationContext impContext = winIdentity.Impersonate();
Response.Write("Impersonating: " + WindowsIdentity.GetCurrent().Name + "
");
// Place resource access code here

// Stop impersonating
impContext.Undo();
Response.Write("After Impersonating: " +
 WindowsIdentity.GetCurrent().Name + "
");

Note This approach assumes Forms or Passport authentication where your application’s virtual
directory is configured in IIS to support anonymous access.

If you use this code, use the following <identity> configuration:

<identity impersonate="false" />

Note The code demands the unmanaged code permission
SecurityPermission(SecurityPermissionFlag.UnmanagedCode), which is granted only to fully trusted
Web applications.

288 Part III: Building Secure Web Applications

Sensitive Data
Sensitive data includes application configuration details (for example, connection
strings and service account credentials) and application-specific data (for example,
customer credit card numbers). The following recommendations help to reduce risk
when you handle sensitive data:
● Do not pass sensitive data from page to page.
● Avoid plain text passwords in configuration files.
● Use DPAPI to avoid key management.
● Do not cache sensitive data.

Do not Pass Sensitive Data from Page to Page
Avoid using any of the client-side state management options, such as view state,
cookies, query strings, or hidden form-field variables, to store sensitive data. The data
can be tampered with and viewed in clear text. Use server-side state management
options, such as a SQL Server database for secure data exchange.

Avoid Plaintext Passwords in Configuration Files
The <processModel>, <sessionState>, and <identity> elements in Machine.config
and Web.config have userName and password attributes. Do not store these in
plaintext. Store encrypted credentials in the registry using the Aspnet_setreg.exe tool.

For more information about encrypting credentials in configuration files and about
Aspnet_setreg.exe, see Chapter 19, “Securing Your ASP.NET Application and Web
Services.”

Use DPAPI to Avoid Key Management
DPAPI is ideally suited for encrypting secrets such as connection strings and service
account credentials. If your pages need to use this type of configuration data, use
DPAPI to avoid the key management problem.

For more information see “Cryptography” in Chapter 7, “Building Secure
Assemblies.”

Do Not Cache Sensitive Data
If your page contains data that is sensitive, such as a password, credit card number,
or account status, the page should not be cached. Output caching is off by default.

 Chapter 10: Building Secure ASP.NET Pages and Controls 289

Session Management
There are two main factors that you should consider to provide secure session
management. First, ensure that the session token cannot be used to gain access to
sensitive pages where secure operations are performed or to gain access to sensitive
items of data. Second, if the session data contains sensitive items, you must secure the
session data, including the session store.

The following two types of tokens are associated with session management:
● The session token. This token is generated automatically by ASP.NET if session

state is enabled, for example, by setting the mode attribute of the <sessionState>
element to InProc, SQLServer, or StateServer.

Note You can override the <sessionState> configuration and disable or enable session state
on a per-page basis using the EnableSessionState attribute on the @Page tag.

● The authentication token. This is generated by authentication mechanisms, such
as Forms authentication, to track an authenticated user’s session. With a valid
authentication token, a user can gain access to the restricted parts of your Web site.

The following recommendations help you build secure session management:
● Require authentication for sensitive pages.
● Do not rely on client-side state management options.
● Do not mix session tokens and authentication tokens.
● Use SSL effectively.
● Secure the session data.

Require Authentication for Sensitive Pages
Make sure that you authenticate users before allowing them access to the sensitive
and restricted parts of your site. If you use secure authentication and protect the
authentication token with SSL, then a user’s session is secure because an attacker
cannot hijack and replay a session token. The attacker would need the authentication
token to get past the authorization gates.

For more information about how to secure the authentication token for Forms
authentication, see “Forms Authentication” earlier in this chapter.

Do Not Rely on Client-Side State Management Options
Avoid using any of the client-side state management options, such as view state,
cookies, query strings, or hidden form fields, to store sensitive data. The information
can be tampered with or seen in clear text. Use server-side state management options,
for example, a database, to store sensitive data.

290 Part III: Building Secure Web Applications

Do Not Mix Session Tokens and Authentication Tokens
Secure session management requires that you do not mix the two types of tokens.
First, secure the authentication token to make sure an attacker cannot capture it and
use it to gain access to the restricted areas of your application. Second, build your
application in such a way that the session token alone cannot be used to gain access
to sensitive pages or data. The session token should be used only for personalization
purposes or to maintain the user state across multiple HTTP requests. Without
authentication, do not maintain sensitive items of the user state.

Use SSL Effectively
If your site has secure areas and public access areas, you must protect the secure
authenticated areas with SSL. When a user moves back and forth between secure and
public areas, the ASP.NET-generated session cookie (or URL if you have enabled
cookie-less session state) moves with them in plaintext, but the authentication cookie
is never passed over unencrypted HTTP connections as long as the Secure cookie
property is set.

Note You can set the Secure property for a Forms authentication cookie by setting
requireSSL="true" on the <forms> element.

An attacker is able to obtain a session cookie passed over an unencrypted HTTP
session, but if you have designed your site correctly and place restricted pages and
resources in a separate and secure directory, the attacker can use it to access only to
the non-secure, public access pages. In this event, there is no security threat because
these pages do not perform sensitive operations. Once the attacker tries to replay the
session token to a secured page, because there is no authentication token, the attacker
is redirected to the application’s login page.

For more information about using the Secure cookie property and how to build
secure Forms authentication solutions, see “Forms Authentication” earlier in this
chapter.

Secure the Session Data
If the session data on the server contains sensitive items, the data and the store needs
to be secured. ASP.NET supports several session state modes. For information about
how to secure ASP.NET session state, see “Session State” in Chapter 19, “Securing
Your ASP.NET Application and Web Services.”

 Chapter 10: Building Secure ASP.NET Pages and Controls 291

Parameter Manipulation
Parameters, such as those found in form fields, query strings, view state, and cookies,
can be manipulated by attackers who usually intend to gain access to restricted pages
or trick the application into performing an unauthorized operation.

For example, if an attacker knows that you are using a weak authentication token
scheme such as a guessable number within a cookie, the attacker can construct a
cookie with another number and make a request as a different (possibly privileged)
user.

The following recommendations help you avoid parameter manipulation
vulnerabilities:
● Protect view state with MACs.
● Use Page.ViewStateUserKey to counter one-click attacks.
● Maintain sensitive data on the server.
● Validate input parameters.

Protect View State with MACs
If your Web pages or controls use view state to maintain state across HTTP requests,
ensure that the view state is encrypted and integrity checked through the use of
MACs. By default, the enableViewStateMac attribute on the <pages> element in
Machine.config ensures that view state is protected with a MAC.

<pages buffer="true" enableSessionState="true"
 enableViewState="true" enableViewStateMac="true"
 autoEventWireup="true" validateRequest="true"/>

Note The @Page directive also supports the preceding attributes, which allows you to customize
settings on a per-page basis.

While you can override whether or not view state is enabled on a per-control, page,
or application basis, make sure enableViewStateMac is set to true whenever you use
view state.

Server.Transfer
If your application uses Server.Transfer as shown below and sets the optional second
Boolean parameter to true so that the QueryString and Form collections are
preserved, then the command will fail if enableViewStateMac is set to true.

Server.Transfer("page2.aspx", true);

292 Part III: Building Secure Web Applications

If you omit the second parameter or set it to false, then an error will not occur. If you
want to preserve the QueryString and Form collections instead of setting the
enableViewStateMac to false, follow the workaround discussed in Microsoft
Knowledge Base article 316920, “PRB: View State Is Invalid” Error Message When
You Use Server.Transfer.”

For information about configuring the <machineKey> element for view state
encryption and integrity checks, see Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

Use Page.ViewStateUserKey to Counter One-Click Attacks
If you authenticate your callers and use view state, set the Page.ViewStateUserKey
property in the Page_Init event handler to prevent one-click attacks. A one-click
attack occurs when an attacker creates a prefilled Web page (.htm or .aspx) with view
state. The view state can be generated from a page that the attacker had previously
created, for example, a shopping cart page with 100 items. The attacker lures an
unsuspecting user into browsing to the page, then causes the page to be sent to the
server where the view state is valid. The server has no way of knowing that the view
state originated from the attacker. View state validation and MACs do not counter
this attack because the view state is valid and the page is executed under the security
context of the user.

Set the Page.ViewStateUserKey property to a suitably unique value as a
countermeasure to the one-click attack. The value should be unique to each user and
is typically a user name or identifier. When the attacker creates the view state, the
ViewStateUserKey property is initialized to his or her name. When the user submits
the page to the server, it is initialized with the attacker’s name. As a result, the view
state MAC check fails and an exception condition is generated.

Note This attack is usually not an issue for anonymously browsed pages (where no user name is
available) because this type of page should make no sensitive transactions.

Maintain Sensitive Data on the Server
Do not trust input parameters, especially when they are used to make security
decisions at the server. Also, do not use clear text parameters for any form of sensitive
data. Instead, store sensitive data on the server in a session store and use a session
token to reference the items in the store. Make sure that the user is authenticated
securely and that the authentication token is secured properly. For more information,
see “Session Management” earlier in this chapter.

 Chapter 10: Building Secure ASP.NET Pages and Controls 293

Validate Input Parameters
Validate all input parameters that come from form fields, query strings, cookies, and
HTTP headers. The System.Text.RegularExpressions.Regex class helps validate
input parameters. For example, the following code shows how to use this class to
validate a name passed through a query string parameter. The same technique can be
used to validate other forms of input parameter, for example, from cookies or form
fields. For example, to validate a cookie parameter, use Request.Cookies instead of
Request.QueryString.

using System.Text.RegularExpressions;
. . .
private void Page_Load(object sender, System.EventArgs e)
{
 // Name must contain between 1 and 40 alphanumeric characters
 // together with (optionally) special characters '`´ for names such
 // as D'Angelo
 if (!Regex.IsMatch(Request.QueryString["name"],
 @"^[\p{L}\p{Zs}\p{Lu}\p{Ll}]{1,40}$"))
 throw new Exception("Invalid name parameter");
 // Use individual regular expressions to validate all other
 // query string parameters
 . . .
}

For more information about using regular expressions and how to validate input
data, see “Input Validation” earlier in this chapter.

Exception Management
Correct exception handling in your Web pages prevents sensitive exception details
from being revealed to the user. The following recommendations apply to ASP.NET
Web pages and controls.
● Return generic error pages to the client.
● Implement page-level or application-level error handlers.

For more information about exception management, see Chapter 7, “Building Secure
Assemblies.”

Return Generic Error Pages to the Client
In the event of an unhandled exception, that is, one that propagates to the application
boundary, return a generic error page to the user. To do this, configure the
<customErrors> element as follows:

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

294 Part III: Building Secure Web Applications

The error page should include a suitably generic error message, possibly with
additional support details. The name of the page that generated the error is passed to
the error page through the aspxerrorpath query parameter.

You can also use multiple error pages for different types of errors. For example:

<customErrors mode="On" defaultRedirect="YourErrorPage.htm">
 <error statusCode="404" redirect="YourNotFoundPage.htm"/>
 <error statusCode="500" redirect="YourInternalErrorPage.htm"/>
</customErrors>

For individual pages you can supply an error page using the following page-level
attribute:

<% @ Page ErrorPage="YourErrorPage" %>

Implement Page-Level or Application-Level Error Handlers
If you need to trap and process unhandled exceptions at the page level, create a
handler for the Page_Error event that is similar to the one shown below.

public void Page_Error(object sender,EventArgs e)
{
 // Get the source exception details
 Exception ex = Server.GetLastError();
 // Write the details to the event log for diagnostics
 . . .
 // Prevent the exception from propagating and generating an
 // application level event (Application.Error)
 Server.ClearError();
}

If exceptions are allowed to propagate from the page handler or there is no page
handler, an application error event is raised. To trap application-level events,
implement Application_Error in Global.asax, as follows:

protected void Application_Error(Object sender, EventArgs e)
{
 // Write to the event log.
}

 Chapter 10: Building Secure ASP.NET Pages and Controls 295

Auditing and Logging
The default ASP.NET process identity for Web applications can write new records to
the event log, but it does not have sufficient permissions to create new event sources.
To address this issue, you have two choices. You can create an installer class, which is
invoked at installation time when administrator privileges are available, or you can
configure the permissions on the EventLog registry key to allow the ASP.NET process
identity (or impersonated identity) to create event sources at run time. The former
approach is recommended.

� To create an application event source at installation time

1. Right-click your project in the Solution Explorer window in Visual Studio .NET,
point to Add, and then click Add Component.

2. Select Installer Class from the list of templates and provide a suitable class file
name.
This creates a new installer class annotated with the RunInstaller(true) attribute.

RunInstaller(true)
public class EventSourceInstaller : System.Configuration.Install.Installer
{
 . . .
}

3. Display the new installer class in Design view, display the Toolbox, and then click
Components in the Toolbox. Drag an EventLogInstaller component onto the
Designer work surface.

Note If EventLogInstaller does not appear in the Toolbox, right-click the Toolbox, and then click
Add/Remove Items. Then select EventLogInstaller to add this component type.

4. Set the following EventLogInstaller properties:
● Log. Set this property to “Application” which is the name of the event log you

should use. You can use the default Application log or create an application-
specific log.

● Source. Set this property to the event source name. This is usually your
application name.

5. Build your project and then create an instance of the installer class at installation
time.
Installer class instances are automatically created and invoked if you use a .NET
Setup and Deployment project to create a Windows installer file (.msi). If you use
xcopy or equivalent deployment, use the InstallUtil.exe utility to create an
instance of the installer class and to execute it.

296 Part III: Building Secure Web Applications

6. To confirm the successful generation of the event source, use a registry editor and
navigate to:

HKLM\System\CurrentControlSet\Services\EventLog\Application\{source name}

Confirm that the key exists and that it contains an EventMessageFile string value
that points to the default .NET Framework event message file:

\Windows\Microsoft.NET\Framework\{version}\EventLogMessages.dll

If you have an existing application and do not want to create an installer class, you
must grant the ASP.NET process identity the correct access rights on the event log
registry key. For registry key details and the precise access rights that are required,
see “Event Log” in Chapter 19, “Securing Your ASP.NET Application and Web
Services.”

EventLogPermission
Code that writes to the event log must be granted the EventLogPermission by code
access security policy. This becomes an issue if your Web application is configured to
run at a partial-trust level. For information about how to write to the event log from a
partial trust Web application, see Chapter 9, “Using Code Access Security with
ASP.NET.”

Summary
This chapter started by showing you the main threats that you need to address when
you build Web pages and controls. Many application-level attacks rely on
vulnerabilities in input validation. Take special care in this area to make sure that
your validation strategy is sound and that all data that is processed from a non-
trusted source is properly validated. Another common vulnerability is the failure to
protect authentication cookies. The “Forms Authentication” section of this chapter
showed you effective countermeasures to apply to prevent unauthorized access,
session hijacking, and cookie replay attacks.

 Chapter 10: Building Secure ASP.NET Pages and Controls 297

Additional Resources
For more information, see the following resources:
● For information about establishing a secure Machine.config and Web.config

configuration, see Chapter 19, “Securing Your ASP.NET Application and Web
Services.”

● For a printable checklist, see “Checklist: Securing ASP.NET” in the “Checklists”
section of this guide.

● For information on securing your developer workstation, see “How To: Secure
Your Developer Workstation” in the “How To” section of this guide.

● For more information on authentication and authorization in ASP.NET, see
Chapter 8, “ASP.NET Security,” in “Microsoft patterns & practices Volume I,
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/SecNetch08.asp.

● For walkthroughs of using Forms Authentication, see “How To: Use Forms
Authentication with SQL Server 2000” and “How To: Use Forms Authentication
with Active Directory”, in the “How To” section of “Microsoft patterns & practices
Volume I, Building Secure ASP.NET Applications: Authentication, Authorization, and
Secure Communication” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/SecNetHT00.asp.

● For more information about using regular expressions, see Microsoft Knowledge
Base article 308252, “How To: Match a Pattern by Using Regular Expressions and
Visual C# .NET.”

● For more information about user input validation in ASP.NET, see MSDN
article “User Input Validation in ASP.NET” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnaspp/html/pdc_userinput.asp.

● For more information about the Secure cookie property, see RFC2109 on the
W3C Web site at http://www.w3.org/Protocols/rfc2109/rfc2109.

● For more information on security considerations from the Open Hack competition,
see MSDN article “Building and Configuring More Secure Web Sites” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/openhack.asp.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch08.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch08.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT00.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT00.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/pdc_userinput.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnaspp/html/pdc_userinput.asp
http://www.w3.org/Protocols/rfc2109/rfc2109
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp

11
Building Secure Serviced
Components

In This Chapter
● Preventing anonymous access to serviced components
● Protecting sensitive data
● Authorizing callers by using Enterprise Services (COM+) roles
● Using least privileged run-as accounts
● Securing secrets in object constructor strings
● Auditing from middle tier serviced components
● Deployment considerations for serviced components

Overview
COM+ infrastructure services, also known as Enterprise Services, can be
accessed from managed code. Enterprise Services applications consist of
one or more serviced components that are managed classes derived from
System.EnterpriseServices.ServicedComponent.

Serviced components are typically used to encapsulate an application’s business
and data access logic and are used when infrastructure services such as distributed
transactions, object pooling, queued components, and others are required in an
application’s middle tier. Enterprise Services applications often reside on middle-tier
application servers as shown in Figure 11.1.

300 Part III: Building Secure Web Applications

Web
Application

Perimeter
Firewall

Internal
Firewall

Web Server
Database

Server
Application

Server

Enterprise Services
Server Application

(dllhost.exe)

DCOM

Figure 11.1
Serviced components in a middle-tier Enterprise Services application

How to Use This Chapter
This chapter is developer focused and shows how to build secure serviced
components.

To get the most of this chapter:
● Use this chapter in conjunction with the Enterprise Services section in

Chapter 17, “Securing Your Application Server.” The section in Chapter 17
describes how to secure the Enterprise Services infrastructure and how to lock
down your deployed Enterprise Services application.

● Use the recommendations covered in Chapter 7, “Building Secure Assemblies.”
The chapter teaches you secure coding practices that can be applied when you
develop serviced component code.

Threats and Countermeasures
The top threats that you must address when building serviced components are:
● Network eavesdropping
● Unauthorized access
● Unconstrained delegation
● Disclosure of configuration data
● Repudiation

 Chapter 11: Building Secure Serviced Components 301

Figure 11.2 highlights these top threats together with common serviced component
vulnerabilities.

Enterprise
Services

Client
(for example
ASP.NET)

Catalog

Plain text secrets in
constructor strings

Unconstrained
Delegation

Repudiation

Network
Eavesdropping

Over privileged run-as
identity

Disclosure of
Configuration

Data

Unauthorized
Access

No traffic
encryption

Figure 11.2
Enterprise Services threats

Network Eavesdropping
Enterprise Services applications often run on middle-tier application servers, remote
from the Web server. As a result, sensitive application data must be protected from
network eavesdroppers. You can use an Internet Protocol Security (IPSec) encrypted
channel between Web and application server. This solution is commonly used in
Internet data centers. Serviced components also support remote procedure call (RPC)
packet level authentication, which provides packet-based encryption. This is most
typically used to secure communication to and from desktop-based clients.

Unauthorized Access
By enabling COM+ role-based authorization (it is disabled by default on Microsoft
Windows 2000), you can prevent anonymous access and provide role-based
authorization to control access to the restricted operations exposed by your serviced
components.

Unconstrained Delegation
If you enable delegation on Windows 2000 to allow a remote server to access network
resources using the client’s impersonated token, the delegation is unconstrained. This
means that there is no limit to the number of network hops that can be made.
Microsoft Windows Server 2003 introduces constrained delegation.

302 Part III: Building Secure Web Applications

Disclosure of Configuration Data
Many applications store sensitive data such as database connection strings in the
COM+ catalog using object constructor strings. These strings are retrieved and
passed to an object by COM+ when the object is created. Sensitive configuration data
should be encrypted prior to storage in the catalog.

Repudiation
The repudiation threat arises when a user denies performing an operation or
transaction, and you have insufficient evidence to counter the claim. Auditing should
be performed across all application tiers. Serviced components should log user
activity in the middle tier. Serviced components usually have access to the original
caller’s identity because front-end Web applications usually enable impersonation in
Enterprise Services scenarios.

Design Considerations
Before you start writing code, there are a number of important issues to consider at
design time. The key considerations are:
● Role-based authorization
● Sensitive data protection
● Audit requirements
● Application activation type
● Transactions
● Code access security

Role-Based Authorization
For effective role-based authorization using COM+ roles, ensure that the original
caller’s security context is used for the call to the serviced component. This allows
you to perform granular role-based authorization based on the caller’s group
membership. If an ASP.NET Web application calls your serviced components, this
means that the Web application needs to impersonate its callers before calling your
component.

Sensitive Data Protection
If your serviced components handle sensitive data, such as employee details,
financial transactions, and health records, consider how to protect the data as it
crosses the network. If your application does not run in a secure Internet Data Center
(IDC) environment, where IPSec provides transport level encryption, an alternative
option is to use RPC encryption. For this you must use the Packet Privacy
authentication level. For more information, see the “Sensitive Data” section later in
this chapter.

 Chapter 11: Building Secure Serviced Components 303

Audit Requirements
To address the repudiation threat, sensitive transactions performed by Enterprise
Service components should be logged. At design time, consider the type of operations
that should be audited and the details that should be logged. At a minimum, this
should include the identity that initiated the transaction and the identity used to
perform the transaction, which may or may not be the same.

Application Activation Type
At design time, decide how your serviced component will be activated. You can
activate them using an instance of the Dllhost.exe process or you can run them inside
the client process. Server applications run out of process in an instance of Dllhost.exe.
Library applications run in the client’s process address space. Library applications are
more efficient due to the lack of inter-process communication. However, they are less
configurable and are not protected with process level isolation. Many security
settings, such as the authentication and impersonation levels, are inherited from
the client process.

Transactions
If you plan to use distributed transactions, consider where the transaction is initiated
and consider the implications of running transactions between components and
resource managers separated by firewalls. In this scenario, the firewall must be
configured to support the Microsoft Distributed Transaction Coordinator (DTC)
traffic.

If your physical deployment architecture includes a middle-tier application server, it
is generally preferable to initiate transactions from the Enterprise Services application
on the application server and not from the front-end Web application.

Code Access Security
Typically, applications that use serviced components are fully trusted, and as a result
code access security has limited use to authorize calling code. However, Enterprise
Services demands that the calling code has the necessary permission to call
unmanaged code. The main implication of this is that you will not be able to directly
call into an Enterprise Services application from a partial trust Web application. The
ASP.NET partial trust levels (High, Medium, Low, and Minimal) do not grant the
unmanaged code permission. If you need to call a serviced component from a partial
trust application, the privileged code that calls your component must be sandboxed.
For more information, see “Code Access Security Considerations” later in this
chapter.

304 Part III: Building Secure Web Applications

Authentication
Enterprise Services applications use Windows authentication. This is either NTLM
or Kerberos authentication depending on the client and server operating system. In
Windows 2000 or Windows Server 2003 environments, Kerberos authentication is
used.

The main issue for you to consider when building serviced components is to ensure
that all calls are authenticated to prevent anonymous users from accessing your
component’s functionality.

Use (At Least) Call Level Authentication
To reject anonymous callers, use at least call level authentication. Configure this
setting by adding the following attribute to your serviced component assembly:

[assembly: ApplicationAccessControl(
 Authentication = AuthenticationOption.Call)]

Note This is equivalent to setting Authentication level for calls to Call on the Security tab of the
application’s Properties dialog box in Component Services.

Authorization
Enterprise Services uses COM+ roles for authorization. You can control the
granularity of authorization to applications, components, interfaces, and methods.
To prevent users from performing restricted operations exposed by your application’s
serviced components:
● Enable role-based security.
● Enable component level access checks.
● Enforce component level access checks.

Enable Role-Based Security
Role-based security is disabled by default on Windows 2000. The reverse is true on
Windows Server 2003. To ensure that role based security is automatically enabled
when your component is registered (usually by using Regsvcs.exe), add the following
attribute to your serviced component assembly.

[assembly: ApplicationAccessControl(true)]

Note Using this attribute is equivalent to selecting Enforce access checks for this application on
the Security tab of the application’s Properties dialog box in Component Services.

 Chapter 11: Building Secure Serviced Components 305

Enable Component Level Access Checks
Component level access checks must be enabled in order to support component,
interface, or method level role checks. To ensure that component level access checks
are automatically enabled when your component is registered, add the following
attribute to your serviced component assembly.

[assembly: ApplicationAccessControl(AccessChecksLevel=
 AccessChecksLevelOption.ApplicationComponent)]

Note Using this attribute is equivalent to selecting Perform access checks at the process and
component level on the Security tab of the application’s Properties dialog box in Component
Services.

Enforce Component Level Access Checks
To allow individual components to perform access checks, you must enforce
component level access checks. This setting is only effective if the application-wide
security level is set to the process and the component level as described above. To
ensure that component level access checks are automatically enabled when your
component is registered, add the following attribute to your serviced component
classes.

[ComponentAccessControl(true)]
public class YourServicedComponent : ServicedComponent
{
}

Note Using this attribute is equivalent to selecting Enforce component level access checks on the
Security tab of the component’s Properties dialog box in Component Services.

Configuration Management
In addition to the configurable settings that COM+ provides to administrators
through the Component Services tool, developers often perform configuration-
related functions in code. For example, the functions might retrieve object
construction strings stored in the COM+ catalog. Consider these main issues
when you use configuration management with Enterprise Services:
● Use least privileged run-as accounts.
● Avoid storing secrets in object constructor strings.
● Avoid unconstrained delegation.

306 Part III: Building Secure Web Applications

Use Least Privileged Run-As Accounts
During development, run and test your service components using a least privileged
local account instead of the interactive user account. Configure the account as closely
as possible to match the run-as account that the administrator is likely to use in the
production environment.

Avoid Storing Secrets in Object Constructor Strings
If you store secrets such as database connection strings or passwords in object
constructor strings in the COM+ catalog, any member of the local administrators
group can view this plaintext data. Try to avoid storing secrets. If you have to store a
secret, then encrypt the data. DPAPI is a good implementation option because it
allows you to avoid problems associated with key management.

At runtime, retrieve the object construction string and use DPAPI to decrypt the data.
For more information about using DPAPI from managed code, see “How to create a
DPAPI library” in MSDN article, “Building Secure ASP.NET Applications,” at
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

[ConstructionEnabled(Default="")]
public class YourServicedComponent : ServicedComponent, ISomeInterface
{
 // The object constructor is called first.
 public YourServicedComponent() {}
 // Then the object construction string is passed to Construct method.
 protected override void Construct(string constructString)
 {
 // Use DPAPI to decrypt the configuration data.
 }
}

Avoid Unconstrained Delegation
Serviced component clients are authenticated with either NTLM or Kerberos
authentication, depending on the environment. Kerberos in Windows 2000 supports
delegation that is unconstrained; this means that the number of network hops that
can be made with the client’s credentials has no limit.

If ASP.NET is the client then you can set the comImpersonation attribute on the
<processModel> element in Machine.config to configure the impersonation level:

comImpersonationLevel="[Default|Anonymous|Identify|Impersonate|Delegate]"

The impersonation level defined for an Enterprise Services server application
determines the impersonation capabilities of any remote server that the serviced
components communicate with. In this case, the serviced components are the clients.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

 Chapter 11: Building Secure Serviced Components 307

You can specify the impersonation level for a serviced component, which applies
when the service component is a client, using the following attribute:

[assembly: ApplicationAccessControl(
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

Note Using this attribute is equivalent to setting the Impersonation Level value on the Security
page of the application’s Properties dialog within Component Services.

The following table describes the effect of each of these impersonation levels:

Table 11.1 Impersonation Levels

Impersonation Level Description
Anonymous The server cannot identify the client.

Identify This allows the server to identify the client and perform access checks
using the client’s access token

Impersonate This allows the server to gain access to local resources using the client’s
credentials

Delegate This allows the server to access remote resources using the client’s
credentials (this requires Kerberos and specific account configuration)

For more information, see the “Impersonation” section in Chapter 17, “Securing Your
Application Server” and “How to Enable Kerberos Delegation in Windows 2000” in
the References section of MSDN article, “Building Secure ASP.NET Applications,” at
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

Sensitive Data
If your application transmits sensitive data to and from a serviced component across
a network to address the network eavesdropping threat, the data should be
encrypted to ensure it remains private and unaltered. You can use transport level
protection with IPSec or you can use application level protection by configuring your
Enterprise Services application to use the RPC packet privacy authentication level.
This encrypts each packet of data sent to and from the serviced component to provide
privacy and integrity.

You can configure packet privacy authentication using the Component Services tool
or by adding the following attribute to your serviced component assembly:

[assembly: ApplicationAccessControl(
 Authentication = AuthenticationOption.Privacy)]

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp

308 Part III: Building Secure Web Applications

For more information about using IPSec to encrypt all of the data transmitted
between two computers, see “How To: Use IPSec to Provide Secure Communication
Between Two Servers” in the “How To” section of “Microsoft patterns & practices
Volume I, Building Secure ASP.NET Applications: Authentication, Authorization, and
Secure Communication” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/SecNetHT00.asp.

Auditing and Logging
Auditing and logging should be performed across the tiers of your application to
avoid potential repudiation threats where users deny performing certain transactions
or key operations.

Audit User Transactions
If your Web application or Web service is configured for impersonation, the identity
of the original caller automatically flows to an Enterprise Services application and is
available using SecurityCallContext.OriginalCaller. This is useful for auditing in the
middle tier. The following code shows how to access this information:

[ComponentAccessControl]
public class YourServicedComponent : ServicedComponent
{
 public void ShowCallers()
 {
 SecurityCallers callers = SecurityCallContext.CurrentCall.Callers;
 foreach(SecurityIdentity id in callers)
 {
 LogEvent(id.AccountName);
 }
 }
 private void LogEvent(string message)
 {
 try
 {
 if (!EventLog.SourceExists(appName))
 {
 EventLog.CreateEventSource(appName, eventLog);
 }
 EventLog.WriteEntry(appName, message, EventLogEntryType.Information);
 }
 catch (SecurityException secex)
 {
 throw new SecurityException(
 "Event source does not exist and cannot be created.", secex);
 }
 }
}

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT00.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT00.asp

 Chapter 11: Building Secure Serviced Components 309

To successfully write to the event log, an event source must exist that associates the
Enterprise Services application with a specific event log. The above code creates the
event source at run time, which means that the serviced component process account
must have the relevant permissions in the registry.

� To enable the serviced component process identity to create event sources

● Use regedit32.exe to update the permissions on the following registry key to grant
access to the serviced component process account:

HKLM\SYSTEM\CurrentControlSet\Services\Eventlog

The account(s) must have the following minimum permissions:
● Query key value
● Set key value
● Create subkey
● Enumerate subkeys
● Notify
● Read

An alternate strategy is to use an Installer class and create the event source for the
application at installation time, when administrator privileges are available. For more
information about this approach, see “Auditing and Logging” in Chapter 10
“Building Secure ASP.NET Web Pages and Controls.”

Building a Secure Serviced Component
Having covered the threats and countermeasures applicable to serviced components
and Enterprise Services applications, the following code fragments illustrate the key
characteristics of a secure serviced component for a simple Customer class
implementation. Method implementation details have been omitted for the sake
of clarity.

310 Part III: Building Secure Web Applications

Assembly Implementation
The following code fragment from assemblyinfo.cs shows the assembly level
metadata used to configure the COM+ catalog when the serviced component
assembly is registered with Enterprise Services using regsvcs.exe.

// (1) Assembly has a strong name.
[assembly: AssemblyKeyFile(@"..\..\Customer.snk")]

// Enterprise Services configuration
[assembly: ApplicationName("CustomerService")]
[assembly: Description("Customer Services Application")]
// (2) Server application - runs in dllhost.exe process instance.
[assembly: ApplicationActivation(ActivationOption.Server)]
// (3) Enable component level access checks.
// (4) Specify call level authentication.
// (5) Specify Identify impersonation level for downstream calls.
[assembly: ApplicationAccessControl(
 AccessChecksLevel=AccessChecksLevelOption.ApplicationComponent,
 Authentication=AuthenticationOption.Call,
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

The code shown above exhibits the following security characteristics (identified by
the numbers in the comment lines).
1. The assembly is strong named. This is a mandatory requirement for serviced

components. The added benefit from a security perspective is that the assembly is
digitally signed. This means that any modification by an attacker will be detected
and the assembly will fail to load.

2. The application is configured to run as a server application in a dedicated instance
of dllhost.exe. This allows you to specify the least privileged run-as identity at
deployment time.

3. The application is configured to support component level access checks. This
allows you to authorize callers based on role membership at the class, interface,
and method levels.

4. Call level authentication is specified. This means that each method call from a
client is authenticated.

5. The impersonation level for outgoing calls from this serviced component to other
components on remote servers is set to Identify. This means that the downstream
component can identify the caller but cannot perform impersonation.

Note The impersonation level for a calling ASP.NET Web application or Web service client is
specified on the <processModel> element in Machine.config on the client Web server.

 Chapter 11: Building Secure Serviced Components 311

Serviced Component Class Implementation
The following code fragment highlights the security configuration of a partially
implemented Customer class.

namespace busCustomer
{
 // (1) Explicit interface definition to support method level authorization
 public interface ICustomerAdmin
 {
 void CreditAccountBalance(string customerID, double amount);
 }
 // (2) Enforce component level access checks.
 [ComponentAccessControl]
 public sealed class Customer : ServicedComponent, ICustomerAdmin
 {
 private string appName = "Customer";
 private string eventLog = "Application";
 // ICustomer implementation
 // (3) Access to CreditAccountBalance is limited to members of the
 // Manager and Senior Manager role.
 [SecurityRole("Manager")]
 [SecurityRole("Senior Manager")]
 public void CreditAccountBalance(string customerID, double amount)
 {
 // (4) Structured exception handling to protect implementation.
 try
 {
 // (5) Check that security is enabled.
 if (ContextUtil.IsSecurityEnabled)
 {
 // Only managers can credit accounts with sums of money
 // in excess of $1,000.
 if (amount > 1000) {
 // (6) Programmatic role check to authorize credit operation
 if (ContextUtil.IsCallerInRole("Senior Manager")) {
 // Call data access component to update database.
 . . .
 // (7) Audit the transaction.
 AuditTransaction(customerID, amount);
 }
 else {
 throw new SecurityException("Caller not authorized");
 }
 }
 }
 else {
 throw new SecurityException("Security is not enabled");
 }
 }

(continued)

312 Part III: Building Secure Web Applications

(continued)

 catch(Exception ex)
 {
 // Log exception details.
 throw new Exception("Failed to credit account balance for customer: " +
 customerID, ex);
 }
 }
 private void AuditTransaction(string customerID, double amount)
 {
 // (8) Original caller identity is obtained from call context for
 // logging purposes.
 SecurityIdentity caller = SecurityCallContext.CurrentCall.OriginalCaller;
 try
 {
 if (!EventLog.SourceExists(appName))
 {
 EventLog.CreateEventSource(appName,eventLog);
 }
 StringBuilder logmessage = new StringBuilder();
 logmessage.AppendFormat("{0}User {1} performed the following transaction"
 + "{2} Account balance for customer {3} "
 + "credited by {4}",
 Environment.NewLine, caller.AccountName,
 Environment.NewLine, customerID, amount);
 EventLog.WriteEntry(appName, logmessage.ToString(),
 EventLogEntryType.Information);
 }
 catch(SecurityException secex)
 {
 throw new SecurityException(
 "Event source does not exist and cannot be created", secex);
 }
 }
 }
}

The code shown above exhibits the following security characteristics (identified by
the numbers in the comment lines):
1. An interface is defined and implemented explicitly to support interface and

method level authorization with COM+ roles.
2. Component level access checks are enabled for the class by using the

[ComponentAccessControl] attribute at the class level.
3. The [SecurityRole] attribute is used on the CreditAccountBalance method to

restrict access to members of the Manager or Senior Managers role.
4. Structured exception handling is used to protect implementation. Exceptions are

caught, logged, and an appropriate exception is propagated to the caller.

 Chapter 11: Building Secure Serviced Components 313

5. The code checks whether or not security is enabled prior to the explicit role check.
This is a risk mitigation strategy to ensure that transactions cannot be performed if
the application security configuration is inadvertently or deliberately disabled by
an administrator.

Note The IsCallerInRole method always returns “true” if security is disabled.

6. Callers must be members of either the Manager or Senior Manager role because of
the declarative security used on the method. For fine-grained authorization, the
role membership of the caller is explicitly checked in code.

7. The transaction is audited.
8. The audit implementation obtains the identity of the original caller by using the

SecurityCallContext object.

Code Access Security Considerations
Applications that use serviced components are usually fully trusted and, as a result,
code access security has limited use to authorize calling code. The calling code should
consider the following points:
● Unmanaged code permission is required to activate and perform cross context

calls on serviced components.
● If the client of a serviced component is an ASP.NET Web application, then its trust

level must be set to “Full” as shown below.

<trust level="Full" />

If your Web application is configured with a trust level other than “Full,” it does
not have the unmanaged code permission. In this instance, you must create a
sandboxed wrapper assembly to encapsulate the communication with the serviced
component. You must also configure code access security policy to grant the
wrapper assembly the unmanaged code permission. For more information about
the sandboxing technique used to encapsulate high privileged code, see Chapter 9,
“Using Code Access Security with ASP.NET.”

● If a reference to a serviced component is passed to untrusted code, methods
defined on the serviced component cannot be called from the untrusted code.
The exception to this rule is with methods than do not require context switching or
interception services and do not call members of System.EnterpriseServices. Such
methods can be called by untrusted code.

314 Part III: Building Secure Web Applications

Deployment Considerations
Enterprise Services applications are typically installed on the Web server or on a
remote application server. Figure 11.3 shows the two typical deployment scenarios
for Enterprise Services. From a security perspective, the notable difference with the
remote deployment scenario is that data passed to and from the serviced component
is passed over the network, often through an internal firewall used to separate the
internal and perimeter networks.

Enterprise
Services

Web
Application

Perimeter
Firewall

Internal
Firewall

Web Server Database Server

Enterprise
Services

Web
Application

Perimeter
Firewall

Internal
Firewall

Web Server Database ServerApplication Server

Figure 11.3
Enterprise Services typical deployment configurations

Developers and administrators need to be aware of the following deployment-related
issues:
● Firewall restrictions, including port requirements for DCOM and DTC
● Run-as account configuration
● Storing secrets in object constructor strings

For more information about applying secure configuration at deployment time,
see Chapter 17, “Securing Your Application Server.”

Firewall Restrictions
If the client and Enterprise Services application are separated by an internal firewall,
the relevant ports that support DCOM and possibly the DTC (if your application uses
distributed transactions) must be open.

 Chapter 11: Building Secure Serviced Components 315

DCOM uses RPC dynamic port allocation that by default randomly selects port
numbers above 1024. In addition, port 135 is used by the RPC endpoint mapper. You
can restrict the ports required to support DCOM on the internal firewall in two ways:
● Define port ranges.

This allows you to control the ports dynamically allocated by RPC.
● Use static endpoint mapping.

Windows 2000 SP3 (or Quick Fix Engineering [QFE] 18.1 and greater) or Windows
Server 2003 allow you to configure Enterprise Services applications to use a static
endpoint. Static endpoint mapping means that you only need to open two ports in
the firewall. Specifically, you must open port 135 for RPC and a nominated port
for your Enterprise Services application.

For more information about defining port ranges and static endpoint mapping, see
“Firewall Considerations” in Chapter 17, “Securing Your Application Server.”

Using Web Services
If opening ports on the internal firewall is not an option, then you can introduce a
Web services façade layer in front of the serviced components on the application
server. This means that you only need to open port 80 for HTTP traffic and
specifically for Simple Object Access Protocol (SOAP) messages to flow in both
directions as shown in Figure 11.4.

Web
Services
Facade

Web
Application

Perimeter
Firewall

Internal
Firewall

Web Server Application Server

Enterprise
Services

SOAP
Port
80

Figure 11.4
Using a Web services façade layer to communicate with Enterprise Services using HTTP

This approach does not allow you to flow transaction context from client to server,
although in many cases where your deployment architecture includes a middle-tier
application server, it is appropriate to initiate transactions in the remote serviced
component on the application server.

For information about physical deployment requirements for service agents and
service interfaces such as the Web services façade layer, see “Physical Deployment
and Operational Requirements” in the Reference section of the MSDN article,
“Application Architecture for .NET: Designing Applications and Services.”

316 Part III: Building Secure Web Applications

DTC Requirements
If your application uses COM+ distributed transactions and these are used across
remote servers separated by an internal firewall, then the firewall must open the
necessary ports to support DTC traffic.

If your deployment architecture includes a remote application tier, transactions are
usually initiated within the Enterprise Services application and propagated to the
database server. In the absence of an application server, the Enterprise Services
application on the Web server initiates the transaction and propagates it to the SQL
Server resource manager.

For information about configuring firewalls to support DTC traffic, see Chapter 18,
“Securing Your Database Server.”

Summary
Enterprise Services (COM+) security relies on Windows security to authenticate and
authorize callers. Authorization is configured and controlled with COM+ roles that
contain Windows group or user accounts. The majority of threats that relate to
Enterprise Services applications and serviced components can be addressed with
solid coding techniques, and appropriate catalog configuration.

The developer should use declarative attributes to set the serviced component
security configuration. These attributes determine how the application is configured
when it is initially registered with Enterprise Services (typically using Regsvcs.exe).

Not every security configuration setting can be set with attributes. An administrator
must specify the run-as identity for a server application. The administrator must also
populate roles with Windows group or user accounts at deployment time.

When you are developing serviced components or are evaluating the security of your
Enterprise Security solution, use “Checklist: Securing Enterprise Services” in the
“Checklists” section of this guide.

 Chapter 11: Building Secure Serviced Components 317

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Securing Enterprise Services” in the

“Checklists” section of this guide.
● For information on authentication, authorization and secure communication for

Enterprise Services see “Enterprise Services Security” in “Microsoft patterns &
practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/SecNetch09.asp.

● For frequently asked questions regarding Enterprise Services, see “Enterprise
Services FAQ” at http://www.gotdotnet.com/team/xmlentsvcs/esfaq.aspx.

● For background on Enterprise Services, see MSDN article, “Understanding
Enterprise Services (COM+) in .NET,” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dndotnet/html/entserv.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch09.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch09.asp
http://www.gotdotnet.com/team/xmlentsvcs/esfaq.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/entserv.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/entserv.asp

12
Building Secure Web Services

In This Chapter
● Web service threats and countermeasures
● Strategies for Web service input validation
● Confidentiality and integrity for Web service messages
● Web Services Enhancements 1.0 for Microsoft .NET (WSE)

Overview
Web services are used by an increasing number of companies as they expose products
and services to customers and business partners through the Internet and corporate
extranets. The security requirements for these service providers are of paramount
importance. In some cases, primarily intranet or extranet scenarios where you have a
degree of control over both endpoints, the platform-based security services provided
by the operating system and Internet Information Services (IIS) can be used to
provide point-to-point security solutions. However, the message based architecture
of Web services and the heterogeneous environments that span trust boundaries in
which they are increasingly being used pose new challenges. These scenarios require
security to be addressed at the message level to support cross-platform
interoperability and routing through multiple intermediary nodes.

Web Services Security (WS-Security) is the emerging security standard designed to
address these issues. Microsoft has released Web Services Enhancements 1.0 for
Microsoft .NET (WSE), which supports WS-Security and a related family of emerging
standards. WSE allows you to implement message level security solutions including
authentication, encryption and digital signatures.

320 Part III: Building Secure Web Applications

Note The specifications and standard supported by WSE are evolving and therefore the current
WSE does not guarantee it will be compatible with future versions of the product. At the time of this
writing, interoperability testing is under way with non-Microsoft toolkits provided by vendors including
IBM and VeriSign.

How to Use This Chapter
This chapter discusses various practices and techniques to design and build secure
Web services.

To get the most from this chapter:
● Read Chapter 19, “Securing Your ASP.NET Application and Web Services.” It is

geared toward an administrator so that an administrator can configure an
ASP.NET Web Application or Web service, bringing a semi-secure application to
a secure state.

● Read Chapter 17, “Securing Your Application Server.” Read Chapter 17 to
familiarize yourself with remote application server considerations.

● Use the “Checklist: Securing Web Services” in the “Checklists” section of this
guide. The checklist is a summary of the security measures required to build and
configure secure Web services.

● Use this chapter to understand message level threats and how to counter those
threats.

● Use the application categories as a means to tackle common problems.
The sections give you relevant information using these categories.

Threats and Countermeasures
To build secure Web services, know the associated threats. The top threats directed at
Web services are:
● Unauthorized access
● Parameter manipulation
● Network eavesdropping
● Disclosure of configuration data
● Message replay

 Chapter 12: Building Secure Web Services 321

Figure 12.1 shows the top threats and attacks directed at Web services.

Web ServiceConsumer

Firewall

Parameter
Manipulation

Network
Eavesdropping

Disclosure of
Configuration Data

Unauthorized
Access

Message
Replay

Figure 12.1
Main Web services threats

Unauthorized Access
Web services that provide sensitive or restricted information should authenticate and
authorize their callers. Weak authentication and authorization can be exploited to
gain unauthorized access to sensitive information and operations.

Vulnerabilities

Vulnerabilities that can lead to unauthorized access through a Web service include:
● No authentication used
● Passwords passed in plaintext in SOAP headers
● Basic authentication used over an unencrypted communication channel

Countermeasures

You can use the following countermeasures to prevent unauthorized access:
● Use password digests in SOAP headers for authentication.
● Use Kerberos tickets in SOAP headers for authentication.
● Use X.509 certificates in SOAP headers for authentication.
● Use Windows authentication.
● Use role-based authorization to restrict access to Web services. This can be done by

using URL authorization to control access to the Web service file (.asmx) or at the
Web method level by using principal-permission demands.

322 Part III: Building Secure Web Applications

Parameter Manipulation
Parameter manipulation refers to the unauthorized modification of data sent between
the Web service consumer and the Web service. For example, an attacker can intercept
a Web service message, perhaps as it passes through an intermediate node en route to
its destination; and can then modify it before sending it on to its intended endpoint.

Vulnerabilities

Vulnerabilities that can make parameter manipulation possible include:
● Messages that are not digitally signed to provide tamperproofing
● Messages that are not encrypted to provide privacy and tamperproofing

Countermeasures

You can use the following countermeasures to prevent parameter manipulation:
● Digitally sign the message. The digital signature is used at the recipient end to

verify that the message has not been tampered with while it was in transit.
● Encrypt the message payload to provide privacy and tamperproofing.

Network Eavesdropping
With network eavesdropping, an attacker is able to view Web service messages as
they flow across the network. For example, an attacker can use network monitoring
software to retrieve sensitive data contained in a SOAP message. This might include
sensitive application level data or credential information.

Vulnerabilities

Vulnerabilities that can enable successful network eavesdropping include:
● Credentials passed in plaintext in SOAP headers
● No message level encryption used
● No transport level encryption used

Countermeasures

You can use the following countermeasures to protect sensitive SOAP messages as
they flow across the network:
● Use transport level encryption such as SSL or IPSec. This is applicable only if you

control both endpoints.
● Encrypt the message payload to provide privacy. This approach works in

scenarios where your message travels through intermediary nodes route to the
final destination.

 Chapter 12: Building Secure Web Services 323

Disclosure of Configuration Data
There are two main ways in which a Web service can disclose configuration data.
First, the Web service may support the dynamic generation of Web Service
Description Language (WSDL) or it may provide WSDL information in
downloadable files that are available on the Web server. This may not be desirable
depending on your scenario.

Note WSDL describes the characteristics of a Web service, for example, its method signatures and
supported protocols.

Second, with inadequate exception handling the Web service may disclose sensitive
internal implementation details useful to an attacker.

Vulnerabilities

Vulnerabilities that can lead to the disclosure of configuration data include:
● Unrestricted WSDL files available for download from the Web server
● A restricted Web service supports the dynamic generation of WSDL and allows

unauthorized consumers to obtain Web service characteristics
● Weak exception handling

Countermeasures

You can use the following countermeasures to prevent the unwanted disclosure of
configuration data:
● Authorize access to WSDL files using NTFS permissions.
● Remove WSDL files from Web server.
● Disable the documentation protocols to prevent the dynamic generation of WSDL.
● Capture exceptions and throw a SoapException or SoapHeaderException — that

returns only minimal and harmless information — back to the client.

Message Replay
Web service messages can potentially travel through multiple intermediate servers.
With a message replay attack, an attacker captures and copies a message and replays
it to the Web service impersonating the client. The message may or may not be
modified.

324 Part III: Building Secure Web Applications

Vulnerabilities

Vulnerabilities that can enable message replay include:
● Messages are not encrypted
● Messages are not digitally signed to prevent tampering
● Duplicate messages are not detected because no unique message ID is used

Attacks

The most common types of message replay attacks include:
● Basic replay attack. The attacker captures and copies a message, and then replays

the same message and impersonates the client. This replay attack does not require
the malicious user to know the contents of the message.

● Man in the middle attack. The attacker captures the message and then changes
some of its contents, for example, a shipping address, and then replays it to the
Web service.

Countermeasures

You can use the following countermeasures to address the threat of message replay:
● Use an encrypted communication channel, for example, SSL.
● Encrypt the message payload to provide message privacy and tamperproofing.

Although this does not prevent basic replay attacks, it does prevent man in the
middle attacks where the message contents are modified before being replayed.

● Use a unique message ID or nonce with each request to detect duplicates, and
digitally sign the message to provide tamperproofing.

Note A nonce is a cryptographically unique value used for the request.

When the server responds to the client it sends a unique ID and signs the message,
including the ID. When the client makes another request, the client includes the ID
with the message. The server ensures that the ID sent to the client in the previous
message is included in the new request from the client. If it is different, the server
rejects the request and assumes it is subject to a replay attack.
The attacker cannot spoof the message ID, because the message is signed. Note
that this only protects the server from client-initiated replay attacks using the
message request, and offers the client no protection against replayed responses.

 Chapter 12: Building Secure Web Services 325

Design Considerations
Before you start to develop Web services, there are a number of issues to consider at
design time. The key security considerations are:
● Authentication requirements
● Privacy and integrity requirements
● Resource access identities
● Code access security

Authentication Requirements
If your Web service provides sensitive or restrictive information, it needs to
authenticate callers to support authorization. In Windows environments, you can use
Windows authentication. However, where you are not in control of both endpoints,
WSE provides authentication solutions that conform to the emerging WS-Security
standard. WSE provides a standard framework for using SOAP headers to pass
authentication details in the form of user names and passwords, Kerberos tickets,
X.509 certificates, or custom tokens. For more information, see the “Authentication”
section later in this chapter.

Privacy and Integrity Requirements
If you pass sensitive application data in Web service requests or response messages,
consider how you can ensure that they remain private and unaltered while in transit.
WSE provides integrity checking through digital signatures, and it also supports
XML encryption to encrypt sensitive elements of the entire message payload. The
advantage of this approach is that it is based on the emerging WS-Security standard
and that it provides a solution for messages that pass through multiple intermediate
nodes.

The alternative is to use transport level encryption through SSL or IPSec channels.
These solutions are only appropriate where you are in control of both endpoints.

Resource Access Identities
By default, ASP.NET Web services do not impersonate, and the least privileged
ASPNET process account is used for local and remote resource access. You can use
this ASPNET process account to access remote network resources such as SQL
Servers that require Windows authentication, by creating a mirrored local account on
the database server.

Note On Windows Server 2003, the Network Service account is used by default to run Web
services.

326 Part III: Building Secure Web Applications

For more information about using the ASP.NET process account for remote database
access, see the “Data Access” section in Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

If you use impersonation, the issues and considerations that apply to Web
applications also apply to Web services. For more information, see the
“Impersonation” sections in Chapter 10, “Building Secure ASP.NET Web Pages and
Controls” and Chapter 19, “Securing Your ASP.NET Application and Web Services.”

Code Access Security
Consider the trust level defined by security policy in your target deployment
environment. Your Web service’s trust level, defined by its <trust> element
configuration, affects the types of resources that it can access and the other privileged
operations it can perform.

Also, if you call a Web service from an ASP.NET Web application, the Web
application’s trust level determines the range of Web services it can call. For example,
a Web application configured for Medium trust, by default, can only call Web services
on the local computer.

For more information about calling Web services from Medium and other partial
trust Web applications, see Chapter 9, “Using Code Access Security with ASP.NET.”

Input Validation
Like any application that accepts input data, Web services must validate the data that
is passed to them to enforce business rules and to prevent potential security issues.
Web methods marked with the WebMethod attribute are the Web service entry
points. Web methods can accept strongly typed input parameters or loosely typed
parameters that are often passed as string data. This is usually determined by the
range and type of consumers for which the Web service is designed.

Strongly Typed Parameters
If you use strongly typed parameters that are described by the .NET Framework type
system, for example integers, doubles, dates, or other custom object types such as
Address or Employee, the auto-generated XML Schema Definition (XSD) schema
contains a typed description of the data. Consumers can use this typed description to
construct appropriately formatted XML within the SOAP requests that are sent to
Web methods. ASP.NET then uses the System.Xml.Serialization.XmlSerializer class
to deserialize the incoming SOAP message into common language runtime (CLR)
objects. The following example shows a Web method that accepts strongly typed
input consisting of built-in data types.

[WebMethod]
public void CreateEmployee(string name, int age, decimal salary) {...}

 Chapter 12: Building Secure Web Services 327

In the preceding example, the .NET Framework type system performs type checks
automatically. To validate the range of characters that are supplied through the name
field, you can use a regular expression. For example, the following code shows how
to use the System.Text.RegularExpressions.Regex class to constrain the possible
range of input characters and also to validate the parameter length.

if (!Regex.IsMatch(name, @"[a-zA-Z'.`-´\s]{1,40}"))
{
 // Invalid name
}

For more information about regular expressions, see the “Input Validation “ section
in Chapter 10, “Building Secure ASP.NET Pages and Controls.” The following
example shows a Web method that accepts a custom Employee data type.

using Employees; // Custom namespace
[WebMethod]

public void CreateEmployee(Employee emp) { ... }

The consumer needs to know the XSD schema to be able to call your Web service. If
the consumer is a .NET Framework client application, the consumer can simply pass
an Employee object as follows:

using Employees;
Employee emp = new Employee();
// Populate Employee fields
// Send Employee to the Web service
wsProxy.CreateEmployee(emp);

Consumer applications that are not based on the .NET Framework must construct the
XML input manually, based on the schema definition provided by the organization
responsible for the Web service.

The benefit of this strong typing approach is that the .NET Framework parses the
input data for you and validates it based on the type definition. However, inside the
Web method you might still need to constrain the input data. For example, while the
type system confirms a valid Employee object, you might still need to perform
further validation on the Employee fields. You might need to validate that an
employee’s date of birth is greater than 18 years ago. You might need to use regular
expressions to constrain the range of characters that can be used in name fields, and
so on.

For more information about constraining input, see the “Input Validation” section in
Chapter 10, “Building Secure ASP.NET Pages and Controls.”

328 Part III: Building Secure Web Applications

Loosely Typed Parameters
If you use string parameters or byte arrays to pass arbitrary data, you lose many of
the benefits of the .NET Framework type system. You must parse the input data
manually to validate it because the auto-generated WSDL simply describes the
parameters as string input of type xsd:string. You need to programmatically check
for type, length, format, and range as shown in the following example.

[WebMethod]
public void SomeEmployeeFunction(string dateofBirth, string SSN)
{
 . . .
 // EXAMPLE 1: Type check the date
 try
 {
 DateTime dt = DateTime.Parse(dateofBirth).Date;
 }
 // If the type conversion fails, a FormatException is thrown
 catch(FormatException ex)
 {
 // Invalid date
 }

 // EXAMPLE 2: Check social security number for length, format, and range
 if(!Regex.IsMatch(empSSN,@"\d{3}-\d{2}-\d{4}",RegexOptions.None))
 {
 // Invalid social security number
 }
}

XML Data
In a classic business-to-business scenario, it is common for consumers to pass XML
data that represents business documents such as purchase orders or sales invoices.
The validity of the input data must be programmatically validated by the Web
method before it is processed or passed to downstream components.

The client and the server have to establish and agree on a schema that describes
the XML. The following code fragment shows how a Web method can use the
System.Xml.XmlValidatingReader class to validate the input data, which, in this
example, describes a simple book order. Notice that the XML data is passed through
a simple string parameter.

 Chapter 12: Building Secure Web Services 329

using System.Xml;
using System.Xml.Schema;

[WebMethod]
public void OrderBooks(string xmlBookData)
{
 try
 {
 // Create and load a validating reader
 XmlValidatingReader reader = new XmlValidatingReader(xmlBookData,
 XmlNodeType.Element,
 null);
 // Attach the XSD schema to the reader
 reader.Schemas.Add("urn:bookstore-schema",
 @"http://localhost/WSBooks/bookschema.xsd");
 // Set the validation type for XSD schema.
 // XDR schemas and DTDs are also supported
 reader.ValidationType = ValidationType.Schema;
 // Create and register an event handler to handle validation errors
 reader.ValidationEventHandler += new ValidationEventHandler(
 ValidationErrors);
 // Process the input data
 while (reader.Read())
 {
 . . .
 }
 // Validation completed successfully
 }
 catch
 {
 . . .
 }
}

// Validation error event handler
private static void ValidationErrors(object sender, ValidationEventArgs args)
{
 // Error details available from args.Message
 . . .
}

The following fragment shows how the consumer calls the preceding Web method:

string xmlBookData = "<book xmlns='urn:bookstore-schema'
 xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance'>" +
 "<title>Building Secure ASP.NET Applications</title>" +
 "<isbn>0735618909</isbn>" +
 "<orderQuantity>1</orderQuantity>" +
 "</book>";
BookStore.BookService bookService = new BookStore.BookService();
bookService.OrderBooks(xmlBookData));

330 Part III: Building Secure Web Applications

The preceding example uses the following simple XSD schema to validate the
input data.

<?xml version="1.0" encoding="utf-8" ?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="urn:bookstore-schema"
 elementFormDefault="qualified"
 targetNamespace="urn:bookstore-schema">
 <xsd:element name="book" type="bookData"/>
 <xsd:complexType name="bookData">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string" />
 <xsd:element name="isbn" type="xsd:integer" />
 <xsd:element name="orderQuantity" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following table shows additional complex element definitions that can be used in
an XSD schema to further constrain individual XML elements.

Table 12.1 XSD Schema Element Examples

Description Example
Using regular expressions to constrain XML
elements

<xsd:element name="zip">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:pattern value="\d{5}(-\d{4})?" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

Constraining a decimal value to two digits
after the decimal point

<xsd:element name="Salary">
 <xsd:simpleType>
 <xsd:restriction base="xsd:decimal">
 <xsd:fractionDigits value="2" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

Constraining the length of an input string

<xsd:element name="FirstName">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:maxLength value="50" />
 <xsd:minLength value="2" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

 Chapter 12: Building Secure Web Services 331

Table 12.1 XSD Schema Element Examples (continued)
Description Example
Constraining input to values defined by an
enumerated type

<xsd:element name="Gender">
 <xsd:simpleType>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="Male" />
 <xsd:enumeration value="Female" />
 </xsd:restriction>
 </xsd:simpleType>
</xsd:element>

For more information, see Microsoft Knowledge Base articles:
● 307379, “How To: Validate an XML Document by Using DTD, XDR, or XSD

in Visual C# .NET.”
● 318504, “How To: Validate XML Fragments Against an XML Schema in

Visual C#.NET.”

SQL Injection
SQL injection allows an attacker to execute arbitrary commands in the database using
the Web service’s database login. SQL injection is a potential issue for Web services if
the services use input data to construct SQL queries. If your Web methods access the
database, they should do so using SQL parameters and ideally, parameterized stored
procedures. SQL parameters validate the input for type and length, and they ensure
that the input is treated as literal text and not executable code. For more information
about this and other SQL injection countermeasures, see the “Input Validation”
section in Chapter 14, “Building Secure Data Access.”

Cross-Site Scripting
With cross-site scripting (XSS), an attacker exploits your application to execute
malicious script at the client. If you call a Web service from a Web application and
send the output from the Web service back to the client in an HTML data stream,
XSS is a potential issue. In this scenario, you should encode the output received
from the Web service in the Web application before returning it to the client. This is
particularly important if you do not own the Web service and it falls outside the Web
application’s trust boundary. For more information about XSS countermeasures, see
the “Input Validation” section in Chapter 10, “Building Secure ASP.NET Pages and
Controls.”

332 Part III: Building Secure Web Applications

Authentication
If your Web service outputs sensitive, restricted data or if it provides restricted
services, it needs to authenticate callers. A number of authentication schemes are
available and these can be broadly divided into three categories:
● Platform level authentication
● Message level authentication
● Application level authentication

Platform Level Authentication
If you are in control of both endpoints and both endpoints are in the same or trusting
domains, you can use Windows authentication to authenticate callers.

Basic Authentication
You can use IIS to configure your Web service’s virtual directory for Basic
authentication. With this approach, the consumer must configure the proxy and
provide credentials in the form of a user name and password. The proxy then
transmits them with each Web service request through that proxy. The credentials are
transmitted in plaintext and therefore you should only use Basic authentication with
SSL.

The following code fragment shows how a Web application can extract Basic
authentication credentials supplied by an end user and then use those to invoke a
downstream Web service configured for Basic authentication in IIS.

// Retrieve client's credentials (available with Basic authentication)
string pwd = Request.ServerVariables["AUTH_PASSWORD"];
string uid = Request.ServerVariables["AUTH_USER"];
// Set the credentials
CredentialCache cache = new CredentialCache();
cache.Add(new Uri(proxy.Url), // Web service URL
 "Basic",
 new NetworkCredential(uid, pwd, domain));
proxy.Credentials = cache;

Integrated Windows Authentication
You can use IIS to configure your Web service’s virtual directory for Integrated
Windows authentication, which results either in Kerberos or NTLM authentication
depending on the client and server environment. The advantage of this approach in
comparison to Basic authentication is that credentials are not sent over the network,
which eliminates the network eavesdropping threat.

 Chapter 12: Building Secure Web Services 333

To call a Web service configured for Integrated Windows authentication, the
consumer must explicitly configure the Credentials property on the proxy.

To flow the security context of the client’s Windows security context (either from an
impersonating thread token or process token) to a Web service you can set the
Credentials property of the Web service proxy to
CredentialCache.DefaultCredentials as follows.

proxy.Credentials = System.Net.CredentialCache.DefaultCredentials;

You can also use an explicit set of credentials as follows:

CredentialCache cache = new CredentialCache();
cache.Add(new Uri(proxy.Url), // Web service URL
 "Negotiate", // Kerberos or NTLM
 new NetworkCredential(userName, password, domain));
proxy.Credentials = cache;

If you need to specify explicit credentials, do not hard code them or store them in
plaintext. Encrypt account credentials by using DPAPI and store the encrypted data
either in an <appSettings> element in Web.config or beneath a restricted registry key.

For more information about platform level authentication, see the “Web Services
Security” section in “Microsoft patterns & practices Volume I, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication” at
http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp?frame=true.

Message Level Authentication
You can use WSE to implement a message level authentication solution that
conforms to the emerging WS-Security standard. This approach allows you to
pass authentication tokens in a standard way by using SOAP headers.

Note When two parties agree to use WS-Security, the precise format of the authentication token
must also be agreed upon.

The following types of authentication token can be used and are supported by WSE:
● User name and password
● Kerberos ticket
● X.509 certificate
● Custom token

http://msdn.microsoft.com/library/en-us/dnnetsec/html/secnetlpMSDN.asp?frame=true

334 Part III: Building Secure Web Applications

User Name and Password
You can send user names and password credentials in the SOAP header. However,
because these are sent in plaintext, this approach should only be used in conjunction
with SSL due to the network eavesdropping threat. The credentials are sent as part of
the <Security> element, in the SOAP header as follows.

<wsse:Security
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
 <wsse:UsernameToken>
 <wsse:Username>Bob</wsse:Username>
 <wsse:Password>YourStr0ngPassWord</wsse:Password>
 </wsse:UsernameToken>
</wsse:Security>

User Name and Password Digest

Instead of sending a plaintext password, you can send a password digest. The digest
is a Base64-encoded SHA1 hash value of the UTF8-encoded password. However,
unless this approach is used over a secure channel, the data can still be intercepted by
attackers armed with network monitoring software and reused to gain authenticated
access to your Web service. To help address this replay attack threat, a nonce and a
creation timestamp can be combined with the digest.

User Name and Password Digest with Nonce and Timestamp

With this approach the digest is a SHA1 hash of a nonce value, a creation timestamp,
and the password as follows.

digest = SHA1(nonce + creation timestamp + password)

With this approach, the Web service must maintain a table of nonce values and reject
any message that contains a duplicate nonce value. While the approach helps protect
the password and offers a basis for preventing replay attacks, it suffers from clock
synchronization issues between the consumer and provider when calculating an
expiration time, and it does not prevent an attacker capturing a message, modifying
the nonce value, and then replaying the message to the Web service. To address this
threat, the message must be digitally signed. With the WSE, you can sign a message
using a custom token or an X.509 certificate. This provides tamperproofing and
authentication, based on a public, private key pair.

 Chapter 12: Building Secure Web Services 335

Kerberos Tickets
You can send a security token that contains a Kerberos ticket as follows.

<wsse:Security
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
 <wsse:BinarySecurityToken
 ValueType="wsse:Kerberosv5ST"
 EncodingType="wsse:Base64Binary">
 U87GGH91TT ...
 </wsse:BinarySecurityToken>
</wsse:Security>

X.509 Certificates
You can also provide authentication by sending an X.509 certificate as an
authentication token.

<wsse:Security
 xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
 <wsse:BinarySecurityToken
 ValueType="wsse:X509v3"
 EncodingType="wsse:Base64Binary">
 Hg6GHjis1 ...
 </wsse:BinarySecurityToken>
</wsse:Security>

For more information about the above approaches, see the samples that ship
with WSE.

Application Level Authentication
You can design and build your own custom authentication by using custom SOAP
headers for your application. Before doing so, review the features provided by the
platform and WSE to see if any of these features can be used. If you must use a
custom authentication mechanism, and you need to use cryptography, then use
standard encryption algorithms exposed by the System.Security.Cryptography
namespace.

Authorization
After authentication, you can restrict callers to a subset of the functionality exposed
by your Web service, based on the caller’s identity or role membership. You can
restrict access to service endpoints (at the .asmx file level), individual Web methods,
or specific functionality inside Web methods.

336 Part III: Building Secure Web Applications

Web Service Endpoint Authorization
If your Web service is configured for Integrated Windows authentication you can
configure NTFS permissions on your Web service (.asmx) files to control access, based
on the security context of the original caller. This authorization is performed by the
ASP.NET FileAuthorizationModule and impersonation is not required.

Regardless of the authentication type, you can use the ASP.NET
UrlAuthorizationModule to control access to Web service (.asmx) files. You configure
this by adding <allow> and <deny> elements to the <authorization> element in
Machine.config or Web.config.

For more information about both forms of authorization, see the “Authorization”
section in Chapter 19, “Securing Your ASP.NET Application and Web Services.”

Web Method Authorization
You can use declarative principal permission demands to control access to individual
Web methods based on the identity or role membership of the caller. The caller’s
identity and role membership is maintained by the principal object associated with
the current Web request (accessed through HttpContext.User.)

[PrincipalPermission(SecurityAction.Demand, Role=@"Manager")]
[WebMethod]
public string QueryEmployeeDetails(string empID)
{
}

For more information about principal permission demands, see the “Authorization”
section in Chapter 10, “Building Secure ASP.NET Pages and Controls.”

Programmatic Authorization
You can use imperative permission checks or explicit role checks by calling
IPrincipal.IsInRole inside your Web methods for fine-grained authorization logic as
follows.

// This assumes non-Windows authentication. With Windows authentication
// cast the User object to a WindowsPrincipal and use Windows groups as
// role names
GenericPrincipal user = User as GenericPrincipal;
if (null != user)
{
 if (user.IsInRole(@"Manager"))
 {
 // User is authorized to perform manager functionality
 }
}

 Chapter 12: Building Secure Web Services 337

Sensitive Data
The threats of network eavesdropping or information disclosure at intermediate
application nodes must be addressed if your Web service request or response
messages convey sensitive application data, for example, credit card numbers,
employee details, and so on.

In a closed environment where you are in control of both endpoints, you can use
SSL or IPSec to provide transport layer encryption. In other environments and where
messages are routed through intermediate application modes, a message level
solution is required. The WS-Security standard defines a confidentiality service based
on the World Wide Web Consortium (W3C) XML Encryption standard that allows
you to encrypt some or all of a SOAP message before it is transmitted.

XML Encryption
You can encrypt all or part of a SOAP message in three different ways:
● Asymmetric encryption using X.509 certificates
● Symmetric encryption using shared keys
● Symmetric encryption using custom binary tokens

Asymmetric Encryption Using X.509 Certificates
With this approach, the consumer uses the public key portion of an X.509 certificate
to encrypt the SOAP message. This can only be decrypted by the service that owns
the corresponding private key.

The Web service must be able to access the associated private key. By default,
WSE searches for X.509 certificates in the local machine store. You can use the <x509>
configuration element in Web.config to set the store location to the current user store
as follows.

<configuration>
 <microsoft.web.services>
 <security>
 <x509 storeLocation="CurrentUser" />
 </security>
 </microsoft.web.services>
</configuration>

If you use the user store, the user profile of the Web service’s process account must be
loaded. If you run your Web service using the default ASPNET least privileged local
account, version 1.1 of the .NET Framework loads the user profile for this account,
which makes the user key store accessible.

338 Part III: Building Secure Web Applications

For Web services built using version 1.0 of the .NET Framework, the ASPNET user
profile is not loaded. In this scenario, you have two options.
● Run your Web service using a custom least privileged account with which you

have previously interactively logged on to the Web server to create a user profile.
● Store the key in the local machine store and grant access to your Web service

process account. On Windows 2000, this is the ASPNET account by default. On
Windows Server 2003, it is the Network Service account by default.
To grant access, use Windows Explorer to configure an ACL on the following
folder that grants full control to the Web service process account.

\Documents and Settings\All Users\Application Data\
 Microsoft\Crypto\RSA\MachineKeys

For more information, see the “Managing X.509 Certificates,” “Encrypting a SOAP
Message Using an X.509 Certificate,” and “Decrypting a SOAP Message Using an
X.509 Certificate” sections in the WSE documentation.

Symmetric Encryption Using Shared Keys
With symmetric encryption, the Web service and its consumer share a secret key to
encrypt and decrypt the SOAP message. This encryption is faster than asymmetric
encryption although the consumer and the service provider must use some out-of-
band mechanism to share the key.

For more information, see the “Encrypting a SOAP Message Using a Shared Key”
and “Decrypting a SOAP Message Using a Shared Key” sections in the WSE
documentation.

Symmetric Encryption Using Custom Binary Tokens
You can also use WSE to define a custom binary token to encapsulate the custom
security credentials used to encrypt and decrypt messages. Your code needs two
classes. The sender class must be derived from the BinarySecurityToken class to
encapsulate the custom security credentials and encrypt the message. The recipient
class must be derived from DecryptionkeyProvider class to retrieve the key and
decrypt the message.

For more information, see the “Encrypting a SOAP Message Using a Custom Binary
Security Token” and “Decrypting a SOAP Message Using a Custom Binary Security
Token” sections in the WSE documentation.

Encrypting Parts of a Message
By default, WSE encrypts the entire SOAP body and none of the SOAP header
information. However, you can also use WSE to programmatically encrypt and
decrypt portions of a message.

 Chapter 12: Building Secure Web Services 339

For more information, see the “Specifying the Parts of a SOAP Message that are
Signed or Encrypted” section in the WSE documentation.

Parameter Manipulation
Parameter manipulation in relation to Web services refers to the threat of an attacker
altering the message payload in some way while the message request or response is
in transit between the consumer and service.

To address this threat, you can digitally sign a SOAP message to allow the message
recipient to cryptographically verify that the message has not been altered since it
was signed. For more information, see the “Digitally Signing a SOAP Message”
section in the WSE documentation.

Exception Management
Exception details returned to the consumer should only contain minimal levels of
information and not expose any internal implementation details. For example,
consider the following system exception that has been allowed to propagate to the
consumer.

System.Exception: User not in managers role
 at EmployeeService.employee.GiveBonus(Int32 empID, Int32 percentage) in
c:\inetpub\wwwroot\employeesystem\employee.asmx.cs:line 207

The exception details shown above reveal directory structure and other details to the
service consumer. This information can be used by a malicious user to footprint the
virtual directory path and can assist with further attacks.

Web Services can throw three types of exceptions:
● SoapException objects.

These can be generated by the CLR or by your Web method implementation code.
● SoapHeaderException objects

These are generated automatically when the consumer sends a SOAP request that
the service fails to process correctly.

● Exception objects
A Web service can throw a custom exception type that derives from
System.Exception. The precise exception type is specific to the error condition. For
example, it might be one of the standard .NET Framework exception types such as
DivideByZeroException, or ArgumentOutOfRangeException and so on.

340 Part III: Building Secure Web Applications

Regardless of the exception type, the exception details are propagated to the client
using the standard SOAP <Fault> element. Clients and Web services built with
ASP.NET do not parse the <Fault> element directly but instead deal consistently with
SoapException objects. This allows the client to set up try blocks that catch
SoapException objects.

Note If you throw a SoapException from a custom HTTP module, it is not automatically serialized
as a SOAP <Fault>. In this case, you have to create the SOAP <Fault> manually.

Using SoapExceptions
The following code shows a simple WebMethod, where the validation of application
logic fails and, as a result, an exception is generated. The error information sent to the
client is minimal. In this sample, the client is provided with a help desk reference that
can be used to call support. At the Web server, a detailed error description for the
help desk reference is logged to aid problem diagnosis.

using System.Xml;
using System.Security.Principal;

[WebMethod]
public void GiveBonus(int empID, int percentage)
{
 // Only managers can give bonuses
 // This example uses Windows authentication
 WindowsPrincipal wp = (HttpContext.Current.User as WindowsPrincipal);
 if(wp.IsInRole(@"Domain\Managers"))
 {
 // User is authorized to give bonus
 . . .
 }
 else
 {
 // Log error details on the server. For example:
 // "DOMAIN\Bob tried to give bonus to Employee Id 345667;
 // Access denied because DOMAIN\Bob is not a manager."
 // Note: User name is available from wp.Identity.Name

 // Return minimal error information to client using a SoapException
 XmlDocument doc = new XmlDocument();
 XmlNode detail = doc.CreateNode(XmlNodeType.Element,
 SoapException.DetailElementName.Name,
 SoapException.DetailElementName.Namespace);
 // This is the detail part of the exception
 detail.InnerText = "User not authorized to perform requested operation";
 throw new SoapException("Message string from your Web service",
 SoapException.ServerFaultCode,
 Context.Request.Url.AbsoluteUri, detail, null);
 }
}

 Chapter 12: Building Secure Web Services 341

The consumer code that handles potential SoapExceptions follows:

try
{
 EmployeeService service = new EmployeeService();
 Service.GiveBonus(empID,percentage);
}
catch (System.Web.Services.Protocols.SoapException se)
{
 // Extract custom message from se.Detail.InnerText
 Console.WriteLine("Server threw a soap exception" + se.Detail.InnerText);
}

Application Level Error Handling in Global.asax
ASP.NET Web applications commonly handle application level exceptions that are
allowed to propagate beyond a method boundary in the Application_Error event
handler in Global.asax. This feature is not available to Web services, because the
Web service’s HttpHandler captures the exception before it reaches other handlers.

If you need application level exception handling, create a custom SOAP
extension to handle it. For more information, see MSDN article, “Altering
the SOAP Message using SOAP Extensions” in the “Building Applications”
section of the .NET Framework SDK at http://www.microsoft.com/downloads
/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&DisplayLang=en.

Auditing and Logging
With a Web service, you can audit and log activity details and transactions either by
using platform-level features or by using custom code in your Web method
implementations.

You can develop code that uses the System.Diagnostics.EventLog class to log actions
to the Windows event log. The permission requirements and techniques for using this
class from a Web service are the same as for a Web application. For more information,
see the “Auditing and Logging” section in Chapter 10, “Building Secure ASP.NET
Pages and Controls.”

Proxy Considerations
If you use WSDL to automatically generate a proxy class to communicate with a Web
service, you should verify the generated code and service endpoints to ensure that
you communicate with the desired Web service and not a spoofed service. If the
WSDL files on a remote server are inadequately secured, it is possible for a malicious
user to tamper with the files and change endpoint addresses, which can impact the
proxy code that you generate.

http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&DisplayLang=en
http://www.microsoft.com/downloads/details.aspx?FamilyID=9b3a2ca6-3647-4070-9f41-a333c6b9181d&DisplayLang=en

342 Part III: Building Secure Web Applications

Specifically, examine the <soap:address> element in the .wsdl file and verify that it
points to the expected location. If you use Visual Studio .NET to add a Web reference
by using the Add Web Reference dialog box, scroll down and check the service
endpoints.

Finally, whether you use Visual Studio.NET to add a Web reference or manually
generate the proxy code using Wsdl.exe, closely inspect the proxy code and look for
any suspicious code.

Note You can set the URL Behavior property of the Web service proxy to Dynamic, which allows
you to specify endpoint addresses in Web.config.

Code Access Security Considerations
Code access security can limit the resources that can be accessed and the operations
that can be performed by your Web service code. An ASP.NET Web service is subject
to ASP.NET code access security policy, configured by the Web service’s <trust>
element.

.NET Framework consumer code that calls a Web service must be granted the
WebPermission by code access security policy. The precise state of the
WebPermission determines the range of Web services that can be called. For
example, it can constrain your code so that it can only call local Web services or
services on a specified server.

If the consumer code has full trust, it is granted the unrestricted WebPermission
which allows it to call any Web service. Partial trust consumer code is subject to the
following limitations:
● If you call a Web service from a Medium trust Web application, by default you can

only access local Web services.
● Consumer code that uses the WSE classes must be granted full trust.

For example, if your Web service proxy classes derive from
Microsoft.Web.Services.WebServicesClientProtocol, which is provided by the
WSE, full trust is required. To use WSE from a partial trust Web application, you
must sandbox calls to the Web service.

For more information about calling Web services from partial trust Web applications,
see Chapter 9, “Using Code Access Security with ASP.NET.” For more information
about WebPermission, see the “Web Services” section in Chapter 8, “Code Access
Security in Practice.”

 Chapter 12: Building Secure Web Services 343

Deployment Considerations
The range of security options available to you depends greatly on the specific
deployment scenarios your Web services attempt to cover. If you build applications
that consume Web services in an intranet, then you have the widest range of security
options and techniques at your disposal. If, however, your Web service is publicly
accessible over the Internet, your options are far more lijmited. This section describes
the implications of different deployment scenarios on the applicability of the
approaches to securing Web services discussed previously in this chapter.

Intranet Deployment
Because you control the consumer application, the service, and the platform, intranets
usually provide the widest range of available options for securing Web services.

With an intranet scenario, you can usually choose from the full range of
authentication and secure communication options. For example, you mgiht decide to
use Windows authentication if the consumer and service are in the same or trusting
domains. You can specify that client application developers set the credentials
property on the client proxy to flow the user’s Windows credentials to the Web
service.

Intranet communication is often over a private network, with some degree of
security. If this is insufficient, you might decide to encrypt traffic by using SSL. You
can also use message level security and install WSE on both the client and server to
handle security at both ends transparently to the application. WSE supports
authentication, digital signatures, and encryption.

Extranet Deployment
In an extranet scenario, you may need to expose your Web service over the Internet to
a limited number of partners. The user community is still known, predictable, and
possibly uses managed client applications, although they come from separate,
independent environments. In this situation, you need an authentication mechanism
that is suitable for both parties and does not rely on trusted domains.

You can use Basic authentication if you make account information available to both
parties. If you use Basic authentication, make sure that you secure the credentials by
using SSL.

Note SSL only protects credentials over the network. It does not protect them in situations where
a malicious user successfully installs a proxy tool (such as sslproxy) local to the client machine to
intercept the call before forwarding it to the Web service over SSL.

344 Part III: Building Secure Web Applications

As an alternate option for use with an extranet, you can use IIS client certificate
authentication instead of passing explicit credentials. In this case, the calling
application must present a valid certificate with the call. The Web service uses
the certificate to authenticate the caller and authorize the operation. For more
information, see the “Extranet Security” section in MSDN article, “Building Secure
ASP.NET Applications” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/SecNetch06.asp.

Internet Deployment
If you expose your Web service to a large number of Internet consumers and require
authentication, the options available to you are substantially constrained. Any form
of platform level authentication is unikely to be suitable, since the consumers will not
have proper domain accounts to which they can map their credentials. The use of IIS
client certicate authentication and the transport (SSL) level is also problematic when a
large number of client certificates must be made known to the target IIS Web server
(or the ISA Server in front of it). This leaves message and application-level
authentication and authorization the most likely choice. Credentials passed by the
consumer of the service in the form of user name, password, certicate, Kerberos
ticket, or custom token) can be validated transparently by the Web services
infrastructure (WSE) or programmatically inside the target service. client certificates
are difficult to manage scale. Key management (issuing and revoking) becomes an
issue. Also, certificate-based authentication is resource intensive and therefore is
subject to scalability issues with large number of clients.

SSL usually provides encryption of the network traffic (server-side certicate only),
but can also be supplemented by message-level encryption.

Using client certicates, while advantageous from a seucrity point of view, often
becomes problematic for large numbers of users. You must carefully manage the
certicates and consider how they should be delivered to clients, renewed, revoked,
and so on. Another pottential issue in Internet situaions Is the oveall scalability of the
solution due to processing overhead or the encryption/decryption and certificate
validation for a large-scale Web service with significant workload.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch06.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetch06.asp

 Chapter 12: Building Secure Web Services 345

Summary
WS-Security is the emerging standard for Web services security. The specification
defines options for authentication by passing security tokens in a standard way using
SOAP headers. Tokens can include user name and password credentials, Kerberos
tickets, X.509 certificates, or custom tokens. WS-Security also addresses message
privacy and integrity issues. You can encrypt whole or partial messages to provide
privacy, and digitally sign them to provide integrity.

In intranet scenarios, where you are in control of both endpoints, platform level
security options such as Windows authentication, can be used. For more complex
scenarios where you do not control both endpoints and where messages are routed
through intermediate application nodes, message level solutions are required. The
following section, “Additional References,” lists the Web sites you can use to track
the emerging WS-Security standard and the associated WSE tool kit that allows you
to build solutions that conform to this and other emerging Web service standards.

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Securing Web Services” in the

“Checklists” section of this guide.
● You can download the WSE at the Microsoft Web Services Developer Center home

page at http://msdn.microsoft.com/webservices.
● For information on authentication, authorization and secure communication for

Web services see the “Web Services Security” section in “Microsoft patterns &
practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp.

● For articles specific to Web Services security, see the MSDN articles at
http://msdn.microsoft.com/webservices/building/security/default.aspx.

● For articles specific to Web Services Enhancements, see the MSDN articles at
http://msdn.microsoft.com/webservices/building/wse/default.aspx.

● For information on using SSL with Web Services, see “How to Call a Web Service
Using SSL” in the “How To” section of “Microsoft patterns & practices Volume I,
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/en-us/dnnetsec/html
/SecNetHT14.asp.

http://msdn.microsoft.com/webservices
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetch10.asp
http://msdn.microsoft.com/webservices/building/security/default.aspx
http://msdn.microsoft.com/webservices/building/wse/default.aspx
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT14.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT14.asp

346 Part III: Building Secure Web Applications

● For information on using client certificates with Web Services, see MSDN article,
“How To: Call a Web Service Using Client Certificates from ASP.NET” in the
“How To” section of “Microsoft patterns & practices Volume I, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT13.asp.

● For information on WS-Security, see MSDN article, “WS-Security:
New Technologies Help You Make Your Web Services More Secure” at
http://msdn.microsoft.com/msdnmag/issues/03/04/WS-Security/default.aspx.

● For information on XML Encryption, see the W3C XML Encryption Working
Group at http://www.w3.org/Encryption/2001/.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT13.asp
http://msdn.microsoft.com/msdnmag/issues/03/04/WS-Security/default.aspx
http://www.w3.org/Encryption/2001/

13
Building Secure Remoted
Components

In This Chapter
● Authenticating and authorizing callers
● Preventing denial of service attacks against remote components
● Implementing secure serialization
● Protecting sensitive data

Overview
The Microsoft .NET Framework Remoting infrastructure has no default
authentication or authorization mechanisms. However, if you host remote
components with ASP.NET and use the HttpChannel for communication, you can
use ASP.NET and IIS authentication and authorization services.

If performance is an issue, you might decide to use a custom host with the
TcpChannel. You should only do so in trusted subsystem scenarios, where the range
of possible callers is carefully controlled through out-of-band techniques such as the
use of IPSec policies, which only allow communication from specified Web servers.
With the TcpChannel, you must build your own authentication and authorization
mechanisms. This is contrary to the principle of using tried and tested platform level
security services, and requires significant development effort.

348 Part III: Building Secure Web Applications

This chapter gives recommendations and guidance to help you build secure remote
components. This includes components that use ASP.NET and the HttpChannel, and
those that use custom executables and the TcpChannel. The typical deployment
pattern assumed by this chapter is shown in Figure 13.1, where remote objects are
located on a middle-tier application server and process requests from ASP.NET Web
application clients, and also Windows applications deployed inside the enterprise.

ASP. NET

Web Server Database Server

SQL
Server

Application Server

Object

Host

Perimeter
Firewall

Optional
Firewall

Optional
Firewall

Windows
Application

Optional
Firewall

TcpChannelTcpChannel

HTTP

Figure 13.1
Typical remoting deployment

In this common scenario, the remote component services requests from front-end
Web applications. In this case, ASP.NET on the Web server handles the authentication
and authorization of callers. In addition, middle-tier remote components are often
accessed by Enterprise Windows applications.

How to Use This Chapter
This chapter discusses various techniques to design and build secure components
that you communicate with using the .NET Framework remoting technology.

To get the most from this chapter:
● Use in conjunction with Chapter 17, “Securing Your Application Server.”

Chapter 17 gives an administration perspective on securing a middle-tier remoting
solution.

● See “Checklist: Securing Remoting” in the Checklists section of this guide. This
gives a summary of the security measures required to build and configure secure
.NET Framework remoting solutions.

 Chapter 13: Building Secure Remoted Components 349

Threats and Countermeasures
To build secure solutions that use remoting technology, you need to know the
associated threats. The top threats to components that use remoting are:
● Unauthorized access
● Network eavesdropping
● Parameter manipulation
● Serialization

Figure 13.2 shows these threats.

RemotingClient

Parameter
Manipulation

Network
Eavesdropping

Unauthorized
Access

Serialization

Figure 13.2
Main remoting threat

Unauthorized Access
Remote components that provide sensitive or restricted information should
authenticate and authorize their callers to prevent unauthorized access. Weak
authentication and authorization can be exploited to gain unauthorized access to
sensitive information and operations.

Vulnerabilities
Vulnerabilities that make your remoting solution susceptible to unauthorized access
include:
● No application level authentication because a custom Windows service host

is used
● No IPSec policies to restrict which computers can communicate with the

middle-tier application server that hosts the remote components
● No role-based authorization
● No file authorization to restrict access to remoting endpoints
● Trusting IPrincipal objects passed from the client

350 Part III: Building Secure Web Applications

Countermeasures
Countermeasures that may be implemented to prevent unauthorized access include:
● Ensure that the front-end Web application authenticates and authorizes clients,

and that communication to middle-tier application servers is restricted by using
IPSec policies. These measures ensure that only the Web server can access the
middle-tier application server directly.

● Use ASP.NET to host remote components and use Windows authentication to
restrict access to remote components.

● Use the ASP.NET FileAuthorizationModule. This requires specific configuration
and the creation of a physical file (.rem or .soap) to match the remoting endpoint.

● Use role-based authorization to restrict access to remote components, remote
component classes, and methods. This can be done by using URL authorization to
control access to the remoting endpoint (.rem or .soap) or, at the class or method
level, by using principal-permission demands.

● Do not trust IPrincipal objects passed from the client unless the client is trusted.
This is generally only the case if IPSec is used to limit the range of client
computers.

Network Eavesdropping
With network eavesdropping, an attacker is able to view request and response
messages as they flow across the network to and from the remote component. For
example, an attacker can use network monitoring software to retrieve sensitive data.
This might include sensitive application level data or credential information.

Vulnerabilities
Vulnerabilities that can lead to security compromises from network eavesdropping
include:
● Basic authentication used over an unencrypted communication channel
● No transport level encryption
● No application level encryption

Countermeasures
Countermeasures that may be implemented to prevent successful network
eavesdropping attacks include:
● Use transport level encryption such as SSL or IPSec. The use of SSL requires you to

use an ASP.NET host and the HttpChannel. IPSec can be used with custom hosts
and the TcpChannel.

● Encrypt the request at the application level to provide privacy. For example,
you could create a custom encryption sink to encrypt part of the entire message
payload.

 Chapter 13: Building Secure Remoted Components 351

Parameter Manipulation
Parameter manipulation refers to the unauthorized modification of data sent between
the client and remote component. For example, an attacker can manipulate the
request message destined for the remote component by intercepting the message
while it is in transit.

Vulnerabilities
Vulnerabilities that can lead to parameter manipulation include:
● Messages that are not digitally signed to provide tamperproofing
● Message that are not encrypted to provide privacy and tamperproofing

Countermeasures
Countermeasures that may be implemented to prevent successful parameter
manipulation include:
● Digitally sign the message. The digital signature is used at the recipient end to

verify that the message has not been tampered with in transit.
● Encrypt the message payload to provide privacy and tamperproofing.

Serialization
Serialization is the process of converting an object’s internal state to a flat stream of
bytes. The remoting infrastructure uses the serialization services of the .NET
Framework to pass objects between client and server. It is possible for malicious code
to inject a serialized data stream to your server in order to coerce it into performing
unintended actions. For example, malicious client-side code can initialize an object
that, when de-serialized on the server, causes the server to consume server resources
or execute malicious code.

Vulnerabilities
The main vulnerability that can lead to successful serialization attacks stems from the
fact that the server trusts the serialized data stream and fails to validate the data
retrieved from the stream.

Countermeasures
The countermeasure that prevents successful serialization attacks is to validate each
item of data as it is deserialized on the server. Validate each field for type, length,
format, and range.

352 Part III: Building Secure Web Applications

Design Considerations
Before you begin to develop remote components, there are a number of issues to
consider at design time. The key security considerations are:
● Do not expose remoted objects to the Internet.
● Use the HttpChannel to take advantage of ASP.NET security.
● Use the TcpChannel only in trusted server scenarios.

Do Not Expose Remoted Objects to the Internet
You should only host remoted objects on middle-tier application servers that are not
directly accessible from the Internet, and that are only accessible from front-end Web
applications and Web services. If you need to expose functionality provided by a
remoted object to Internet clients, use a Web service to wrap the middle-tier object
and expose the Web service to the Internet.

Use the HttpChannel to Take Advantage of ASP.NET Security
If security is your primary concern, use ASP.NET to host remoted objects. This allows
you to take advantage of the authentication, authorization, and secure
communication features provided by ASP.NET and IIS. For example, you can use
Windows authentication and use SSL to provide privacy and for the integrity of
requests and responses sent over the network.

Use the TcpChannel Only in Trusted Server Scenarios
If you use the TcpChannel with a custom host process for performance reasons,
remember that no built-in authentication services exist.

For this reason, you should only use the TcpChannel in trusted server scenarios,
where the upstream Web application or Web service authenticates and authorizes
the original callers before it calls your middle-tier remoted components. To secure
this scenario, use IPSec for machine-level authentication and secure communication.
The IPSec policy should only permit traffic from the nominated Web server(s) to the
middle-tier remote component host. This trusted server scenario is shown in
Figure 13.3.

 Chapter 13: Building Secure Remoted Components 353

ASP. NET

Web Server Application Server

Object

Custom Host

Perimeter
Firewall

Optional
Firewall

TcpChannelHTTP

Trust Boundary
IPSec

Figure 13.3
Remoting in a trusted server scenario

For more information about IPSec, see “How To: Use IPSec” in the “How To” section
of this guide.

TcpChannel Considerations
If you use a custom executable host and the TcpChannel, and you cannot rely on an
upstream Web application to perform client authentication and authorization, you
have to develop your own authentication and authorization solutions.

As part of a custom solution you might decide to pass principal objects as method
parameters or in the call context. You should only do so in a trusted environment to
prevent malicious client-side code from creating an IPrincipal object with elevated
roles and then sending it to your server. Your server implementation must be able to
trust IPrincipal objects before using them for role-based authorization.

An alternative approach is to use the underlying services of the Security Support
Provider Interface (SSPI). For more information about this approach, see MSDN
article, “.NET Remoting Security Solution, Part 1: Microsoft.Samples.Security.SSPI
Assembly,” at http://msdn.microsoft.com/library/en-us/dndotnet/html/remsspi.asp.

To provide secure communication when you use the TcpChannel, use IPSec or a
custom encryption channel sink to encrypt the request data.

http://msdn.microsoft.com/library/en-us/dndotnet/html/remsspi.asp

354 Part III: Building Secure Web Applications

Input Validation
In trusted server scenarios in which remoting solutions should be used, front-end
Web applications generally perform input validation. The data is fully validated
before it is passed to the remoted components. If you can guarantee that the data
passed to a remoted component can only come from within the current trust
boundary, you can let the upstream code perform the input validation.

If, however, your remoting solution can be accessed by arbitrary client applications
running in the enterprise, your remote components should validate input and be
wary of serialization attacks and MarshalByRefObject attacks.

Serialization Attacks
You can pass object parameters to remote components either by using the call context
or by passing them through regular input parameters to the methods that are
exposed by the remote component. It is possible for a malicious client to serialize an
object and then pass it to a remote component with the explicit intention of tripping
up the remote component or causing it to perform an unintended operation. Unless
you can trust the client, you should carefully validate each field item in the
deserialized object, because the object parameter is created on the server.

MarshalByRefObject Attacks
Objects that derive from System.MarshalByRefObject require a URL in order to
make call backs to the client. It is possible for the callback URL to be spoofed so that
the server connects to a different client computer, for example, a computer behind a
firewall.

You can mitigate the risk of serialization and MarshalByRefObject attacks with
version 1.1 of the .NET Framework by setting the typeFilterLevel attribute on the
<formatter> element to Low. This instructs the .NET Framework remoting
infrastructure to only serialize those objects it needs in order to perform the method
invocation, and to reject any custom objects that support serialization that you create
and put in the call context or pass as parameters. You can configure this setting in
Web.config or programmatically as shown below.

<formatter ref="binary" typeFilterLevel="Low" />

or

BinaryServerFormatterSinkProvider provider = new
BinaryServerFormatterSinkProvider();
provider.TypeFilterLevel = TypeFilterLevel.Low;

 Chapter 13: Building Secure Remoted Components 355

Authentication
If your remote component exposes sensitive data or operations, it must authenticate
its callers to support authorization. The .NET Framework remoting infrastructure
does not define an authentication model. The host should handle authentication. For
example, you can use ASP.NET to benefit from ASP.NET and IIS authentication
features.

If you use a custom Windows service host, develop a custom authentication solution.

ASP.NET Hosting
The following guidelines apply if you use the ASP.NET host with the HttpChannel:
● Turn off anonymous authentication in IIS.
● Configure ASP.NET for Windows authentication.
● Configure client credentials.
● Increase performance with authenticated connection sharing.
● Force clients to authenticate with each call.
● Control the use of authenticated connections.

Turn off Anonymous Authentication in IIS
To ensure that callers are authenticated by IIS, make sure that your application’s
virtual directory does not support anonymous authentication. On Windows
Server 2003, you should also ensure that .NET Passport authentication is disabled.

Since you have disabled IIS anonymous authentication, you can use any of the
supported IIS authentication mechanisms to authenticate callers over the
HttpChannel, for example Basic, Digest, and Integrated Windows. To avoid
credentials being passed over the network and to take advantage of Windows 2000
security account and password policies, use Integrated Windows authentication.

Configure ASP.NET for Windows Authentication
Configure your application for Windows authentication with the following setting in
Web.config:

<authentication mode="Windows" />

You cannot use Passport or Forms authentication because these require redirection to
a login page.

Note When you use Windows authentication, you are recommended to enable File authorization.
For more information, see “Authorization” later in this chapter.

356 Part III: Building Secure Web Applications

Configure Client Credentials
To successfully communicate with a remote component that is configured for
Windows authentication, the client must configure the remoting proxy with the
credentials to use for authentication. Failure to do so results in an access denied error.

You can configure the use of default credentials to use the client’s current thread or
process token, or you can set explicit credentials.

Using Default Credentials

To use the client’s process token (or thread token if the client thread is currently
impersonating), set the useDefaultCredentials property of the client proxy to true.
This results in the use of CredentialsCache.DefaultCredentials when the client
receives an authentication challenge from the server. You can configure the proxy
either by using the configuration file or programmatically in code. To configure the
proxy externally, use the following element in the client configuration file:

<channel ref="http client" useDefaultCredentials="true" />

To set default credentials programmatically, use the following code:

IDictionary channelProperties;
channelProperties = ChannelServices.GetChannelSinkProperties(proxy);
channelProperties ["credentials"] = CredentialCache.DefaultCredentials;

If you use default credentials in an ASP.NET client application that is configured for
impersonation, the thread level impersonation token is used. This requires Kerberos
delegation.

Using Alternate Credentials

To use a specific set of credentials for authentication when you call a remote object,
disable the use of default credentials within the configuration file by using the
following setting.

<channel ref="http" useDefaultCredentials="false" />

Note Programmatic settings always override the settings in the configuration file.

 Chapter 13: Building Secure Remoted Components 357

Then, use the following code to configure the proxy to use specific credentials:

IDictionary channelProperties =
 ChannelServices.GetChannelSinkProperties(proxy);
NetworkCredential credentials;
credentials = new NetworkCredential("username", "password", "domain");
ObjRef objectReference = RemotingServices.Marshal(proxy);
Uri objectUri = new Uri(objectReference.URI);
CredentialCache credCache = new CredentialCache();
// Substitute "authenticationType" with "Negotiate", "Basic", "Digest",
// "Kerberos" or "NTLM"
credCache.Add(objectUri, "authenticationType", credentials);
channelProperties["credentials"] = credCache;
channelProperties["preauthenticate"] = true;

Increase Performance with Authenticated Connection Sharing
When you set useDefaultCredentials=“true”, you should also set the
useAuthenticatedConnectionSharing property on the client side to true. This
enables the server to reuse authenticated connections, rather than authenticating each
incoming call.

<channel ref="http client" useAuthenticatedConnectionSharing="true" >

This feature only works with the HttpChannel on version 1.1 of the .NET
Framework.

Force Clients to Authenticate With Each Call
Set unsafeAuthenticatedConnectionSharing to false so that clients are not able to
supply their own credentials and connection group name to the server.

If you set it to true, unauthenticated clients can possibly authenticate to the server
using the credentials of a previously authenticated client. This setting is ignored if the
useAuthenticatedConnectionSharing property is set to true. This setting has some
performance implications since it closes each connection with the server, which
means that clients must authenticate with each call. If you use this setting, you
should also specify a ConnectionGroupName for each user that uses the connection.

<channel ref="http client" unsafeAuthenticatedConnectionSharing="false" >

This feature only works with the HttpChannel on version 1.1 of the .NET
Framework.

358 Part III: Building Secure Web Applications

Control the Use of Authenticated Connections
If you set unsafeAuthenticationConnectionSharing to true, you should
provide a name to group together authenticated connections by setting
the connectionGroupName property. If you use default credentials, the
connectionGroupName is based on the user account used to run the thread.

<channel ref="http client" connectiongroupname="<name>" />

Custom Process Hosting
If you use a Windows service host and the TcpChannel, either use this approach
only in a trusted server scenario, or provide a custom authentication scheme. The
following guidelines apply if you use a custom host with the TcpChannel:
● Do not pass plaintext credentials over the network.
● Do not trust IPrincipal objects passed from the client.

Do Not Pass Plaintext Credentials over the Network
If your server requires the client’s plaintext credentials, encrypt them before you send
them over the network. If your server needs to validate the client credentials, use a
challenge/response scheme to validate the credentials on the server. This could
include sending a hash, keyed hash, a nonce encrypted with the hash, or a using a
digital signature.

However, even in these scenarios, you should use an encrypted communication
channel to prevent replay attacks.

Do Not Trust IPrincipal Objects Passed From the Client
Use caution if you pass IPrincipal objects from the client to the server. Untrusted
code can create an IPrincipal object, initialize it with roles, and then send it to the
server. If the server accepts the IPrincipal without validating it, the client can elevate
the privileges of the caller on the server. For example, a malicious caller could create
an IPrincipal object that contains common, highly privileged role names such as
Administrators, Managers, ExpenseReportApprovers, and Supervisors. When the
object is received on the server and placed in the Thread.CurrentPrincipal property,
code that calls IsInRole on this object can be deceived into executing privileged code.

 Chapter 13: Building Secure Remoted Components 359

Authorization
Within the context of .NET Framework remoting, you can apply authorization to
restrict the ability of computers and users to access functionality exposed by your
remote objects. Use the following guidelines to ensure that you have an effective
authorization approach:
● Use IPSec for machine level access control.
● Enable file authorization for user access control.
● Authorize users with principal-based role checks.
● Consider limiting remote access.

Use IPSec for Machine Level Access Control
You can define an IPSec policy to ensure that only a nominated Web server or cluster
of servers can connect to the application server that hosts your remote objects. This
significantly reduces the attack surface area.

Enable File Authorization for User Access Control
If your remote object is hosted by ASP.NET and uses Windows authentication, you
can configure Windows access control lists (ACLs) on the remoting endpoints to
authorize callers. ACLs are evaluated on a per-request basis by the ASP.NET
FileAuthorizationModule. Under normal circumstances, a physical file representing
your remoting endpoints to which your clients connect does not exist. The request for
a file with a .rem or .soap extension is sufficient for IIS to be able to route the request
based on application mappings defined in the IIS Metabase, to the remoting
infrastructure in the appropriate ASP.NET application.

� To configure the ASP.NET FileAuthorizationModule for .NET Framework remoting

1. Create a file with the same name as the value specified in the objectUri property
in Web.config, for example, RemoteMath.rem, in the root of the application’s
virtual directory.
You can obtain the objectUri from the Web.config file used to configure the remote
object on the server. Look for the <wellknown> element, as shown in the
following example:

<wellknown mode="SingleCall" objectUri="RemoteMath.rem"
type="RemotingObjects.RemoteMath, RemotingObjects,
 Version=1.0.000.000 Culture=neutral, PublicKeyToken=4b5ae668c251b606"/>

360 Part III: Building Secure Web Applications

2. Add the following line to the top of the file, and then save the file.

<%@ webservice class="YourNamespace.YourClass" ... %>

3. Add an appropriately configured ACL to the file using Windows Explorer to
determine which users or user groups can and cannot access the object.

Authorize Users with Principal-Based Role Checks
The FileAuthorizationModule approach described above allows you to control who
can and cannot access the remote object. For finer grained authorization that can be
applied at the method level, you can perform authorization checks using the
IPrincipal object attached to the current request.

If your remote object is hosed by ASP.NET and you use Windows authentication, an
IPrincipal object based on the authenticated caller’s Windows identity is
automatically created and attached to Thread.CurrentPrinicipal.

If you use a custom host, create an IPrincipal object to represent the authenticated
user. The mechanics depend on your authentication approach. For example if you use
a named pipe transport, you can impersonate the caller to obtain their identity and
construct an IPrincipal object.

With the IPrincipal object in place you can perform authorization using principal
permission demands both declaratively and imperatively and you can call
IPrincipal.IsInRole.

Consider Limiting Remote Access
In some scenarios, where you use remoting for inter process or cross application
domain communication on a single computer, you can set rejectRemoteRequests to
true to ensure that your object cannot be accessed from remote computers as shown
below.

<channel ref="http server" rejectRemoteRequests="true" />

 Chapter 13: Building Secure Remoted Components 361

Sensitive Data
If you need to pass sensitive data over a remoting communication channel across a
network, to address the network eavesdropping threat, consider the privacy and
integrity of the data. You have three basic choices that are likely to be determined by
your deployment environment and your choice of host. Your options include:
● Using IPSec
● Using SSL
● Using a custom encryption sink

Using IPSec
You can use IPSec policies to secure the communication channels to your remote
objects, for example, the channel from a Web server. You can use IPSec to encrypt all
of the TCP packets sent over a particular connection, which includes packets sent to
and from your remote objects. This solution is generally used by secure Internet and
intranet data center infrastructures and is beneficial because no additional coding
effort is necessary.

The additional benefit of using IPSec is that it provides a secure communication
solution irrespective of the remote object host and channel type. For example, the
solution works when you use the TcpChannel and a custom host.

Using SSL
If you use the ASP.NET host, you can use IIS to configure the virtual directory of your
application to require SSL. Clients must subsequently use an HTTPS connection to
communicate with your remote objects.

Using a Custom Encryption Sink
If you do not have a secure data center with IPSec policies that secure the
communication channels between your servers, an alternative strategy is to
implement a custom encryption sink. You may also want to consider this option if
you have a requirement to secure only the sensitive parts of the messages passed
from client to server rather than the entire payload. This approach is shown in
Figure 13.4.

362 Part III: Building Secure Web Applications

Proxy

Formatter Sink

Custom
Encryption Sink

Sink

Transport Sink

Client Object

Formatter Sink

Custom
Encryption Sink

Sink

Transport Sink
Channel

Host Process

Channel Channel

Figure 13.4
Using custom encryption sinks

An encryption sink is a custom channel sink that you can use when you use a custom
host with the TcpChannel. On the client side, the sink encrypts request data before it
is sent to the server and decrypts any encrypted response data received from the
server. On the server side, the sink decrypts the request data and then encrypts
response data.

Implementing a Custom Encryption Sink
The sink should use asymmetric encryption to exchange session level encryption
keys. After exchanging a session key, the client and server maintain a copy of the key
and either side may choose to create a new key at any time during the lifetime of the
channel sink. The server should maintain a different key for each client it
communicates with.

 Chapter 13: Building Secure Remoted Components 363

The following steps outline the basic approach to implement a custom
encryption sink:
1. Create a public/private key pair for the solution.

const int AT_KEYEXCHANGE = 1;
CspParameters cspParams = new CspParameters();
cspParams.KeyContainerName = "<container name>";
cspParams.KeyNumber = AT_KEYEXCHANGE;
cspParams.ProviderName = "Microsoft Base Cryptographic Provider v1.0";
cspParams.ProviderType = PROV_RSA_FULL;
RSACryptoServiceProvider rsaServerSide = new
 RSACryptoServiceProvider(cspParams);
rsaServerSide.PersistKeyInCsp = true;
Console.WriteLine(rsaServerSide.ToXmlString(true)); // Writes the public key

2. Expose the public key for clients to consume.
The client maintains a copy of the public key in a file.

3. Initialize the client channel sink and create a random key for encryption.

byte[] randomKey = new byte[size];
RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
rng.GetBytes(randomKey);

4. Encrypt the random key with the pubic key of your server. Use
IClientChannelSink.ProcessMessage to send the encrypted key to the server.

RSACryptoServiceProvider rsa = new RSACryptoServiceProvider(csp);
rsa.FromXmlString("<server's public key>");
AsymmetricKeyExchangeFormatter formatter = new
 RSAPKCS1KeyExchangeFormatter(rsa);
byte[] encryptedSessionKey = formatter.CreateKeyExchange(_sessionKey);

5. Initialize the server channel sink and create an RSA object using the specific key
container name.

const int AT_KEYEXCHANGE = 1;
CspParameters cspParams = new CspParameters();
cspParams.KeyContainerName = "<container name>";
cspParams.KeyNumber = AT_KEYEXCHANGE;
cspParams.ProviderName = "Microsoft Base Cryptographic Provider v1.0";
cspParams.ProviderType = PROV_RSA_FULL;
RSACryptoServiceProvider rsaServerSide = new
RSACryptoServiceProvider(cspParams);

6. Retrieve the encrypted key from the client. This key is normally sent in the request
headers.

364 Part III: Building Secure Web Applications

7. Decrypt the session encryption key using the private key of the server.

AsymmetricKeyExchangeDeformatter asymDeformatter = new
 RSAPKCS1KeyExchangeDeformatter(_rsa);
byte[] decryptedSessionKey = asymDeformatter.DecryptKeyExchange(
 <encrypted key>);

8. Use a mechanism for mapping clients to encryption keys, for example, by using a
hash table.

At this point, the client and server both share an encryption key, and can encrypt and
decrypt method calls. Periodically during the object lifetime, new keys can and
should be created.

Denial of Service
Denial of service attacks can occur when a malicious client creates multiple objects
and continues to renew the lifetime lease to consume server resources. Server-side
remote objects contain a default lease. In this state, a client can continue to renew the
lease forever. However, you can implement the ILease interface on the server and
explicitly control sponsors and renewals. To do this, override
InitializeLifetimeService on your MarshalByRefObject object. The remoting
infrastructure calls this method when the object is created. The lease can also be set
programmatically by using the <lifetime> element.

Exception Management
Make sure you do not return full exception details to the caller. If you use an
ASP.NET host, make sure ASP.NET is configured so that generic error messages are
returned to the client, as shown below.

<configuration>
 <system.runtime.remoting>
 <!-- Valid values for mode attribute are
 on - callers receive default error messages
 remoteOnly - clients on the same computer as the remote component receive
 detailed exception information. Remote calls receive a
 default error message
 off - callers receive detailed exception information -->
 <customErrors mode="on"/>
 </system.runtime.remoting>
</configuration>

Use mode=“on” or mode=“remoteOnly”. Do not use mode=“off” on production
servers.

 Chapter 13: Building Secure Remoted Components 365

Using a Custom Channel Sink
You could implement a custom channel sink to perform client-side and/or server-
side exception logging. You can log exception details in the SyncProcessMessage,
ProcessMessage, or SyncProcessMessage methods if an exception occurs. The
IMessage and Exception parameters provide exception details.

Auditing and Logging
If you use the ASP.NET host, you can use IIS auditing features. If you use a custom
host, implement custom auditing. To do this, you could implement a custom channel
sink.

Using a Custom Channel Sink
You could implement a custom channel sink to perform client-side and/or server-
side auditing. You can get details from the SyncProcessMessage, ProcessMessage,
or SyncProcessMessage methods.

Code Access Security (CAS) Considerations
Remoting clients require full trust on version 1.0 and 1.1 of the .NET Framework.
The System.Runtime.Remoting.dll assembly is not marked with
AllowPartiallyTrustedCallersAttribute.

To use remoting to call a remote component from partial trust code such as a partial
trust Web application, you must create a full trust wrapper assembly and sandbox the
remote object method calls. For more information about sandboxing code and using
wrapper assemblies, see Chapter 9, “Using Code Access Security with ASP.NET.”

Summary
The .NET Framework remoting infrastructure is designed for use in trusted server
scenarios where you can limit callers to trusted clients, for example by using IPSec
security policies. If you use an ASP.NET host and the HttpChannel, you benefit from
being able to use the underlying security features provided by ASP.NET and IIS. If
you use a custom host and the TcpChannel, perhaps for performance reasons, you
must implement your own authentication and authorization solutions. IPSec can help
in these scenarios by providing machine level authentication and secure
communication.

366 Part III: Building Secure Web Applications

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Securing Remoting” in the “Checklists”

section of this guide.
● For information on how to host a remoted component in a Windows service,

see “How To: Host a Remote Object in a Windows Service” in the “How To”
section of “Microsoft patterns & practices Volume I, Building Secure ASP.NET
Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT15.asp.

● For more information about how to create a custom authentication solution
that uses SSPI, see MSDN article, “.NET Remoting Security Solution, Part 1:
Microsoft.Samples.Security.SSPI Assembly,” at http://msdn.microsoft.com/library
/en-us/dndotnet/html/remsspi.asp.

Note The implementation in this article is a sample and not a product tested and supported by
Microsoft.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT15.asp
http://msdn.microsoft.com/library/en-us/dndotnet/html/remsspi.asp
http://msdn.microsoft.com/library/en-us/dndotnet/html/remsspi.asp

14
Building Secure Data Access

In this Chapter
● Preventing SQL injection attacks
● Encrypting data in the database
● Securing data over the network
● Securing database connection strings
● Handling data access exceptions

Overview
The database is a prime target for application level attacks. Application level
attacks are used to exploit vulnerabilities in your data access code to gain access to
the database. If all other attack vectors are closed, then the application’s front door,
port 80, becomes the path of choice for an attacker to steal, manipulate, and
destroy data.

This chapter shows you how to build secure data access code and avoid common
vulnerabilities and pitfalls. The chapter presents a series of countermeasures and
defensive techniques that you can use in your data access code to mitigate the top
threats related to data access.

368 Part III: Building Secure Web Applications

How to Use This Chapter
To get the most out of this chapter, read the following chapters before or in
conjunction with this chapter:
● Read Chapter 2, “Threats and Countermeasures.” This will give you a broader

and deeper understanding of potential threats and countermeasures faced by Web
applications.

● Read Chapter 4, “Design Guidelines for Secure Web Applications.” In this
chapter, you will learn the architecture and design challenges and guidelines for
building a secure solution.

● Read Chapter 18, “Securing Your Database Server.” Read Chapter 18 to
understand how the database servers are secured.

● Read Chapter 7, “Building Secure Assemblies.” The guidelines and
recommendations in Chapter 7 for building secure assemblies and for developing
secure managed code should also be applied to data access code.

● Use the Assessing Chapters. To review the security of your data access at
different stages of the product cycle, refer to the Web services sections in the
following chapters: Chapter 5, “Architecture and Design Review for Security,”
Chapter 21, “Code Review,” and Chapter 22, “Deployment Review.”

● Use the Checklist. “Checklist: Securing Data Access” in the Checklists section of
this guide includes a checklist for easy reference. Use this task-based checklist as a
summary of the recommendations in this chapter.

Threats and Countermeasures
To build secure data access code, know what the threats are, how common
vulnerabilities arise in data access code, and how to use appropriate countermeasures
to mitigate risk.

The top threats to data access code are:
● SQL injection
● Disclosure of configuration data
● Disclosure of sensitive application data
● Disclosure of database schema and connection details
● Unauthorized access
● Network eavesdropping

 Chapter 14: Building Secure Data Access 369

Figure 14.1 illustrates these top threats.

SQL
Server

Web AppClient

Firewall

Configuration Data
(Connection

Strings)

SQL Injection

Network
Eavesdropping

Disclosure of
Schema and
Connection

Details

Disclosure of
Configuration

Data
Disclosure of

Sensitive
Application

Data

Unauthorized
Access

Figure 14.1
Threats and attacks to data access code

SQL Injection
SQL injection attacks exploit vulnerable data access code and allow an attacker to
execute arbitrary commands in the database. The threat is greater if the application
uses an unconstrained account in the database because this gives the attacker greater
freedom to execute queries and commands.

Vulnerabilities

Common vulnerabilities that make your data access code susceptible to SQL injection
attacks include:
● Weak input validation
● Dynamic construction of SQL statements without the use of type-safe parameters
● Use of over-privileged database logins

370 Part III: Building Secure Web Applications

Countermeasures

To counter SQL injection attacks, be sure to:
● Constrain and sanitize input data.
● Use type safe SQL parameters for data access. These parameters can be used with

stored procedures or dynamically constructed SQL command strings. Parameters
perform type and length checks and also ensure that injected code is treated as
literal data, not executable statements in the database.

● Use an account that has restricted permissions in the database. Ideally, you should
only grant execute permissions to selected stored procedures in the database and
provide no direct table access.

Disclosure of Configuration Data
The most sensitive configuration data used by data access code is the database
connection string. If a compromised connection string includes a user name and
password, the consequences can be greater still.

Vulnerabilities

The following vulnerabilities increase the security risk associated with compromised
configuration data:
● Use of SQL authentication, which requires credentials to be specified in the

connection string
● Embedded connection strings in code
● Clear text connection strings in configuration files
● Failure to encrypt a connection string

Countermeasures

To prevent disclosure of configuration data:
● Use Windows authentication so that connection strings do not contain credentials.
● Encrypt the connection strings and restrict access to the encrypted data.

Disclosure of Sensitive Application Data
Many applications store sensitive data, such as customer credit card numbers. It is
essential to protect the privacy and integrity of this type of data.

Vulnerabilities

Coding practices that can lead to the disclosure of sensitive application data include:
● Storing data with no encryption
● Weak authorization
● Weak encryption

 Chapter 14: Building Secure Data Access 371

Countermeasures

To prevent disclosure of sensitive application data:
● Use strong encryption to secure the data.
● Authorize each caller prior to performing data access so that users are only able to

see their own data.

Disclosure of Database Schema and Connection Details
If your code returns exception details to the client, a malicious user can use the
information to attack the server. Exceptions in data access code can reveal sensitive
information, such as database schema details, the nature of the data store, and SQL
code fragments.

Vulnerabilities

The following vulnerabilities can result in information disclosure:
● Inadequate exception handling
● Weak ASP.NET configuration that allows unhandled exception details to be

returned to the client

Countermeasures

To prevent such disclosure:
● Catch, log, and handle data access exceptions in your data access code.
● Return generic error messages to the caller. This requires appropriate

configuration of the <customErrors> element in the Web.config or Machine.config
configuration file.

Unauthorized Access
With inadequate authorization, users may be able to see another user’s data and may
be able to access other restricted data.

Vulnerabilities

Practices that can allow unauthorized access include:
● Lack of authorization in data access code providing unrestricted access
● Over-privileged database accounts

372 Part III: Building Secure Web Applications

Countermeasures

To prevent unauthorized access:
● Use principal permission demands to authorize the calling user.
● Use code access security permission demands to authorize the calling code.
● Use limited permissions to restrict the application’s login to the database and to

prevent direct table access.

Network Eavesdropping
The deployment architecture of most applications includes a physical separation of
the data access code from the database server. As a result, sensitive data such as
application-specific data or database login credentials must be protected from
network eavesdroppers.

Vulnerabilities

The following practices increase vulnerability to network eavesdropping:
● Clear text credentials passed over the network during SQL authentication
● Unencrypted sensitive application data sent to and from the database server

Countermeasures

To limit vulnerability to network eavesdropping:
● Use Windows authentication to avoid sending credentials over the network.
● Install a server certificate on the database server. This results in the automatic

encryption of SQL credentials over the network.
● Use an SSL connection between the Web server and database server to protect

sensitive application data. This requires a database server certificate.
● Use an IPSec encrypted channel between Web and database server.

Design Considerations
Before you start writing code, there are a number of important issues to consider at
design time. The key considerations are:
● Use Windows authentication.
● Use least privileged accounts.
● Use stored procedures.
● Protect sensitive data in storage.
● Use separate data access assemblies.

 Chapter 14: Building Secure Data Access 373

Use Windows Authentication
Ideally, your design should use Windows authentication for the added security
benefits. With Windows authentication, you do not have to store database connection
strings with embedded credentials, credentials are not passed over the network, and
you benefit from secure account and password management policies. You do
however need to carefully consider which account you will use to connect to
SQL Server using Windows authentication.

For more information, see “Authentication” later in this chapter.

Use Least Privileged Accounts
Your application should use a least privileged account that has limited permissions in
the database. Be sure that the application login to the database is appropriately
authorized and restricted. For details, see “Authorization” later in this chapter.

Using least privileged accounts reduces risk and limits the potential damage if your
account is compromised or malicious code is injected. In the case of SQL injection, the
command executes under the security context defined by the application login and is
subject to the associated permissions that the login has in the database. If you connect
using an overprivileged account — for example, as a member of the SQL Server
sysadmin role — the attacker can perform any operation in any database on the
server. This includes inserting, updating, and deleting data; dropping tables; and
executing operating system commands.

Important Do not connect to SQL Server using the sa account or any account that is a member of
the SQL Server sysadmin or db_owner roles.

Use Stored Procedures
Stored procedures offer performance, maintenance, and security benefits. Use
parameterized stored procedures for data access where possible. The security benefits
include:
● You can restrict the application database login so that it only has permission to

execute specified stored procedures. Granting direct table access is unnecessary.
This helps mitigate the risk posed by SQL injection attacks.

● Length and type checks are performed on all input data passed to the stored
procedure. Also, parameters cannot be treated as executable code. Again, this
mitigates the SQL injection risk.

If you cannot use parameterized stored procedures for some reason and you need to
construct SQL statements dynamically, do so using typed parameters and parameter
placeholders to ensure that input data is length and type checked.

374 Part III: Building Secure Web Applications

Protect Sensitive Data in Storage
Identify stored data that requires guaranteed privacy and integrity. If you store
passwords in database solely for the purposes of verification, consider using a one-
way hash. If the table of passwords is compromised, the hashes cannot be used to
obtain the clear text password.

If you store sensitive user-supplied data such as credit card numbers, use a strong
symmetric encryption algorithm such as Triple DES (3DES) to encrypt the data.
Encrypt the 3DES encryption key using the Win32 Data Protection API (DPAPI), and
store the encrypted key in a registry key with a restricted ACL that only
administrators and your application process account can use.

Why not DPAPI?
While DPAPI is recommended for encrypting connection strings and other secrets
such as account credentials that can be manually recovered and reconstructed in the
event of machine failure, it is less suited to storing data like credit card numbers. This
is because of recoverability issues (if the keys are lost, there is no way to recover the
encrypted data) and Web farm issues. Instead, you should use a symmetric
encryption algorithm such as 3DES and encrypt the encryption key using DPAPI.

The main issues that make DPAPI less suited for storing sensitive data in the
database are summarized below:
● If DPAPI is used with the machine key and you pass

CRYPTPROTECT_LOCAL_MACHINE to the CryptProtectData and
CryptUnprotectData functions, the machine account generates the encryption
keys. This means that each server in a Web farm has a different key, which
prevents one server from being able to access data encrypted by another server.
Also, if the Web server machine is destroyed, the key is lost, and the encrypted
data cannot be recovered from the database.

● If you use the machine key approach, any user on that computer can decrypt the
data (unless you use additional encryption mechanisms).

● If you use DPAPI with a user key and use local user accounts, each local account
on each Web server has a different security identifier (SID) and a different key is
generated, which prevents one server from being able to access data encrypted by
another server.

● If you use DPAPI with a user key and you use a roaming user profile across the
machines in the Web farm, all data will share the same encryption/decryption key.
However, if the domain controller responsible for the roaming user profile account
is damaged or destroyed, a user account with the same SID cannot be recreated,
and you cannot recover the encrypted data from the database.
Also, with a roaming user profile, if someone manages to retrieve the data, it can
be decrypted on any machine in the network, provided that the attacker can run
code under the specific user account. This increases the area for potential attack,
and is not recommended.

 Chapter 14: Building Secure Data Access 375

Use Separate Data Access Assemblies
If you have a choice, avoid placing data access logic directly in ASP.NET pages or in
code-behind files. There are security, reuse, and maintenance advantages to placing
data access logic in a separate assembly and implementing a logical data access layer
that is separate from your application business and presentation logic.

From a security perspective, you can:
● Use a strong name for the assembly, which provides tamperproofing.
● Use sandboxing to isolate your data access code, which is important if your code

needs to support partial-trust callers — for example, partial-trust Web applications.
● Use data access methods and classes that authorize calling code using code

identity permission demands.

For defense in depth, perform principal-based authorization using principal
permission demands in your business components and use code identity permission
demands to authorize the code that calls your data access logic, as shown in
Figure 14.2.

Web App

Principal-Based
Authorization

The caller is authorized
based on role
membership

Business
Classes

Data
Access
Classes

Code Identity-Based
Authorization

The calling code is
authorized based on

identity evidence

Presentation Business Data

Assembly1 Assembly2 Assembly3

Figure 14.2
Separation of presentation, business, and data access layers

For more information about authorization for data access code, see the
“Authorization” section, later in this chapter.

376 Part III: Building Secure Web Applications

Input Validation
Aside from the business need to ensure that your databases maintain valid and
consistent data, you must validate data prior to submitting it to the database to
prevent SQL injection. If your data access code receives its input from other
components inside the current trust boundary and you know the data has already
been validated (for example, by an ASP.NET Web page or business component) then
your data access code can omit extensive data validation. However, make sure you
use SQL parameters in your data access code. These parameters validate input
parameters for type and length. The next section discusses the use of SQL
parameters.

SQL Injection
SQL injection attacks can occur when your application uses input to construct
dynamic SQL statements to access the database. SQL injection attacks can also occur
if your code uses stored procedures that are passed strings which contain unfiltered
user input. SQL injection can result in attackers being able to execute commands in
the database using the application login. The issue is magnified if the application
uses an overprivileged account to connect to the database.

Note Conventional security measures, such as the use of SSL and IPSec, do not protect you
against SQL injection attacks.

Preventing SQL Injection
Use the following countermeasures to prevent SQL injection attacks:
● Constrain input.
● Use type safe SQL parameters.

Constrain Input
Validate input for type, length, format, and range. If you do not expect numeric
values, then do not accept them. Consider where the input comes from. If it is from
a trusted source that you know has performed thorough input validation, you may
choose to omit data validation in your data access code. If the data is from an
untrusted source or for defense in depth, your data access methods and components
should validate input.

 Chapter 14: Building Secure Data Access 377

Use Type Safe SQL Parameters
The Parameters collection in SQL provides type checking and length validation. If
you use the Parameters collection, input is treated as a literal value and SQL does not
treat it as executable code. An additional benefit of using the Parameters collection is
that you can enforce type and length checks. Values outside of the range trigger an
exception. This is a healthy example of defense in depth.

Important SSL does not protect you from SQL injection. Any application that accesses a database
without proper input validation and appropriate data access techniques is susceptible to SQL
injection attacks.

Use stored procedures where you can, and call them with the Parameters collection.

Using the Parameters Collection with Stored Procedures
The following code fragment illustrates the use of the Parameters collection:

SqlDataAdapter myCommand = new SqlDataAdapter("AuthorLogin", conn);
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter parm = myCommand.SelectCommand.Parameters.Add(
 "@au_id", SqlDbType.VarChar, 11);
parm.Value = Login.Text;

In this case, the @au_id parameter is treated as a literal value and not as executable
code. Also, the parameter is type and length checked. In the sample above, the input
value cannot be longer than 11 characters. If the data does not conform to the type or
length defined by the parameter, an exception is generated.

Note that using stored procedures does not necessarily prevent SQL injection. The
important thing to do is use parameters with stored procedures. If you do not use
parameters, your stored procedures can be susceptible to SQL injection if they use
unfiltered input. For example, the following code fragment is vulnerable:

SqlDataAdapter myCommand = new SqlDataAdapter("LoginStoredProcedure '" +
 Login.Text + "'", conn);

Important If you use stored procedures, make sure you use parameters.

378 Part III: Building Secure Web Applications

Using the Parameters Collection with Dynamic SQL
If you cannot use stored procedures, you can still use parameters, as shown in the
following code fragment:

SqlDataAdapter myCommand = new SqlDataAdapter(
"SELECT au_lname, au_fname FROM Authors WHERE au_id = @au_id", conn);
SqlParameter parm = myCommand.SelectCommand.Parameters.Add("@au_id",
 SqlDbType.VarChar, 11);
parm.Value = Login.Text;

Using Parameter Batching
A common misconception is that if you concatenate several SQL statements to send
a batch of statements to the server in a single round trip, then you cannot use
parameters. However, you can use this technique if you make sure that parameter
names are not repeated. You can easily do this by adding a number or some other
unique value to each parameter name during SQL text concatenation.

Using Filter Routines
Another approach used to protect against SQL injection attacks is to develop filter
routines that add escape characters to characters that have special meaning to SQL,
such as the single apostrophe character. The following code fragment illustrates a
filter routine that adds an escape character:

private string SafeSqlLiteral(string inputSQL)
{
 return inputSQL.Replace("'", "''");
}

The problem with routines such as this and the reason why you should not rely on
them completely is that an attacker could use ASCII hexadecimal characters to bypass
your checks. You should, however, filter input as part of your defense in depth
strategy.

Note Do not rely on filtering input.

Using LIKE Clauses
Note that if you are using a LIKE clause, wildcard characters still need escape
characters. The following code fragment illustrates this technique:

s = s.Replace("[", "[[]");
s = s.Replace("%", "[%]");
s = s.Replace("_", "[_]");

 Chapter 14: Building Secure Data Access 379

Authentication
When your application connects to a SQL Server database, you have a choice of
Windows authentication or SQL authentication. Windows authentication is more
secure. If you must use SQL authentication, perhaps because you need to connect to
the database using a number of different accounts and you want to avoid calling
LogonUser, take additional steps to mitigate the additional risks as far as possible.

Note Using LogonUser to create an impersonation token requires the powerful “Act as part of the
operating system” privilege on Microsoft Windows 2000 and so this approach should be avoided.

Consider the following recommendations:
● Use Windows authentication.
● Protect the credentials for SQL authentication.
● Connect using a least privileged account.

Use Windows Authentication
Windows authentication does not send credentials over the network. If you use
Windows authentication for a Web application, in most cases, you use a service
account or a process account, such as the ASPNET account, to connect to the
database. Windows and SQL Server must both recognize the account you use on the
database server. The account must be granted a login to SQL Server and the login
needs to have associated permissions to access a database.

When you use Windows authentication, you use a trusted connection. The following
code fragments show typical connection strings that use Windows authentication.

The example below uses the ADO.NET data provider for SQL Server:

SqlConnection pubsConn = new SqlConnection(
 "server=dbserver; database=pubs; Integrated Security=SSPI;");

The example below uses the ADO.NET data provider for OLE DB data sources:

OleDbConnection pubsConn = new OleDbConnection(
 "Provider=SQLOLEDB; Data Source=dbserver; Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

380 Part III: Building Secure Web Applications

Protect the Credentials for SQL Authentication
If you must use SQL authentication, be sure that the credentials are not sent over the
network in clear text and encrypt the database connection string because it contains
credentials.

To enable SQL Server to automatically encrypt credentials sent over the network,
install a server certificate on the database server. Alternatively, use an IPSec
encrypted channel between the Web and database servers to secure all traffic sent to
and from the database server. To secure the connection string, use DPAPI. For more
information, see “Secure Your Connection String” in the “Configuration
Management” section, later in this chapter.

Connect Using a Least Privileged Account
Your application should connect to the database by using a least privileged account.
If you use Windows authentication to connect, the Windows account should be least
privileged from an operating system perspective and should have limited privileges
and limited ability to access Windows resources. Additionally, whether or not you
use Windows authentication or SQL authentication, the corresponding SQL Server
login should be restricted by permissions in the database.

For more information about how to create a least privileged database account and
the options for connecting an ASP.NET Web application to a remote database using
Windows authentication, see “Data Access” in Chapter 19, “Securing Your ASP.NET
Application and Web Services.”

Authorization
The authorization process establishes if a user can retrieve and manipulate specific
data. There are two approaches: your data access code can use authorization to
determine whether or not to perform the requested operation, and the database can
perform authorization to restrict the capabilities of the SQL login used by your
application.

With inadequate authorization, a user may be able to see the data of another user and
an unauthorized user may be able to access restricted data. To address these threats:
● Restrict unauthorized callers.
● Restrict unauthorized code.
● Restrict the application in the database.

 Chapter 14: Building Secure Data Access 381

Figure 14.3 summarizes the authorization points and techniques that should be used.

Application
Data Access

Code

Data Access Authorization
Principal permission demands

and/or
Identity permission demands

SQL Login

Database User

Database Role

Stored Procs

Tables and
Views

Database Authorization
Restricted access to stored procedures

Login Account

SQL Server

Figure 14.3
Data access authorization, assembly, and database

Notice how the data access code can use permission demands to authorize the calling
user or the calling code. Code identity demands are a feature of .NET code access
security.

To authorize the application in the database, use a least privileged SQL server login
that only has permission to execute selected stored procedures. Unless there are
specific reasons, the application should not be authorized to perform create, retrieve,
update, destroy/delete (CRUD) operations directly on any table.

Note Stored procedures run under the security context of the database system. Although you can
constrain the logical operations of an application by assigning it permissions to particular stored
procedures, you cannot constrain the consequences of the operations performed by the stored
procedure. Stored procedures are trusted code. The interfaces to the stored procedures must be
secured using database permissions.

382 Part III: Building Secure Web Applications

Restrict Unauthorized Callers
You code should authorize users based on a role or identity before it connects to the
database. Role checks are usually used in the business logic of your application, but if
you do not have a clear distinction between business and data access logic, use
principal permission demands on the methods that access the database.

The following attribute ensures that only users who are members of the Manager role
can call the DisplayCustomerInfo method:

[PrincipalPermissionAttribute(SecurityAction.Demand, Role="Manager")]
public void DisplayCustomerInfo(int CustId)
{
}

If you need additional authorization granularity and need to perform role-based logic
inside the data access method, use imperative principal permission demands or
explicit role checks as shown in the following code fragment:

using System.Security;
using System.Security.Permissions;

public void DisplayCustomerInfo(int CustId)
{
 try
 {
 // Imperative principal permission role check to verify that the caller
 // is a manager
 PrincipalPermission principalPerm = new PrincipalPermission(
 null, "Manager");
 // Code that follows is only executed if the caller is a member
 // of the "Manager" role
 }
 catch(SecurityException ex)
 {
 . . .
 }
}

The following code fragment uses an explicit, programmatic role check to ensure that
the caller is a member of the Manager role:

public void DisplayCustomerInfo(int CustId)
{
 if(!Thread.CurrentPrincipal.IsInRole("Manager"))
 {
 . . .
 }
}

 Chapter 14: Building Secure Data Access 383

Restrict Unauthorized Code
By using .NET Framework code access security — specifically, code identity demands
— you can limit the assemblies that can access your data access classes and methods.

For example, if you only want code written by your company or a specific
development organization to be able to use your data access components, use a
StrongNameIdentityPermission and demand that calling assemblies have a strong
name with a specified public key, as shown in the following code fragment:

using System.Security.Permissions;
. . .
[StrongNameIdentityPermission(SecurityAction.LinkDemand,
 PublicKey="002...4c6")]
public void GetCustomerInfo(int CustId)
{
}

To extract a text representation of the public key for a given assembly, use the
following command:

sn -Tp assembly.dll

Note Use an uppercase “T” in the –Tp switch.

Because Web application assemblies are dynamically compiled, you cannot use
strong names for these assemblies. This makes it difficult to restrict the use of a data
access assembly to a specific Web application. The best approach is to develop a
custom permission and demand that permission from the data access component.
Full trust Web applications (or any fully trusted code) can call your component.
Partial trust code, however, can call your data access component only if it has been
granted the custom permission.

For an example implementation of a custom permission, see “How To: Create a
Custom Encryption Permission” in the “How To” section of this guide.

Restrict the Application in the Database
The preferred approach is to create a SQL Server login for the Windows account that
the application uses to connect to the database. Then map the SQL Server login to a
database user in your database. Place the database user in a user-defined database
role and grant permissions to that role. Ideally, you should only grant the role execute
access to the stored procedures used by the application.

For details about how to configure this approach, see “Configuring Data Access for
Your ASP.NET Application” in Chapter 19, “Securing Your ASP.NET Application and
Web Services.”

384 Part III: Building Secure Web Applications

Configuration Management
Database connection strings are the main configuration management concern for data
access code. Carefully consider where these strings are stored and how they are
secured, particularly if they include credentials. To improve your encryption
management security:
● Use Windows authentication.
● Secure your connection strings.
● Secure UDL files with restricted ACLs.

Use Window Authentication
When you use Windows authentication, the credentials are managed for you and the
credentials are not transmitted over the network. You also avoid embedding user
names and passwords in connection strings.

Secure Your Connection Strings
If you need to use SQL authentication, then your connection contains the user name
and password. If an attacker exploits a source code disclosure vulnerability on the
Web server or manages to log on to the server, the attacker can retrieve the connection
strings. Similarly, anyone with a legitimate login to the server can view them. Secure
connection strings using encryption.

Encrypt the Connection String
Encrypt connection strings by using DPAPI. With DPAPI encryption, you avoid
encryption key management issues because the encryption key is managed by the
platform and is tied to either a specific computer or a Windows user account. To use
DPAPI, you must call the Win32 DPAPI functions through P/Invoke.

For details on how to build a managed wrapper class, see “How To: Create a DPAPI
Library” in the “How To” section of “Microsoft patterns & practices Volume I, Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

Store Encrypted Connection Strings Securely
The encrypted connection string can be placed in the registry or in the Web.config or
Machine.config file. If you use a key beneath HKEY_LOCAL_MACHINE, apply the
following ACL to the key:

Administrators: Full Control
Process Account: Read

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

 Chapter 14: Building Secure Data Access 385

Note The process account is determined by the process in which your data access assembly runs.
This is usually the ASP.NET process or an Enterprise Services server process if your solution uses
an Enterprise Services middle tier.

Alternatively you can consider using HKEY_CURRENT_USER, which provides
restricted access. For more information, see the “Registry” section in Chapter 7,
“Building Secure Assemblies.”

Note If you use the Visual Studio.NET database connection Wizards, the connection strings are
stored either as a clear text property value in the Web application code-behind file or in the
Web.config file. Both of these approaches should be avoided.

Although it is potentially less secure than using a restricted registry key, you may
want to store the encrypted string in the Web.config for easier deployment. In this
case, use a custom <appSettings> name-value pair as shown below:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="connectionString" value="AQA..bIE=" />
 </appSettings>
 <system.web>
 ...
 </system.web>
</configuration>

To access the cipher text from the <appSettings> element, use the
ConfigurationSettings class as shown below:

using System.Configuration;
private static string GetConnectionString()
{
 return ConfigurationSettings.AppSettings["connectionString"];
}

Do Not Use Persist Security Info=‘True’ or ‘Yes’
When you include the Persist Security Info attribute in a connection string, it causes
the ConnectionString property to strip out the password from the connection string
before it is returned to the user. The default setting of false (equivalent to omitting
the Persist Security Info attribute) discards the information once the connection is
made to the database.

386 Part III: Building Secure Web Applications

Secure UDL Files with Restricted ACLs
If your application uses external universal data link (UDL) files with the ADO.NET
managed data provider for OLE DB, use NTFS permissions to restrict access. Use the
following restricted ACL:

Administrators: Full Control
Process Account: Read

Note UDL files are not encrypted. A more secure approach is to encrypt the connection string using
DPAPI and store it in a restricted registry key.

Sensitive Data
Many Web applications store sensitive data of one form or another in the database.
If an attacker manages to execute a query against your database, it is imperative that
any sensitive data items — such as credit card numbers — are suitably encrypted.
● Encrypt sensitive data if you need to store it.
● Secure sensitive data over the network.
● Store password hashes with salt.

Encrypt Sensitive Data if You Need to Store It
Avoid storing sensitive data if possible. If you must store sensitive data, encrypt the
data.

Using 3DES Encryption
To store sensitive data, such as credit card numbers, in the database, use a strong
symmetric encryption algorithm such as 3DES.

� During development, to enable 3DES encryption

1. Use the RNGCryptoServiceProvider class to generate a strong (192 bit, 24 byte)
encryption key.

2. Back up the encryption key, and store the backup in a physically secure location.
3. Encrypt the key with DPAPI and store it in a registry key. Use the following ACL

to secure the registry key:

Administrators: Full Control
Process Account (for example ASPNET): Read

 Chapter 14: Building Secure Data Access 387

� At runtime, to store encrypted data in the database

1. Obtain the data to be encrypted.
2. Retrieve the encrypted encryption key from the registry.
3. Use DPAPI to decrypt the encryption key.
4. Use the TripleDESCryptoServiceProvider class with the encryption key to

encrypt the data.
5. Store the encrypted data in the database.

� At runtime, to decrypt the encrypted secrets

1. Retrieve the encrypted data from the database.
2. Retrieve the encrypted encryption key from the registry.
3. Use DPAPI to decrypt the encryption key.
4. Use the TripleDESCryptoServiceProvider class to decrypt the data.

With this process, if the DPAPI account used to encrypt the encryption key is
damaged, the backup of the 3DES key can be retrieved from the backup location and
be encrypted using DPAPI under a new account. The new encrypted key can be
stored in the registry and the data in the database can still be decrypted.

For more information about creating a managed DPAPI library, see “How To: Create
a DPAPI Library” in the “How To” section of “Microsoft patterns & practices Volume I,
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/secnetlpMSDN.asp.

Secure Sensitive Data Over the Network
Sensitive data passed across the network to and from the database server may
include application specific data or database login credentials. To ensure the privacy
and integrity of data over the network, either use a platform-level solution (such as
that provided by a secure datacenter where IPSec encrypted communication channels
are used between servers) or configure your application to establish SSL connections
to the database. The latter approach requires a server certificate installed on the
database server.

For more information about using SSL and IPSec, see “How To: Use IPSec to Provide
Secure Communication Between Two Servers” and “How To: Use SSL to Secure
Communication to SQL Server 2000” in the “How To” section of “Microsoft
patterns & practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

388 Part III: Building Secure Web Applications

Store Password Hashes with Salt
If you need to implement a user store that contains user names and passwords, do
not store the passwords either in clear text or in encrypted format. Instead of storing
passwords, store non-reversible hash values with added salt to mitigate the risk of
dictionary attacks.

Note A salt value is a cryptographically strong random number.

Creating a Salt Value
The following code shows how to generate a salt value by using random number
generation functionality provided by the RNGCryptoServiceProvider class within
the System.Security.Cryptography namespace.

public static string CreateSalt(int size)
{
 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
 byte[] buff = new byte[size];
 rng.GetBytes(buff);
 return Convert.ToBase64String(buff);
}

Creating a Hash Value (with Salt)
The following code fragment shows how to generate a hash value from a supplied
password and salt value.

public static string CreatePasswordHash(string pwd, string salt)
{
 string saltAndPwd = string.Concat(pwd, salt);
 string hashedPwd =
 FormsAuthentication.HashPasswordForStoringInConfigFile(
 saltAndPwd, "SHA1");
 return hashedPwd;
}

More Information
For more information about implementing a user store that stores password hashes
with salt, see “How To: Use Forms Authentication with SQL Server 2000” in the
“How To” section of “Microsoft patterns & practices Volume I, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

 Chapter 14: Building Secure Data Access 389

Exception Management
Exception conditions can be caused by configuration errors, bugs in your code, or
malicious input. Without proper exception management, these conditions can reveal
sensitive information about the location and nature of your data source in addition to
valuable connection details. The following recommendations apply to data access
code:
● Trap and log ADO.NET exceptions.
● Ensure database connections are always closed.
● Use a generic error page in your ASP.NET applications.

Trap and Log ADO.NET Exceptions
Place data access code within a try / catch block and handle exceptions. When you
write ADO.NET data access code, the type of exception generated by ADO.NET
depends on the data provider. For example:
● The SQL Server .NET Framework data provider generates SqlExceptions.
● The OLE DB .NET Framework data provider generates OleDbExceptions.
● The ODBC .NET Framework data provider generates OdbcExceptions.

Trapping Exceptions
The following code uses the SQL Server .NET Framework data provider and shows
how you should catch exceptions of type SqlException.

try
{
 // Data access code
}
catch (SqlException sqlex) // more specific
{
}
catch (Exception ex) // less specific
{
}

390 Part III: Building Secure Web Applications

Logging Exceptions
You should also log details from the SqlException class. This class exposes properties
that contain details of the exception condition. These include a Message property that
describes the error, a Number property that uniquely identifies the type of error, and
a State property that contains additional information. The State property is usually
used to indicate a particular occurrence of a specific error condition. For example, if a
stored procedure generates the same error from more than one line, the State
property indicates the specific occurrence. Finally, an Errors collection contains
SqlError objects that provide detailed SQL server error information.

The following code fragment shows how to handle a SQL Server error condition by
using the SQL Server .NET Framework data provider:

using System.Data;
using System.Data.SqlClient;
using System.Diagnostics;

// Method exposed by a Data Access Layer (DAL) Component
public string GetProductName(int ProductID)
{
 SqlConnection conn = new SqlConnection(
 "server=(local);Integrated Security=SSPI;database=products");
 // Enclose all data access code within a try block
 try
 {
 conn.Open();
 SqlCommand cmd = new SqlCommand("LookupProductName", conn);
 cmd.CommandType = CommandType.StoredProcedure;

 cmd.Parameters.Add("@ProductID", ProductID);
 SqlParameter paramPN =
 cmd.Parameters.Add("@ProductName", SqlDbType.VarChar, 40);
 paramPN.Direction = ParameterDirection.Output;

 cmd.ExecuteNonQuery();
 // The finally code is executed before the method returns
 return paramPN.Value.ToString();
 }
 catch (SqlException sqlex)
 {
 // Handle data access exception condition
 // Log specific exception details
 LogException(sqlex);
 // Wrap the current exception in a more relevant
 // outer exception and re-throw the new exception
 throw new Exception(
 "Failed to retrieve product details for product ID: " +
 ProductID.ToString(), sqlex);
 }

 Chapter 14: Building Secure Data Access 391

(continued)

 finally
 {
 conn.Close(); // Ensures connection is closed
 }
}

// Helper routine that logs SqlException details to the
// Application event log
private void LogException(SqlException sqlex)
{
 EventLog el = new EventLog();
 el.Source = "CustomAppLog";
 string strMessage;
 strMessage = "Exception Number : " + sqlex.Number +
 "(" + sqlex.Message + ") has occurred";
 el.WriteEntry(strMessage);

 foreach (SqlError sqle in sqlex.Errors)
 {
 strMessage = "Message: " + sqle.Message +
 " Number: " + sqle.Number +
 " Procedure: " + sqle.Procedure +
 " Server: " + sqle.Server +
 " Source: " + sqle.Source +
 " State: " + sqle.State +
 " Severity: " + sqle.Class +
 " LineNumber: " + sqle.LineNumber;
 el.WriteEntry(strMessage);
 }
}

Ensure Database Connections Are Closed
If an exception occurs, it is essential that database connections are closed and any
other limited resources are released. Use finally blocks, or the C# using statement to
ensure that connections are closed whether an exception condition occurs or not. The
above code illustrates the use of the finally block. You can also use the C# using
statement, as shown below:

using ((SqlConnection conn = new SqlConnection(connString)))
{
 conn.Open();
 // Connection will be closed if an exception is generated or if control flow
 // leaves the scope of the using statement normally
}

392 Part III: Building Secure Web Applications

Use a Generic Error Page in Your ASP.NET Applications
If your data access code is called by an ASP.NET Web application or Web service,
you should configure the <customErrors> element to prevent exception details
propagating back to the end user. You can also specify a generic error page by using
this element, as shown below.

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

Set mode=“On” for production servers. Only use mode=“Off” when you are
developing and testing software prior to release. Failure to do so results in rich error
information, such as that shown in Figure 14.4, being returned to the end user. This
information can include the database server name, database name, and connection
credentials.

Figure 14.4
Detailed exception information revealing sensitive data

 Chapter 14: Building Secure Data Access 393

Figure 14.4 also shows a number of vulnerabilities in the data access code near the
line that caused the exception. Specifically:
● The connection string is hard-coded.
● The highly privileged sa account is used to connect to the database.
● The sa account has a weak password.
● The SQL command construction is susceptible to SQL injection attack; the input is

not validated, and the code does not use parameterized stored procedures.

Building a Secure Data Access Component
The following code shows a sample implementation of a CheckProductStockLevel
method used to query a products database for stock quantity. The code illustrates a
number of the important security features for data access code introduced earlier in
this chapter.

using System;
using System.Data;
using System.Data.SqlClient;
using System.Text.RegularExpressions;
using System.Collections.Specialized;
using Microsoft.Win32;
using DataProtection;

public static int CheckProductStockLevel(string productCode)
{
 int quantity = 0;
 // (1) Code protected by try/catch block
 try
 {
 // (2) Input validated with regular expression
 // Error messages should be retrieved from the resource assembly to help
 // localization. The Localization code is omitted for the sake of brevity.
 if (Regex.IsMatch(productCode, "^[A-Za-z0-9]{12}$") == false)
 throw new ArgumentException("Invalid product code");
 //(3) The using statement ensures that the connection is closed
 using (SqlConnection conn = new SqlConnection(GetConnectionString()))
 {
 // (4) Use of parameterized stored procedures is a countermeasure for
 // SQL injection attacks
 SqlCommand cmd = new SqlCommand("spCheckProduct", conn);
 cmd.CommandType = CommandType.StoredProcedure;

(continued)

394 Part III: Building Secure Web Applications

(continued)

 // Parameters are type checked
 SqlParameter parm =
 cmd.Parameters.Add("@ProductCode",
 SqlDbType.VarChar,12);
 parm.Value = productCode;
 // Define the output parameter
 SqlParameter retparm = cmd.Parameters.Add("@quantity", SqlDbType.Int);
 retparm.Direction = ParameterDirection.Output;
 conn.Open();
 cmd.ExecuteNonQuery();
 quantity = (int)retparm.Value;
 }
 }
 catch (SqlException sqlex)
 {
 // (5) Full exception details are logged. Generic (safe) error message
 // is thrown back to the caller based on the SQL error code
 // Log and error identification code has been omitted for clarity
 throw new Exception("Error Processing Request");
 }
 catch (Exception ex)
 {
 // Log full exception details
 throw new Exception("Error Processing Request");
 }
 return quantity;
}

// (6) Encrypted database connection string is held in the registry
private static string GetConnectionString()
{
 // Retrieve the cipher text from the registry; the process account must be
 // granted Read access by the key's ACL
 string encryptedString = (string)Registry.LocalMachine.OpenSubKey(
 @"Software\OrderProcessing\")
 .GetValue("ConnectionString");
 // Use the managed DPAPI helper library to decrypt the string
 DataProtector dp = new DataProtector(DataProtector.Store.USE_MACHINE_STORE);
 byte[] dataToDecrypt = Convert.FromBase64String(encryptedString);
 return Encoding.ASCII.GetString(dp.Decrypt(dataToDecrypt,null));
}

 Chapter 14: Building Secure Data Access 395

The code shown above exhibits the following security characteristics (identified by
the numbers in the comment lines).
1. The data access code is placed inside a try/catch block. This is essential to

prevent the return of system level information to the caller in the event of an
exception. The calling ASP.NET Web application or Web service might handle the
exception and return a suitably generic error message to the client, but the data
access code does not rely on this.

2. Input is validated using a regular expression. The supplied product ID is
checked to verify that it contains characters in the range A–Z and 0–9 only, and
does not exceed 12 characters. This is the first in a set of countermeasures
designed to prevent SQL injection attacks.

3. The SqlConnection object is created inside a C# using statement. This ensures
that the connection is closed inside the method regardless of whether an exception
occurs. This mitigates the threat of denial of service attacks, which attempt to use
all available connections to the database. You can achieve similar functionality by
using a finally block.

4. Parameterized stored procedures are used for data access. This is another
countermeasure to prevent SQL injection.

5. Detailed error information is not returned to the client. Exception details are
logged to assist with problem diagnosis.

6. The Encrypted database connection string is stored in the registry. One of the
most secure ways of storing database connection strings is to use DPAPI to
encrypt the string and store the encrypted cipher text in a secured registry key that
has a restricted ACL. (For example, use Administrators: Full Control and ASP.NET
or Enterprise Services process account: Read, depending on which process hosts
the component.)
Other options are discussed in the “Database Connection Strings” section of this
chapter.

Note The code shows how to retrieve the connection string from the registry and then
decrypt it using the managed DPAPI helper library. This library is provided in “How To: Create
a DPAPI Library” in the “How To” section of “Microsoft patterns & practices Volume I, Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp

396 Part III: Building Secure Web Applications

Code Access Security Considerations
All data access is subject to code access security permission demands. Your chosen
ADO.NET managed data provider determines the precise requirements. The
following table shows the permissions that must be granted to your data access
assemblies for each ADO.NET data provider.

Table 14.1 Code Access Security Permissions Required by ADO.NET Data Providers

ADO.NET Data Provider Required Code Access Security Permission
SQL Server SqlClientPermission

Supports partial trust callers including Medium trust Web
applications.

OLE DB OleDbPermission*

Oracle OraclePermission*

ODBC OdbcPermission*

*At the time of writing, the OLE DB, Oracle, and ODBC providers support only Full trust callers on versions 1.0
and 1.1 of the .NET Framework. To use these providers from partial trust Web applications, you must sandbox
your data access code, which necessitates a dedicated data access assembly. For an example that shows how to
sandbox data access code and use the OLE DB data provider from a Medium trust Web application see
Chapter 9, “Using Code Access Security with ASP.NET.”

If you use the ADO.NET SQL Server data provider, your code must be granted the
SqlClientPermission by code access security policy. Full and Medium trust Web
applications have this permission.

Whether or not code is granted the SqlClientPermission determines whether or not
the code can connect to SQL Servers. You can also use the permission to place
restrictions on the use of database connection strings. For example, you can force an
application to use integrated security or you can ensure that if SQL Server security
is used then blank passwords are not accepted. Violations of the rules you specify
through the SqlClientPermission result in runtime security exceptions.

For more information about how to use SqlClientPermission to constrain data
access, see “Data Access” in Chapter 8, “Code Access Security in Practice.”

 Chapter 14: Building Secure Data Access 397

Deployment Considerations
A securely designed and developed data access component can still be vulnerable to
attack if it is not deployed in a secure manner. A common deployment practice is for
the data access code and database to reside on separate servers. The servers are often
separated by an internal firewall, which introduces additional deployment
considerations. Developers and administrators, be aware of the following issues:
● Firewall restrictions
● Connection string management
● Login account configuration
● Logon auditing
● Data privacy and integrity on the network

Firewall Restrictions
If you connect to SQL Server through a firewall, configure the firewall, client, and
server. You configure the client by using the SQL Server Client Network Utility and
you configure the database server by using the Server Network Utility. By default,
SQL Server listens on TCP port 1433, although you can change this. You must open
the chosen port at the firewall.

Depending on the SQL Server authentication mode you choose and your
application’s use of distributed transactions, you may need to open several additional
ports at the firewall:
● If your application uses Windows authentication to connect to SQL Server, the

necessary ports to support Kerberos or NTLM authentication must be open.
For networks that do not use Active Directory, TCP port 139 is usually required for
Windows authentication. For more information about port requirements, see
TechNet articles, “TCP and UDP Port Assignments,” at http://www.microsoft.com
/technet/prodtechnol/windows2000serv/reskit/tcpip/part4/tcpappc.asp, and “Security
Considerations for Administrative Authority,” at http://www.microsoft.com/technet
/security/bestprac/bpent/sec2/seconaa.asp

● If your application uses distributed transactions, for example automated COM+
transactions, you might also need to configure your firewall to allow DTC traffic
to flow between separate DTC instances, and between the DTC and resource
managers such as SQL Server.

For full configuration details, see the “Ports” section in Chapter 18, “Securing Your
Database Server.”

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/tcpip/part4/tcpappc.asp
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/tcpip/part4/tcpappc.asp
http://www.microsoft.com/technet/security/bestprac/bpent/sec2/seconaa.asp
http://www.microsoft.com/technet/security/bestprac/bpent/sec2/seconaa.asp

398 Part III: Building Secure Web Applications

Connection String Management
Many applications store connection strings in code primarily for performance
reasons. However, the performance benefit is negligible, and use of file system
caching helps to ensure that storing connection strings in external files gives
comparable performance. Using external files to store connection strings is superior
for system administration.

For increased security, the recommended approach is to use DPAPI to encrypt the
connection string. This is particularly important if your connection string contains
user names and passwords. Then, decide where to store the encrypted string. The
registry is a secure location particularly if you use HKEY_CURRENT_USER, because
access is limited to processes that run under the associated user account. An
alternative for easier deployment is to store the encrypted string in the Web.config
file. Both approaches were discussed in the “Configuration Management” section
earlier in this chapter.

Login Account Configuration
It is essential that your application uses a least privileged account to connect to the
database. This is one of the primary threat mitigation techniques for SQL injection
attacks.

As a developer you must communicate to the database administrator the precise
stored procedures and (possibly) tables that the application’s login needs to access.
Ideally, you should only allow the application’s login to have execute permissions on
a restricted set of stored procedures that are deployed along with the application.

Use strong passwords for the SQL or Windows account or accounts used by the
application to connect to the database.

See the “Authorization” section earlier in this chapter for the recommended
authorization strategy for the application account in the database.

Logon Auditing
You should configure SQL Server to log failed login attempts and possibly successful
login attempts. Auditing failed login attempts is helpful to detect an attacker who is
attempting to discover account passwords.

For more information about how to configure SQL Server auditing, see Chapter 18,
“Securing Your Database Server.”

 Chapter 14: Building Secure Data Access 399

Data Privacy and Integrity on the Network
If you use SQL authentication to connect to SQL Server, ensure that login credentials
are not exposed over the network. Either install a certificate on the database server
(which causes SQL Server to encrypt the credentials) or use an IPSec encrypted
channel to the database.

The use of IPSec or SSL to the database is recommended to protect sensitive
application level data passed to and from the database. For more information, see
Chapter 18, “Securing Your Database Server.”

Summary
This chapter showed the top threats to data access code and highlighted the common
vulnerabilities. SQL injection is one of the main threats to be aware of. Unless you use
the correct countermeasures discussed in this chapter, an attacker could exploit your
data access code to run arbitrary commands in the database. Conventional security
measures such as firewalls and SSL provide no defense to SQL injection attacks. You
should thoroughly validate your input and use parameterized stored procedures as a
minimum defense.

Additional Resources
For more information, see the following resources:
● For a printable checklist, see “Checklist: Securing Data Access” in the “Checklists”

section of this guide.
● For information on securing your developer workstation, see “How To: Secure

Your Developer Workstation” in the “How To” section of this guide.
● For information on using SSL with SQL Server, see “How To: Use SSL to Secure

Communication with SQL Server 2000,” in the “How To” section of “Microsoft
patterns & practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library/en-us
/dnnetsec/html/SecNetHT19.asp.

● For information on using IPSec, see “How To: Use IPSec to Provide Secure
Communication Between Two Servers” in the “How To” section of “Microsoft
patterns & practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library/en-us
/dnnetsec/html/SecNetHT18.asp.

● For information on using DPAPI, see “How To: Create a DPAPI Library” in the
“How To” section of “Microsoft patterns & practices Volume I, Building Secure
ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp.

http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT19.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT18.asp
http://msdn.microsoft.com/library/en-us/dnnetsec/html/SecNetHT07.asp

Part IV
Securing Your Network,
Host, and Application

In This Part:
● Securing Your Network
● Securing Your Web Server
● Securing Your Application Server
● Securing Your Database Server
● Securing Your ASP.NET Application and Web Services
● Hosting Multiple Web Applications

15
Securing Your Network

In This Chapter
● Securing your network
● Identifying network threats and describing countermeasures
● Showing secure router, firewall, and switch configurations
● Providing a snapshot of a secure network

Overview
The network is the entry point to your application. It provides the first gatekeepers
that control access to the various servers in your environment. Servers are protected
with their own operating system gatekeepers, but it is important not to allow them to
be deluged with attacks from the network layer. It is equally important to ensure that
network gatekeepers cannot be replaced or reconfigured by imposters. In a nutshell,
network security involves protecting network devices and the data that they forward.

The basic components of a network, which act as the front-line gatekeepers, are the
router, the firewall, and the switch. Figure 15.1 shows these core components.

404 Part IV: Securing Your Network, Host, and Application

Data
Store

Database
Server

Web Server

Router Switch

Isolates Traffic
Filtering

Firewall

Internet

Filtering
Port Blocking

IDS

Filtering
Port Blocking

IDS

Figure 15.1
Network components: router, firewall, and switch

How to Use This Chapter
This chapter provides a methodology and steps for securing a network. The
methodology can be adapted for your own scenario. The steps put the methodology
into practice.

To get most out of this chapter:
● Read Chapter 2, “Threats and Countermeasures.” This will give you a better

understanding of potential threats to Web applications.
● Use the snapshot. Table 15.3, which is at the end of this chapter, provides a

snapshot of a secure network. Use this table as a reference when configuring your
network.

● Use the Checklist. Use “Checklist: Securing Your Network” in the “Checklist”
section of this guide, to quickly evaluate and scope the required steps. The
checklist will also help you complete the individual steps.

● Use vendor details to implement the guidance. The guidance in this chapter is
not specific to specific network hardware or software vendors. Consult your
vendor’s documentation for specific instructions on how to implement the
countermeasures given in this chapter.

 Chapter 15: Securing Your Network 405

Threats and Countermeasures
An attacker looks for poorly configured network devices to exploit. Common
vulnerabilities include weak default installation settings, wide-open access controls,
and unpatched devices. The following are high-level network threats:
● Information gathering
● Sniffing
● Spoofing
● Session hijacking
● Denial of service

With knowledge of the threats that can affect the network, you can apply effective
countermeasures.

Information Gathering
Information gathering can reveal detailed information about network topology,
system configuration, and network devices. An attacker uses this information to
mount pointed attacks at the discovered vulnerabilities.

Vulnerabilities

Common vulnerabilities that make your network susceptible to an attack include:
● The inherently insecure nature of the TCP/IP protocol suite
● Configuration information provided by banners
● Exposed services that should be blocked

Attacks

Common information-gathering attacks include:
● Using Tracert to detect network topology
● Using Telnet to open ports for banner grabbing
● Using port scans to detect open ports
● Using broadcast requests to enumerate hosts on a subnet

Countermeasures

You can employ the following countermeasures:
● Use generic service banners that do not give away configuration information such

as software versions or names.
● Use firewalls to mask services that should not be publicly exposed.

406 Part IV: Securing Your Network, Host, and Application

Sniffing
Sniffing, also called eavesdropping, is the act of monitoring network traffic for data,
such as clear-text passwords or configuration information. With a simple packet
sniffer, all plaintext traffic can be read easily. Also, lightweight hashing algorithms
can be cracked and the payload that was thought to be safe can be deciphered.

Vulnerabilities

Common vulnerabilities that make your network susceptible to data sniffing include:
● Weak physical security
● Lack of encryption when sending sensitive data
● Services that communicate in plain text or weak encryption or hashing

Attacks

The attacker places packet sniffing tools on the network to capture all traffic.

Countermeasures

Countermeasures include the following:
● Strong physical security that prevents rogue devices from being placed on the

network
● Encrypted credentials and application traffic over the network

Spoofing
Spoofing, also called identity obfuscation, is a means to hide one’s true identity on the
network. A fake source address is used that does not represent the actual packet
originator’s address. Spoofing can be used to hide the original source of an attack or
to work around network access control lists (ACLs) that are in place to limit host
access based on source address rules.

Vulnerabilities

Common vulnerabilities that make your network susceptible to spoofing include:
● The inherently insecure nature of the TCP/IP protocol suite
● Lack of ingress and egress filtering. Ingress filtering is the filtering of any IP

packets with untrusted source addresses before they have a chance to enter and
affect your system or network. Egress filtering is the process of filtering outbound
traffic from your network.

Attacks

An attacker can use several tools to modify outgoing packets so that they appear to
originate from an alternate network or host.

 Chapter 15: Securing Your Network 407

Countermeasures

You can use ingress and egress filtering on perimeter routers.

Session Hijacking
With session hijacking, also known as man in the middle attacks, the attacker uses an
application that masquerades as either the client or the server. This results in either
the server or the client being tricked into thinking that the upstream host is the
legitimate host. However, the upstream host is actually an attacker’s host that is
manipulating the network so that it appears to be the desired destination. Session
hijacking can be used to obtain logon information that can then be used to gain access
to a system or to confidential information.

Vulnerabilities

Common vulnerabilities that make your network susceptible to session hijacking
include:
● Weak physical security
● The inherent insecurity of the TCP/IP protocol suite
● Unencrypted communication

Attacks

An attacker can use several tools to combine spoofing, routing changes, and packet
manipulation.

Countermeasures

Countermeasures include the following:
● Session encryption
● Stateful inspection at the firewall

Denial of Service
A denial of service attack is the act of denying legitimate users access to a server or
services. Network-layer denial of service attacks usually try to deny service by
flooding the network with traffic, which consumes the available bandwidth and
resources.

Vulnerabilities

Vulnerabilities that increase the opportunities for denial of service include:
● The inherent insecurity of the TCP/IP protocol suite
● Weak router and switch configuration
● Unencrypted communication
● Service software bugs

408 Part IV: Securing Your Network, Host, and Application

Attacks
● Common denial of service attacks include:
● Brute force packet floods, such as cascading broadcast attacks
● SYN flood attacks
● Service exploits, such as buffer overflows

Countermeasures

Countermeasures include:
● Filtering broadcast requests
● Filtering Internet Control Message Protocol (ICMP) requests
● Patching and updating of service software

Methodology
Security begins with an understanding of how the system or network that needs to be
secured works. This chapter breaks down network security by devices, which allows
you to focus on single points of configuration.

In keeping with this guide’s philosophy, this chapter uses the approach of analyzing
potential threats; without these analyses, it’s impossible to properly apply security.

The network infrastructure can be broken into the following three layers: access,
distribution, and core. These layers contain all of the hardware necessary to control
access to and from internal and external resources. The chapter focuses on the
software that drives the network hardware that is responsible for delivering ASP.NET
applications. The recommendations apply to an Internet or intranet-facing Web zone
and therefore might not apply to your internal or corporate network.

The following are the core network components:
● Router
● Firewall
● Switch

Router
The router is the outermost security gate. It is responsible for forwarding IP packets
to the networks to which it is connected. These packets can be inbound requests from
Internet clients to your Web server, request responses, or outgoing requests from
internal clients. The router should be used to block unauthorized or undesired traffic
between networks. The router itself must also be secured against reconfiguration by
using secure administration interfaces and ensuring that it has the latest software
patches and updates applied.

 Chapter 15: Securing Your Network 409

Firewall
The role of the firewall is to block all unnecessary ports and to allow traffic only from
known ports. The firewall must be capable of monitoring incoming requests to
prevent known attacks from reaching the Web server. Coupled with intrusion
detection, the firewall is a useful tool for preventing attacks and detecting intrusion
attempts, or in worst-case scenarios, the source of an attack.

Like the router, the firewall runs on an operating system that must be patched
regularly. Its administration interfaces must be secured and unused services must be
disabled or removed.

Switch
The switch has a minimal role in a secure network environment. Switches are
designed to improve network performance to ease administration. For this reason,
you can easily configure a switch by sending specially formatted packets to it. For
more information, see “Switch Considerations” later in this chapter.

Router Considerations
The router is the very first line of defense. It provides packet routing, and it can also
be configured to block or filter the forwarding of packet types that are known to be
vulnerable or used maliciously, such as ICMP or Simple Network Management
Protocol (SNMP).

If you don’t have control of the router, there is little you can do to protect your
network beyond asking your ISP what defense mechanisms they have in place on
their routers.

The configuration categories for the router are:
● Patches and updates
● Protocols
● Administrative access
● Services
● Auditing and logging
● Intrusion detection

Patches and Updates
Subscribe to alert services provided by the manufacturer of your networking
hardware so that you can stay current with both security issues and service patches.
As vulnerabilities are found — and they inevitably will be found — good vendors
make patches available quickly and announce these updates through e-mail or on
their Web sites. Always test the updates before implementing them in a production
environment.

410 Part IV: Securing Your Network, Host, and Application

Protocols
Denial of service attacks often take advantage of protocol-level vulnerabilities, for
example, by flooding the network. To counter this type of attack, you should:
● Use ingress and egress filtering.
● Screen ICMP traffic from the internal network.

Use Ingress and Egress Filtering
Spoofed packets are representative of probes, attacks, and a knowledgeable attacker.
Incoming packets with an internal address can indicate an intrusion attempt or probe
and should be denied entry to the perimeter network. Likewise, set up your router
to route outgoing packets only if they have a valid internal IP address. Verifying
outgoing packets does not protect you from a denial of service attack, but it does
keep such attacks from originating from your network.

This type of filtering also enables the originator to be easily traced to its true source
since the attacker would have to use a valid — and legitimately reachable — source
address. For more information, see “Network Ingress Filtering: Defeating
Denial of Service Attacks Which Employ IP Source Address Spoofing”
at http://www.rfc-editor.org/rfc/rfc2267.txt.

Screen ICMP Traffic from the Internal Network
ICMP is a stateless protocol that sits on top of IP and allows host availability
information to be verified from one host to another. Commonly used ICMP messages
are shown in Table 15.1.

Table 15.1 Commonly Used ICMP Messages

Message Description
Echo request Determines whether an IP node (a host or a router) is available on the

network

Echo reply Replies to an ICMP echo request

Destination unreachable Informs the host that a datagram cannot be delivered

Source quench Informs the host to lower the rate at which it sends datagrams because
of congestion

Redirect Informs the host of a preferred route

Time exceeded Indicates that the time to live (TTL) of an IP datagram has expired

http://www.rfc-editor.org/rfc/rfc2267.txt

 Chapter 15: Securing Your Network 411

Blocking ICMP traffic at the outer perimeter router protects you from attacks such as
cascading ping floods. Other ICMP vulnerabilities exist that justify blocking this
protocol. While ICMP can be used for troubleshooting, it can also be used for
network discovery and mapping. Therefore, control the use of ICMP. If you must
enable it, use it in echo-reply mode only.

Prevent TTL Expired Messages with Values of 1 or 0
Trace routing uses TTL values of 1 and 0 to count routing hops between a client and a
server. Trace routing is a means to collect network topology information. By blocking
packets of this type, you prevent an attacker from learning details about your
network from trace routes.

Do Not Receive or Forward Directed Broadcast Traffic
Directed broadcast traffic can be used to enumerate hosts on a network and as a
vehicle for a denial of service attack. For example, by blocking specific source
addresses, you prevent malicious echo requests from causing cascading ping floods.
Source addresses that should be filtered are shown in Table 15.2.

Table 15.2 Source Addresses That Should be Filtered

Source address Description
0.0.0.0/8 Historical broadcast

10.0.0.0/8 RFC 1918 private network

127.0.0.0/8 Loopback

169.254.0.0/16 Link local networks

172.16.0.0/12 RFC 1918 private network

192.0.2.0/24 TEST-NET

192.168.0.0/16 RFC 1918 private network

224.0.0.0/4 Class D multicast

240.0.0.0/5 Class E reserved

248.0.0.0/5 Unallocated

255.255.255.255/32 Broadcast

For more information on broadcast suppression using Cisco routers,
see “Configuring Broadcast Suppression” on the Cisco Web site
at http://www.cisco.com/en/US/products/hw/switches/ps708
/products_configuration_guide_chapter09186a00800eb778.html.

http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_guide_chapter09186a00800eb778.html
http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_guide_chapter09186a00800eb778.html

412 Part IV: Securing Your Network, Host, and Application

Administrative Access
From where will the router be accessed for administration purposes? Decide over
which interfaces and ports an administration connection is allowed and from which
network or host the administration is to be performed. Restrict access to those
specific locations. Do not leave an Internet-facing administration interface available
without encryption and countermeasures to prevent hijacking. In addition:
● Disable unused interfaces.
● Apply strong password policies.
● Use static routing.
● Audit Web facing administration interfaces.

Disable Unused Interfaces
Only required interfaces should be enabled on the router. An unused interface is not
monitored or controlled, and it is probably not updated. This might expose you to
unknown attacks on those interfaces.

Apply Strong Password Policies
Brute force password software can launch more than just dictionary attacks. It can
discover common passwords where a letter is replaced by a number. For example,
if “p4ssw0rd” is used as a password, it can be cracked. Always use uppercase and
lowercase, number, and symbol combinations when creating passwords.

Use Static Routing
Static routing prevents specially formed packets from changing routing tables on
your router. An attacker might try to change routes to cause denial of service or to
forward requests to a rogue server. By using static routes, an administrative interface
must first be compromised to make routing changes.

Audit Web Facing Administration Interfaces
Also determine whether internal access can be configured. When possible, shut down
the external administration interface and use internal access methods with ACLs.

Services
On a deployed router, every open port is associated with a listening service. To
reduce the attack surface area, default services that are not required should be shut
down. Examples include bootps and Finger, which are rarely required. You should
also scan your router to detect which ports are open.

 Chapter 15: Securing Your Network 413

Auditing and Logging
By default, a router logs all deny actions; this default behavior should not be
changed. Also secure log files in a central location. Modern routers have an array of
logging features that include the ability to set severities based on the data logged.
An auditing schedule should be established to routinely inspect logs for signs of
intrusion and probing.

Intrusion Detection
With restrictions in place at the router to prevent TCP/IP attacks, the router should
be able to identify when an attack is taking place and notify asystem administrator
of the attack.

Attackers learn what your security priorities are and attempt to work around them.
Intrusion Detection Systems (IDSs) can show where the perpetrator is attempting
attacks.

Firewall Considerations
A firewall should exist anywhere you interact with an untrusted network, especially
the Internet. It is also recommended that you separate your Web servers from
downstream application and database servers with an internal firewall.

After the router, with its broad filters and gatekeepers, the firewall is the next point
of attack. In many (if not most) cases, you do not have administrative access to the
upstream router. Many of the filters and ACLs that apply to the router can also be
implemented at the firewall. The configuration categories for the firewall include:
● Patches and updates
● Filters
● Auditing and logging
● Perimeter networks
● Intrusion detection

Patches and Updates
Subscribe to alert services provided by the manufacturer of your firewall and
operating system to stay current with both security issues and service patches.

414 Part IV: Securing Your Network, Host, and Application

Filters
Filtering published ports on a firewall can be an effective and efficient method of
blocking malicious packets and payloads. Filters range from simple packet filters that
restrict traffic at the network layer based on source and destination IP addresses and
port numbers, to complex application filters that inspect application-specific
payloads. A defense in depth approach that uses layered filters is a very effective way
to block attacks. There are six common types of firewall filters:
● Packet filters

These can filter packets based on protocol, source or destination port number and
source or destination address, or computer name. IP packet filters are static, and
communication through a specific port is either allowed or blocked. Blocked
packets are usually logged, and a secure packet filter denies by default.
At the network layer, the payload is unknown and might be dangerous. More
intelligent types of filtering must be configured to inspect the payload and make
decisions based on access control rules.

● Circuit-level filters
These inspect sessions rather than payload data. An inbound or outbound client
makes a request directly against the firewall/gateway, and in turn the gateway
initiates a connection to the server and acts as a broker between the two
connections. With knowledge of application connection rules, circuit level filters
ensure valid interactions. They do not inspect the actual payload, but they do
count frames to ensure packet integrity and prevent session hijacking and
replaying.

● Application filters
Smart application filters can analyze a data stream for an application and provide
application-specific processing, including inspecting, screening or blocking,
redirecting, and even modifying the data as it passes through the firewall.
Application filters protect against attacks such as the following:
● Unsafe SMTP commands
● Attacks against internal DNS servers.
● HTTP-based attacks (for example, Code Red and Nimda, which use

application-specific knowledge)
For example, an application filter can block an HTTP DELETE, but allow an HTTP
GET. The capabilities of content screening, including virus detection, lexical
analysis, and site categorization, make application filters very effective in Web
scenarios both as security measures and in enforcement of business rules.

 Chapter 15: Securing Your Network 415

● Stateful inspection
Application filters are limited to knowledge of the payload of a packet and
therefore make filtering decisions based only on the payload. Stateful inspection
uses both the payload and its context to determine filtering rules. Using the
payload and the packet contents allow stateful inspection rules to ensure session
and communication integrity. The inspection of packets, their payload, and
sequence limits the scalability of stateful inspection.

● Custom application filters
These filters ensure the integrity of application server/client communication.

When you use filters at multiple levels of the network stack, it helps make your
environment more secure. For example, a packet filter can be used to block IP traffic
destined for any port other than port 80, and an application filter might further
restrict traffic based on the nature of the HTTP verb. For example, it might block
HTTP DELETE verbs.

Logging and Auditing
Logging all incoming and outgoing requests — regardless of firewall rules — allows
you to detect intrusion attempts or, even worse, successful attacks that were
previously undetected. Historically, network administrators sometimes had to
analyze audit logs to determine how an attack succeeded. In those cases,
administrators were able to apply solutions to the vulnerabilities, learn how they
were compromised, and discover other vulnerabilities that existed.

Apply the following policies for logging and log auditing.
● Log all traffic that passes through the firewall.
● Maintain healthy log cycling that allows quick data analysis. The more data you

have, the larger the log file size.
● Make sure the firewall clock is synchronized with the other network hardware.

Perimeter Networks
A firewall should exist anywhere your servers interact with an untrusted network. If
your Web servers connect to a back-end network, such as a bank of database servers
or corporate network, a screen should exist to isolate the two networks. While the
Web zone has the greatest degree of exposure, a compromise in the Web zone should
not result in the compromise of downstream networks.

By default, the perimeter network should block all outbound connections except
those that are expected.

416 Part IV: Securing Your Network, Host, and Application

Advantages of a Perimeter Network
The perimeter network provides the following advantages:
● Hosts are not directly exposed to untrusted networks.
● Exposed or published services are the only point of external attack.
● Security rules can be enforced for access between networks.

Disadvantages of a Perimeter Network
The disadvantages of a perimeter network include:
● Network complexity
● IP address allocation and management
● Requirement that the application architecture accommodate the perimeter

network design

Switch Considerations
A switch is responsible for forwarding packets directly to a host or network segment,
rather than sharing the data with the entire network. Therefore, traffic is not shared
between switched segments. This is a preventive measure against packet sniffing
between networks. An attacker can circumvent this security by reconfiguring
switching rules using easily accessed administrative interfaces, including known
account names and passwords and SNMP packets.

The following configuration categories are used to ensure secure switch
configuration:
● Patches and updates
● Virtual Local Area Networks (VLANs)
● Insecure defaults
● Services
● Encryption

Patches and Updates
Patches and updates must be tested and installed as soon as they are available.

 Chapter 15: Securing Your Network 417

VLANs
Virtual LANs allow you to separate network segments and apply access control
based on security rules. However, a VLAN enhances network performance, but
doesn’t necessarily provide security. Limit the use of VLANs to the perimeter
network (behind the firewall) since many insecure interfaces exist for ease of
administration. For more information about VLANs, see the article “Configuring
VLANS” on the Cisco Web site.

Insecure Defaults
To make sure that insecure defaults are secured, change all factory default passwords
and SNMP community strings to prevent network enumeration or total control of the
switch. Also investigate and identify potentially undocumented accounts and change
the default names and passwords. These types of accounts are often found on well-
known switch types and are well publicized and known by attackers.

Services
Make sure that all unused services are disabled. Also make sure that Trivial File
Transfer Protocol (TFTP) is disabled, Internet-facing administration points are
removed, and ACLs are configured to limit administrative access.

Encryption
Although it is not traditionally implemented at the switch, data encryption over the
wire ensures that sniffed packets are useless in cases where a monitor is placed on the
same switched segment or where the switch is compromised, allowing sniffing across
segments.

Additional Considerations
The following considerations can further improve network security:
● Ensure that clocks are synchronized on all network devices. Set the network time

and have all sources synchronized to a known, reliable time source.
● Use Terminal Access Controller Access Control System (TACACS) or Remote

Authentication Dial-In User Service (RADIUS) authentication for highly secure
environments as a means of limiting administrative access to the network.

● Define an IP network that can be easily secured using ACLs at subnets or network
boundaries whenever possible.

418 Part IV: Securing Your Network, Host, and Application

Snapshot of a Secure Network
Table 15.3 provides a snapshot of the characteristics of a secure network. The security
settings are abstracted from industry security experts and real-world applications in
secure deployments. You can use the snapshot as a reference point when evaluating
your own solution.

Table 15.3 Snapshot of a Secure Network

Component Characteristic
Router

Patches and Updates Router operating system is patched with up-to-date software.

Protocols Unused protocols and ports are blocked.

Ingress and egress filtering is implemented.

ICMP traffic is screened from the internal network.

TTL expired messages with values of 1 or 0 are blocked (route tracing is
disabled).

Directed broadcast traffic is not forwarded.

Large ping packets are screened.

Routing Information Protocol (RIP) packets, if used, are blocked at the
outermost router.

Administrative access Unused management interfaces on the router are disabled.

A strong administration password policy is enforced.

Static routing is used.

Web-facing administration is disabled.

Services Unused services are disabled (for example bootps and Finger).

Auditing and logging Logging is enabled for all denied traffic.

Logs are centrally stored and secured.

Auditing against the logs for unusual patterns is in place.

Intrusion detection IDS is in place to identify and notify of an active attack.

Firewall

Patches and updates Firewall software and OS are patched with latest security updates.

Filters Packet filtering policy blocks all but required traffic in both directions.

Application-specific filters are in place to restrict unnecessary traffic.

 Chapter 15: Securing Your Network 419

Table 15.3 Snapshot of a Secure Network (continued)
Component Characteristic
Logging and auditing All permitted traffic is logged.

Denied traffic is logged.

Logs are cycled with a frequency that allows quick data analysis.

All devices on the network are synchronized to a common time source.

Perimeter networks Perimeter network is in place if multiple networks require access to
servers.

Firewall is placed between untrusted networks.

Switch

Patches and updates Latest security patches are tested and installed or the threat from known
vulnerabilities is mitigated.

VLANs Make sure VLANs are not overused or overly trusted.

Insecure defaults All factory passwords are changed.

Minimal administrative interfaces are available.

Access controls are configured to secure SNMP community strings.

Services Unused services are disabled.

Encryption Switched traffic is encrypted.

Other

Log synchronization All clocks on devices with logging capabilities are synchronized.

Administrative access to
the network

TACACS or RADIUS is used to authenticate administrative users.

Network ACLs The network is structured so ACLs can be placed on hosts and networks.

Summary
Network security involves protecting network devices and the data that they forward
to provide additional security for host servers. The primary network components that
require secure configuration are the router, firewall, and switch.

This chapter has highlighted the top threats to your network infrastructure and has
presented security recommendations and secure configurations that enable you to
address these threats.

420 Part IV: Securing Your Network, Host, and Application

Additional Resources
For more information, see the following articles:
● “Network Ingress Filtering” at http://www.rfc-editor.org/rfc/rfc2267.txt.
● “Improving Security on Cisco Routers” at http://www.cisco.com/en/US/tech/tk648

/tk361/technologies_tech_note09186a0080120f48.shtml.
● “Configuring Broadcast Suppression” at http://www.cisco.com/en/US/products/hw

/switches/ps708/products_configuration_guide_chapter09186a00800eb778.html.
● “Cisco IOS Intrusion Detection System Software App Overview”

at http://www.cisco.com/en/US/netsol/ns110/ns170/ns171/ns292
/networking_solutions_white_paper09186a008010e5c8.shtml.

● ”Configuring VLANs” at http://www.cisco.com/en/US/products/hw/switches/ps663
/products_configuration_guide_chapter09186a00800e47e1.html#1020847.

http://www.rfc-editor.org/rfc/rfc2267.txt
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_note09186a0080120f48.shtml
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_note09186a0080120f48.shtml
http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_guide_chapter09186a00800eb778.html
http://www.cisco.com/en/US/products/hw/switches/ps708/products_configuration_guide_chapter09186a00800eb778.html
http://www.cisco.com/en/US/netsol/ns110/ns170/ns171/ns292/networking_solutions_white_paper09186a008010e5c8.shtml
http://www.cisco.com/en/US/netsol/ns110/ns170/ns171/ns292/networking_solutions_white_paper09186a008010e5c8.shtml
http://www.cisco.com/en/US/products/hw/switches/ps663/products_configuration_guide_chapter09186a00800e47e1.html#1020847
http://www.cisco.com/en/US/products/hw/switches/ps663/products_configuration_guide_chapter09186a00800e47e1.html#1020847

16
Securing Your Web Server

In This Chapter
● A proven methodology to secure Web servers
● An explanation of the most common Web server security threats
● Steps to secure your server
● A reference table that illustrates a secure Web server

Overview
A secure Web server provides a protected foundation for hosting your Web
applications, and Web server configuration plays a critical role in your Web
application’s security. Badly configured virtual directories, a common mistake, can
lead to unauthorized access. A forgotten share can provide a convenient back door,
while an overlooked port can be an attacker’s front door. Neglected user accounts
can permit an attacker to slip by your defenses unnoticed.

What makes a Web server secure? Part of the challenge of securing your Web server
is recognizing your goal. As soon as you know what a secure Web server is, you can
learn how to apply the configuration settings to create one. This chapter provides a
systematic, repeatable approach that you can use to successfully configure a secure
Web server.

The chapter begins by reviewing the most common threats that affect Web servers.
It then uses this perspective to create a methodology. The chapter then puts the
methodology into practice, and takes a step-by-step approach that shows you how to
improve your Web server’s security. While the basic methodology is reusable across
technologies, the chapter focuses on securing a Web server running the Microsoft
Windows 2000 operating system and hosting the Microsoft .NET Framework.

422 Part IV: Securing Your Network, Host, and Application

How to Use This Chapter
This chapter provides a methodology and the steps required to secure your Web
server. You can adapt the methodology for your own situation. The steps are modular
and demonstrate how you can put the methodology in practice. You can use these
procedures on existing Web servers or on new ones.

To gain the most from this chapter:
● Read Chapter 2, “Threats and Countermeasures.” This will give you a broader

understanding of potential threats to Web applications.
● Use the Snapshot. The section “Snapshot of a Secure Web Server” lists and

explains the attributes of a secure Web server. It reflects input from a variety of
sources including customers, industry experts, and internal Microsoft
development and support teams. Use the snapshot table as a reference when
configuring your server.

● Use the Checklist. “Checklist: Securing Your Web Server” in the “Checklist”
section of this guide provides a printable job aid for quick reference. Use the task-
based checklist to quickly evaluate the scope of the required steps and to help you
work through the individual steps.

● Use the “How To” Section. The “How To” section in this guide includes the
following instructional articles:
● “How To: Use URLScan”
● “How To: Use Microsoft Baseline Security Analyzer”
● “How To: Use IISLockdown”

Threats and Countermeasures
The fact that an attacker can strike remotely makes a Web server an appealing target.
Understanding threats to your Web server and being able to identify appropriate
countermeasures permits you to anticipate many attacks and thwart the ever-
growing numbers of attackers.

The main threats to a Web server are:
● Profiling
● Denial of service
● Unauthorized access
● Arbitrary code execution
● Elevation of privileges
● Viruses, worms, and Trojan horses

 Chapter 16: Securing Your Web Server 423

Figure 16.1 summarizes the more prevalent attacks and common vulnerabilities.

SQL
Server

Web Server
Browser

Firewall Firewall

Web Server Vulnerabilities
Poor patch management

Unnecessary services and protocols
Poor access control

No auditing
Vulnerable TCP/IP stack
Over privileged accountsArbitrary Code

Execution
Cross Site
Scripting

SQL Injection
Path Traversal

Viruses, Worms
and Trojan

Horses
(NIMDA

Code Red,
others)

Profiling
Port Scans

Ping Sweeps
Banner Grabbing

NetBIOS -
Enumeration

Information
Disclosure

Source Code
Disclosure

Denial of Service
Buffer Overflows

SYN Floods

Figure 16.1
Prominent Web server threats and common vulnerabilities

Profiling
Profiling, or host enumeration, is an exploratory process used to gather information
about your Web site. An attacker uses this information to attack known weak points.

Vulnerabilities
● Common vulnerabilities that make your server susceptible to profiling include:
● Unnecessary protocols
● Open ports
● Web servers providing configuration information in banners

Attacks

Common attacks used for profiling include:
● Port scans
● Ping sweeps
● NetBIOS and server message block (SMB) enumeration

424 Part IV: Securing Your Network, Host, and Application

Countermeasures

Countermeasures include blocking all unnecessary ports, blocking Internet Control
Message Protocol (ICMP) traffic, and disabling unnecessary protocols such as
NetBIOS and SMB.

Denial of Service
Denial of service attacks occur when your server is overwhelmed by service requests.
The threat is that your Web server will be too overwhelmed to respond to legitimate
client requests.

Vulnerabilities

Vulnerabilities that increase the opportunities for denial of service include:
● Weak TCP/IP stack configuration
● Unpatched servers

Attacks

Common denial of service attacks include:
● Network-level SYN floods
● Buffer overflows
● Flooding the Web server with requests from distributed locations

Countermeasures

Countermeasures include hardening the TCP/IP stack and consistently applying the
latest software patches and updates to system software.

Unauthorized Access
Unauthorized access occurs when a user without correct permissions gains access to
restricted information or performs a restricted operation.

Vulnerabilities

Common vulnerabilities that lead to unauthorized access include:
● Weak IIS Web access controls including Web permissions
● Weak NTFS permissions

Countermeasures

Countermeasures include using secure Web permissions, NTFS permissions, and
.NET Framework access control mechanisms including URL authorization.

 Chapter 16: Securing Your Web Server 425

Arbitrary Code Execution
Code execution attacks occur when an attacker runs malicious code on your server
either to compromise server resources or to mount additional attacks against
downstream systems.

Vulnerabilities

Vulnerabilities that can lead to malicious code execution include:
● Weak IIS configuration
● Unpatched servers

Attacks

Common code execution attacks include:
● Path traversal
● Buffer overflow leading to code injection

Countermeasures

Countermeasures include configuring IIS to reject URLs with “../” to prevent path
traversal, locking down system commands and utilities with restrictive access control
lists (ACLs), and installing new patches and updates.

Elevation of Privileges
Elevation of privilege attacks occur when an attacker runs code by using a privileged
process account.

Vulnerabilities

Common vulnerabilities that make your Web server susceptible to elevation of
privilege attacks include:
● Over-privileged process accounts
● Over-privileged service accounts

Countermeasures

Countermeasures include running processes using least privileged accounts and
using least privileged service and user accounts.

426 Part IV: Securing Your Network, Host, and Application

Viruses, Worms, and Trojan Horses
Malicious code comes in several varieties, including:
● Viruses. Programs that are designed to perform malicious acts and cause

disruption to an operating system or applications.
● Worms. Programs that are self-replicating and self-sustaining.
● Trojan horses. Programs that appear to be useful but that actually do damage.

In many cases, malicious code is unnoticed until it consumes system resources and
slows down or halts the execution of other programs. For example, the Code Red
worm was one of the most notorious to afflict IIS, and it relied upon a buffer overflow
vulnerability in an ISAPI filter.

Vulnerabilities

Common vulnerabilities that make you susceptible to viruses, worms, and Trojan
horses include:
● Unpatched servers
● Running unnecessary services
● Unnecessary ISAPI filters and extensions

Countermeasures

Countermeasures include the prompt application of the latest software patches,
disabling unused functionality such as unused ISAPI filters and extensions, and
running processes with least privileged accounts to reduce the scope of damage in
the event of a compromise.

Methodology for Securing Your Web Server
To secure a Web server, you must apply many configuration settings to reduce the
server’s vulnerability to attack. So, how do you know where to start, and when do
you know that you are done? The best approach is to organize the precautions you
must take and the settings you must configure, into categories. Using categories
allows you to systematically walk through the securing process from top to bottom or
pick a particular category and complete specific steps.

 Chapter 16: Securing Your Web Server 427

Configuration Categories
The security methodology in this chapter has been organized into the categories
shown in Figure 16.2.

P
a

tc
he

s
a

nd
 U

pd
at

es

Machine.config web.config

Sites and v-dirs Metabase

Shares
Auditing and

Logging

Services
Files and

Directories

Acounts Registry

Protocols Ports

.N
E

T
IIS

O
pe

ra
tin

g
S

ys
te

m
N

e
tw

o
rk

Figure 16.2
Web server configuration categories

The rationale behind the categories is as follows:
● Patches and Updates

Many security threats are caused by vulnerabilities that are widely published and
well known. In many cases, when a new vulnerability is discovered, the code to
exploit it is posted on Internet bulletin boards within hours of the first successful
attack. If you do not patch and update your server, you provide opportunities for
attackers and malicious code. Patching and updating your server software is a
critical first step towards securing your Web server.

● Services
Services are prime vulnerability points for attackers who can exploit the privileges
and capabilities of a service to access the local Web server or other downstream
servers. If a service is not necessary for your Web server’s operation, do not run it
on your server. If the service is necessary, secure it and maintain it. Consider
monitoring any service to ensure availability. If your service software is not secure,
but you need the service, try to find a secure alternative.

428 Part IV: Securing Your Network, Host, and Application

● Protocols
Avoid using protocols that are inherently insecure. If you cannot avoid using these
protocols, take the appropriate measures to provide secure authentication and
communication, for example, by using IPSec policies. Examples of insecure, clear
text protocols are Telnet, Post Office Protocol (POP3), Simple Mail Transfer
Protocol (SMTP), and File Transfer Protocol (FTP).

● Accounts
Accounts grant authenticated access to your computer, and these accounts must be
audited. What is the purpose of the user account? How much access does it have?
Is it a common account that can be targeted for attack? Is it a service account that
can be compromised and must therefore be contained? Configure accounts with
least privilege to help prevent elevation of privilege. Remove any accounts that
you do not need. Slow down brute force and dictionary attacks with strong
password policies, and then audit and alert for logon failures.

● Files and Directories
Secure all files and directories with restricted NTFS permissions that only allow
access to necessary Windows services and user accounts. Use Windows auditing
to allow you to detect when suspicious or unauthorized activity occurs.

● Shares
Remove all unnecessary file shares including the default administration shares if
they are not required. Secure any remaining shares with restricted NTFS
permissions. Although shares may not be directly exposed to the Internet, a
defense strategy — with limited and secured shares — reduces risk if a server is
compromised.

● Ports
Services that run on the server listen to specific ports so that they can respond to
incoming requests. Audit the ports on your server regularly to ensure that an
insecure or unnecessary service is not active on your Web server. If you detect an
active port that was not opened by an administrator, this is a sure sign of
unauthorized access and a security compromise.

● Registry
Many security-related settings are stored in the registry and as a result, you must
secure the registry. You can do this by applying restricted Windows ACLs and by
blocking remote registry administration.

 Chapter 16: Securing Your Web Server 429

● Auditing and Logging
Auditing is one of your most important tools for identifying intruders, attacks in
progress, and evidence of attacks that have occurred. Use a combination of
Windows and IIS auditing features to configure auditing on your Web server.
Event and system logs also help you to troubleshoot security problems.

● Sites and Virtual Directories
Sites and virtual directories are directly exposed to the Internet. Even though
secure firewall configuration and defensive ISAPI filters such as URLScan (which
ships with the IISLockdown tool) can block requests for restricted configuration
files or program executables, a defense in depth strategy is recommended.
Relocate sites and virtual directories to non-system partitions and use IIS Web
permissions to further restrict access.

● Script Mappings
Remove all unnecessary IIS script mappings for optional file extensions to prevent
an attacker from exploiting any bugs in the ISAPI extensions that handle these
types of files. Unused extension mappings are often overlooked and represent a
major security vulnerability.

● ISAPI Filters
Attackers have been successful in exploiting vulnerabilities in ISAPI filters.
Remove unnecessary ISAPI filters from the Web server.

● IIS Metabase
The IIS metabase maintains IIS configuration settings. You must be sure that the
security related settings are appropriately configured, and that access to the
metabase file is restricted with hardened NTFS permissions.

● Machine.config
The Machine.config file stores machine-level configuration settings applied to
.NET Framework applications including ASP.NET Web applications. Modify the
settings in Machine.config to ensure that secure defaults are applied to any
ASP.NET application installed on the server.

● Code Access Security
Restrict code access security policy settings to ensure that code downloaded from
the Internet or intranet have no permissions and as a result will not be allowed to
execute.

430 Part IV: Securing Your Network, Host, and Application

IIS and .NET Framework Installation Considerations
Before you can secure your Web server, you need to know which components are
present on a Windows 2000 server after IIS and the .NET Framework are installed.
This section explains which components are installed.

What Does IIS Install?
IIS installs a number of services, accounts, folders, and Web sites. Some components
that IIS installs may not be used by your Web applications, and if present on the
server, could make the server vulnerable to attack. Table 16.1 lists the services,
accounts, and folders that are created by a full installation of IIS on
Windows 2000 Server with all components selected.

Table 16.1 IIS Installation Defaults

Item Details Default
Services IIS Admin Service (for administration of Web and FTP

services)

World Wide Web Publishing Service

FTP Publishing Service

Simple Mail Transport Protocol (SMTP)

Network News Transport Protocol (NNTP)

Installed

Installed

Installed

Installed

Installed

Accounts and
Groups

IUSR_MACHINE (anonymous Internet users)

IWAM_MACHINE (out-of-process ASP Web
applications; not used for ASP.NET applications
except those running on a domain controller; your
Web server should not be a domain controller)

Added to Guest group

Added to Guest group

Folders %windir%\system32\inetsrv (IIS program files)

%windir%\system32\inetsrv\iisadmin (Files used for
remote IIS admin)

%windir%\help\iishelp (IIS help files)

%systemdrive%\inetpub (Web, FTP, and SMTP root
folders)

Web Sites Default Web Site–port 80:
%SystemDrive%\inetpub\wwwroot

Administration Web Site–port 3693:
%SystemDrive%\System32\inetsrv\iisadmin

Anonymous access allowed

Local machine and
Administrators access only

 Chapter 16: Securing Your Web Server 431

What Does the .NET Framework Install?
When you install the .NET Framework on a server that hosts IIS, the .NET
Framework registers ASP.NET. As part of this process, a local, least privileged
account named ASPNET is created. This runs the ASP.NET worker process
(aspnet_wp.exe) and the session state service (aspnet_state.exe), which can be used to
manage user session state.

Note On server computers running Windows 2000 and IIS 5.0, all ASP.NET Web applications run in
a single instance of the ASP.NET worker process and application domains provide isolation. On
Windows Server 2003, IIS 6.0 provides process-level isolation through the use of application pools.

Table 16.2 shows the services, accounts, and folders that are created by a default
installation of version 1.1 of the .NET Framework.

Table 16.2 .NET Framework Installation Defaults

Item Details Default
Services ASP.NET State Service: Provides support for

out-of-process session state for ASP.NET.
Started manually

Accounts and
Groups

ASPNET: Account used for running the ASP.NET worker
process (Aspnet_wp.exe) and session state service
(Aspnet_state.exe).

Added to Users group

Folders %windir%\Microsoft.NET\Framework\{version}
 \1033
 \ASP.NETClientFiles
 \CONFIG
 \MUI
 \Temporary ASP.NET Files

ISAPI
Extensions

Aspnet_isapi.dll: Handles requests for ASP.NET file
types. Forwards requests to ASP.NET worker process
(Aspnet_wp.exe).

ISAPI Filters Aspnet_filter.dll: Only used to support cookie-less
session state. Runs inside Inetinfo.exe (IIS) process.

Application
Mappings

ASAX, ASCX, ASHX, ASPX, AXD, VDISCO, REM, SOAP,
CONFIG, CS, CSPROJ, VB, VBPROJ, WEBINFO, LICX,
RESX, RESOURCES

\WINNT\Microsoft.NET
\Framework
\{version} Aspnet_isapi.dll

432 Part IV: Securing Your Network, Host, and Application

Installation Recommendations
By default, the Windows 2000 Server setup installs IIS. However, the
recommendation is that you do not install IIS as part of the operating system
installation but install it later, after you have updated and patched the base operating
system. After you install IIS, you must reapply IIS patches and harden the IIS
configuration to ensure that it is fully secured. Only then is it safe to connect the
server to the network.

IIS Installation Recommendations
If you are installing and configuring a new Web server, follow the procedure outlined
below.

� To build a new Web server

1. Install Windows 2000 Server, but do not install IIS as part of the operating system
installation.

2. Apply the latest service packs and patches to the operating system. (If you are
configuring more than one server, see “Including Service Packs with a Base
Installation,” later in this section.)

3. Install IIS separately by using Add/Remove Programs in the Control Panel.
If you do not need the following services, do not install them when you install IIS:
● File Transfer Protocol (FTP) Server
● Microsoft FrontPage 2000 Server Extensions
● Internet Service Manager (HTML)
● NNTP Service
● SMTP Service
● Visual InterDev RAD Remote Deployment Support

Note By installing IIS on a fully patched and updated operating system, you can prevent attacks
that take advantage of known vulnerabilities (such as NIMDA) that have now been patched.

.NET Framework Installation Recommendations
Do not install the .NET Framework Software Development Kit (SDK) on a production
server. The SDK contains utilities that the server does not require. If an attacker gains
access to your server, the attacker can use some of these tools to assist other attacks.

Instead, install the redistributable package, which you can obtain from the
“Downloads” link at the .NET Framework site on Microsoft.com at
http://www.microsoft.com/net/.

http://www.microsoft.com/net/

 Chapter 16: Securing Your Web Server 433

Including Service Packs with a Base Installation
If you need to build multiple servers, you can incorporate service packs directly into
your Windows installations. Service packs include a program called Update.exe to
combine a service pack with your Windows installation files.

� To combine a service pack with a Windows installation

1. Download the latest service pack.
2. Extract Update.exe from the service pack by launching the service pack setup with

the -x option, as follows:
w3ksp3.exe -x

3. Integrate the service pack with your Windows installation source, by running
update.exe with the -s option, passing the folder path of your Windows
installation as follows:
update.exe -s c:\YourWindowsInstallationSource

For more information, see the MSDN article, “Customizing Unattended Win2K
Installations” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnw2kmag01/html/custominstall.asp.

Steps for Securing Your Web Server
The next sections guide you through the process of securing your Web server. These
sections use the configuration categories introduced in the “Methodology for
Securing Your Web Server” section of this chapter. Each high-level step contains one
or more actions to secure a particular area or feature.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

Patches and Updates

IISLockdown

Services

Protocols

Accounts

Files and Directories

Shares

Ports

Registry

Step 10

Step 11

Step 12

Step 13

Step 14

Step 15

Step 16

Step 17

Auditing and Logging

Sites and Virtual Directories

Script Mappings

ISAPI Filters

IIS Metabase

Server Certificates

Machine.config

Code Access Security

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag01/html/custominstall.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnw2kmag01/html/custominstall.asp

434 Part IV: Securing Your Network, Host, and Application

Step 1. Patches and Updates
Update your server with the latest service packs and patches. You must update and
patch all of the Web server components including Windows 2000 (and IIS), the .NET
Framework, and Microsoft Data Access Components (MDAC).

During this step, you:
● Detect and install the required patches and updates.
● Update the .NET Framework.

Detect and Install Patches and Updates
Use the Microsoft Baseline Security Analyzer (MBSA) to detect the patches and
updates that may be missing from your current installation. MBSA compares your
installation to a list of currently available updates maintained in an XML file. MBSA
can download the XML file when it scans your server or you can manually download
the file to the server or make it available on a network server.

� To detect and install patches and updates

1. Download and install MBSA.
You can do this from the MBSA home page at http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp.
If you do not have Internet access when you run MBSA, MBSA cannot retrieve
the XML file that contains the latest security settings from Microsoft. You can use
another computer to download the XML file, however. Then you can copy it into
the MBSA program directory. The XML file is available from
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab.

2. Run MBSA by double-clicking the desktop icon or selecting it from the Programs
menu.

3. Click Scan a computer. MBSA defaults to the local computer.
4. Clear all check boxes apart from Check for security updates. This option detects

which patches and updates are missing.
5. Click Start scan. Your server is now analyzed. When the scan is complete, MBSA

displays a security report, which it also writes to the %userprofile%\SecurityScans
directory.

6. Download and install the missing updates.
Click the Result details link next to each failed check to view the list of security
updates that are missing. The resulting dialog box displays the Microsoft security
bulletin reference number. Click the reference to find out more about the bulletin
and to download the update.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab

 Chapter 16: Securing Your Web Server 435

For more information on using MBSA, see “How To: Use Microsoft Baseline Security
Analyzer” in the “How To” section of this guide.

Update the .NET Framework
At the time of this writing (May 2003), MBSA cannot detect .NET Framework updates
and patches. Therefore, you must manually detect .NET Framework updates.

� To manually update .NET Framework version 1.0

1. Determine which .NET Framework service pack is installed on your Web server.
To do this, see Microsoft Knowledge Base article 318785, “INFO: Determining
Whether Service Packs Are Installed on .NET Framework.”

2. Compare the installed version of the .NET Framework to the current service pack.
To do this, use the .NET Framework versions listed in Microsoft Knowledge Base
article 318836, “INFO: How to Obtain the Latest .NET Framework Service Pack.”

Step 2. IISLockdown
The IISLockdown tool helps you to automate certain security steps. IISLockdown
greatly reduces the vulnerability of a Windows 2000 Web server. It allows you to pick
a specific type of server role, and then use custom templates to improve security for
that particular server. The templates either disable or secure various features. In
addition, IISLockdown installs the URLScan ISAPI filter. URLScan allows Web site
administrators to restrict the kind of HTTP requests that the server can process, based
on a set of rules that the administrator controls. By blocking specific HTTP requests,
the URLScan filter prevents potentially harmful requests from reaching the server
and causing damage.

During this step, you:
● Install and run IISLockdown.
● Install and configure URLScan.
.

Install and Run IISLockdown
IISLockdown is available as an Internet download from the Microsoft Web site at
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe.

Save IISlockd.exe in a local folder. IISlockd.exe is the IISLockdown wizard and not an
installation program. You can reverse any changes made by IISLockdown by running
IISlockd.exe a second time.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe

436 Part IV: Securing Your Network, Host, and Application

If you are locking down a Windows 2000-based computer that hosts ASP.NET pages,
select the Dynamic Web server template when the IISLockdown tool prompts you.
When you select Dynamic Web server, IISLockdown does the following:
● It disables the following insecure Internet services:

● File Transfer Protocol (FTP)
● E-mail service (SMTP)
● News service (NNTP)

● It disables script mappings by mapping the following file extensions to the 404.dll:
● Index Server
● Web Interface (.idq, .htw, .ida)
● Server-side include files (.shtml, .shtm, .stm)
● Internet Data Connector (.idc)
● .HTR scripting (.htr), Internet printing (.printer)

● It removes the following virtual directories: IIS Samples, MSADC, IISHelp, Scripts,
and IISAdmin.

● It restricts anonymous access to system utilities as well as the ability to write to
Web content directories using Web permissions.

● It disables Web Distributed Authoring and Versioning (WebDAV).
● It installs the URLScan ISAPI filter.

Note If you are not using classic ASP, do not use the static Web server template. This template
removes basic functionality that ASP.NET pages need, such as support for the POST command.

Log Files
IISLockdown creates two reports that list the changes it has applied:
● %windir%\system32\inetsrv\oblt-rep.log. This contains high-level information.
● %windir%\system32\inetsrv\oblt-log.log. This contains low-level details such as

which program files are configured with a deny access control entry (ACE) to
prevent anonymous Internet user accounts from accessing them. This log file is
also used to support the IISLockdown Undo Changes feature.

Web Anonymous Users and Web Application Groups
IISLockdown creates the Web Anonymous Users group and the Web Application
group. The Web Anonymous Users group contains the IUSR_MACHINE account.
The Web Application group contains the IWAM_MACHINE account. Permissions
are assigned to system tools and content directories based on these groups and not
directly to the IUSR and IWAM accounts. You can review specific permissions by
viewing the IISLockdown log, %windir%\system32\inetsrv\oblt-log.log.

 Chapter 16: Securing Your Web Server 437

The 404.dll
IISLockdown installs the 404.dll, to which you can map file extensions that must not
be run by the client. For more information, see “Step 12. Script Mappings.”

URLScan
If you install the URLScan ISAPI filter as part of IISLockdown, URLScan settings are
integrated with the server role you select when running IISLockdown. For example, if
you select a static Web server, URLScan blocks the POST command.

Reversing IISLockdown Changes
To reverse the changes that IISLockdown performs, run IISLockd.exe a second time.
This does not remove the URLScan ISAPI filter. For more information, see “Removing
URLScan” in the next topic.

More Information
See the following articles for more information about the IISLockdown tool:
● For more information on running IISLockdown, see “How To: Use

IISLockdown.exe” in the “How To” section of this guide.
● For information on troubleshooting IISLockdown, see Microsoft Knowledge Base

article 325864, “How To: Install and Use the IIS Lockdown Wizard.” (The most
common problem is receiving unexpected “404 File Not Found” error messages
after running IISLockdown.)

● For information on automating IISLockdown, see Microsoft Knowledge Base
article 310725, “How To: Run the IIS Lockdown Wizard Unattended in IIS.”

Install and Configure URLScan
URLScan is installed when you run IISLockdown, although you can download it and
install it separately.

� To install URLScan without running IISLockdown

1. Download IISlockd.exe from http://download.microsoft.com/download/iis50/Utility
/2.1/NT45XP/EN-US/iislockd.exe.

2. Run the following command to extract the URLScan setup:
iislockd.exe /q /c

URLScan blocks requests that contain unsafe characters (for example, characters that
have been used to exploit vulnerabilities, such as “..” used for directory traversal).
URLScan logs requests that contain these characters in the %windir%\system32
\inetsrv\urlscan directory.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe

438 Part IV: Securing Your Network, Host, and Application

You configure URLScan using settings in the .ini file %windir%\system32\inetsrv
\urlscan\urlscan.ini.

In addition to blocking malicious requests, you can use URLScan to defend your
server against denial of service attacks before the requests reach ASP.NET. To do this,
set limits in the MaxAllowedContentLength, MaxUrl, and MaxQueryString
arguments in the URLScan.ini file. For more information, see “How To: Use
URLScan” in the “How To” section of this guide.

Reversing URLScan Changes
There is no automatic operation to remove URLScan. If you have problems with
URLScan, you can either remove it from IIS or you can analyze the problem by
logging requests that are rejected. To do this, use the option RejectResponseUrl=/~*
in the URLScan .ini file.

For more information about how to remove ISAPI filters, see “Step 13. ISAPI Filters,”
later in this chapter.

More Information
See the following articles for more information about the URLScan tool:
● For information on running URLScan, see “How To: Use URLScan” in the

“How To” section of this guide.
● For information about URLScan configuration and the URLScan.ini file settings,

see Microsoft Knowledge Base article 326444, “How To: Configure the URLScan
Tool.”

Step 3. Services
Services that do not authenticate clients, services that use insecure protocols, or
services that run with too much privilege are risks. If you do not need them, do not
run them. By disabling unnecessary services you quickly and easily reduce the attack
surface .You also reduce your overhead in terms of maintenance (patches, service
accounts, and so on.)

If you run a service, make sure that it is secure and maintained. To do so, run the
service using a least privilege account, and keep the service current by applying
patches.

During this step, you:
● Disable unnecessary services.
● Disable FTP, SMTP, and NNTP unless you require them.
● Disable the ASP.NET State service unless you require it.

 Chapter 16: Securing Your Web Server 439

Disable Unnecessary Services
Windows services are vulnerable to attackers who can exploit the service’s privileges
and capabilities and gain access to local and remote system resources. As a defensive
measure, disable Windows services that your systems and applications do not
require. You can disable Windows services by using the Services MMC snap-in
located in the Administrative Tools programs group.

Note Before you disable a service, make sure that you first test the impact in a test or staging
environment.

In most cases, the following default Windows services are not needed on a Web
server: Alerter, Browser, Messenger, Netlogon (required only for domain controllers),
Simple TCP/IP Services, and Spooler.

The Telnet service is installed with Windows, but it is not enabled by default. IIS
administrators often enable Telnet. However, it is an insecure protocol susceptible to
exploitation. Terminal Services provides a more secure remote administration option.
For more information about remote administration, see “Remote Administration,”
later in this chapter.

Disable FTP, SMTP, and NNTP Unless You Require Them
FTP, SMTP, and NNTP are examples of insecure protocols that are susceptible to
misuse. If you do not need them, do not run them. If you currently run them, try to
find a secure alternative. If you must run them, secure them.

Note IIS Lockdown provides options for disabling FTP, SMTP, and NNTP.

To eliminate the possibility of FTP exploitation, disable the FTP service if you do not
use it. If FTP is enabled and is available for outbound connections, an attacker can
use FTP to upload files and tools to a Web server from the attacker’s remote system.
Once the tools and files are on your Web server, the attacker can attack the Web
server or other connected systems.

If you use FTP protocol, neither the user name and password you use to access the
FTP site nor the data you transfer is encoded or encrypted. IIS does not support SSL
for FTP. If secure communications are important and you use FTP as your transfer
protocol (rather than World Wide Web Distributed Authoring and Versioning
(WebDAV) over SSL), consider using FTP over an encrypted channel such as a Virtual
Private Network (VPN) that is secured with Point-to-Point Tunneling Protocol (PPTP)
or Internet Protocol Security (IPSec).

440 Part IV: Securing Your Network, Host, and Application

Disable the ASP.NET State Service Unless You Require It
The .NET Framework installs the ASP.NET State service (aspnet_state.exe) to manage
out-of-process user session state for ASP.NET Web applications and Web services. By
default, this service is configured for manual startup and runs as the least privileged
local ASPNET account. If none of your applications store state by using this service,
disable it. For more information on securing ASP.NET session state, see the “Session
State” section in Chapter 19, “Securing Your ASP.NET Application and Web
Services.”

Step 4. Protocols
By preventing the use of unnecessary protocols, you reduce the potential for attack.
The .NET Framework provides granular control of protocols through settings in the
Machine.config file. For example, you can control whether your Web Services can use
HTTP GET, POST or SOAP. For more information about configuring protocols in
Machine.config, see “Step 16. Machine.config.”

During this step, you:
● Disable or secure WebDav.
● Harden the TCP/IP stack.
● Disable NetBIOS and SMB.

Disable or Secure WebDAV
IIS supports the WebDAV protocol, which is a standard extension to HTTP 1.1 for
collaborative content publication. Disable this protocol on production servers if it is
not used.

Note IISLockdown provides an option to remove support for WebDAV.

WebDAV is preferable to FTP from a security perspective, but you need to secure
WebDAV. For more information, see Microsoft Knowledge Base article 323470, “How
To: Create a Secure WebDAV Publishing Directory.”

If you do not need WebDAV, see Microsoft Knowledge Base article 241520, “How To:
Disable WebDAV for IIS 5.0.”

Harden the TCP/IP Stack
Windows 2000 supports the granular control of many parameters that configure its
TCP/IP implementation. Some of the default settings are configured to provide
server availability and other specific features.

 Chapter 16: Securing Your Web Server 441

For information about how to harden the TCP/IP stack see “How To: Harden the
TCP/IP Stack” in the “How To” section of this guide.

Disable NetBIOS and SMB
Disable all unnecessary protocols, including NetBIOS and SMB. Web servers do not
require NetBIOS or SMB on their Internet-facing network interface cards (NICs).
Disable these protocols to counter the threat of host enumeration.

Note The SMB protocol can return rich information about a computer to unauthenticated users
over a Null session. You can block null sessions by setting the RestrictAnonymous registry key as
described in “Step 9. Registry.”

Disabling NetBIOS
NetBIOS uses the following ports:
● TCP and User Datagram Protocol (UDP) port 137 (NetBIOS name service)
● TCP and UDP port 138 (NetBIOS datagram service)
● TCP and UDP port 139 (NetBIOS session service)

Disabling NetBIOS is not sufficient to prevent SMB communication because if a
standard NetBIOS port is unavailable, SMB uses TCP port 445. (This port is referred
to as the SMB Direct Host.) As a result, you must take steps to disable NetBIOS and
SMB separately.

� To disable NetBIOS over TCP/IP

Note This procedure disables the Nbt.sys driver and requires that you restart the system.

1. Right-click My Computer on the desktop, and click Manage.
2. Expand System Tools, and select Device Manager.
3. Right-click Device Manager, point to View, and click Show hidden devices.
4. Expand Non-Plug and Play Drivers.
5. Right-click NetBios over Tcpip, and click Disable.

This disables the NetBIOS direct host listener on TCP 445 and UDP 445.

Disabling SMB
SMB uses the following ports:
● TCP port 139
● TCP port 445

To disable SMB, use the TCP/IP properties dialog box in your Local Area
Connection properties to unbind SMB from the Internet-facing port.

442 Part IV: Securing Your Network, Host, and Application

� To unbind SMB from the Internet-facing port

1. Click the Start menu, point to Settings, and click Network and Dial-up
Connections.

2. Right-click your Internet-facing connection, and click Properties.
3. Clear the Client for Microsoft Networks box.
4. Clear the File and Printer Sharing for Microsoft Networks box.

Note The WINS tab of the Advanced TCP/IP Settings dialog box contains a Disable NetBIOS over
TCP/IP radio button. Selecting this option disables the NetBIOS session service that uses TCP port
139. It does not disable SMB completely. To do so, use the procedure above.

Step 5. Accounts
You should remove accounts that are not used because an attacker might discover
and use them. Require strong passwords. Weak passwords increase the likelihood of
a successful brute force or dictionary attack. Use least privilege. An attacker can use
accounts with too much privilege to gain access to unauthorized resources.

During this step, you:
● Delete or disable unused accounts.
● Disable the Guest account.
● Rename the Administrator account.
● Disable the IUSR Account.
● Create a custom anonymous Web account.
● Enforce strong password policies.
● Restrict remote logons.
● Disable Null sessions (anonymous logons).

Delete or Disable Unused Accounts
Unused accounts and their privileges can be used by an attacker to gain access to a
server. Audit local accounts on the server and disable those that are unused. If
disabling the account does not cause any problems, delete the account. (Deleted
accounts cannot be recovered.) Disable accounts on a test server before you disable
them on a production server. Make sure that disabling an account does not adversely
affect your application operation.

Note The Administrator account and the Guest account cannot be deleted.

 Chapter 16: Securing Your Web Server 443

Disable the Guest Account
The Guest account is used when an anonymous connection is made to the computer.
To restrict anonymous connections to the computer, keep this account disabled. The
guest account is disabled by default on Windows 2000. To check whether or not it is
enabled, display the Users folder in the Computer Management tool. The Guest
account should be displayed with a cross icon. If it is not disabled, display its
Properties dialog box and select Account is disabled.

Rename the Administrator Account
The default local Administrator account is a target for malicious use because of its
elevated privileges on the computer. To improve security, rename the default
Administrator account and assign it a strong password.

If you intend to perform local administration, configure the account to deny network
logon rights and require the administrator to log on interactively. By doing so, you
prevent users (well intentioned or otherwise) from using the Administrator account
to log on to the server from a remote location. If a policy of local administration is too
inflexible, implement a secure remote administration solution. For more information,
see “Remote Administration” later in this chapter.

Disable the IUSR Account
Disable the default anonymous Internet user account, IUSR_MACHINE. This is
created during IIS installation. MACHINE is the NetBIOS name of your server at IIS
installation time.

Create a Custom Anonymous Web Account
If your applications support anonymous access (for example, because they use a
custom authentication mechanism such as Forms authentication), create a custom
least privileged anonymous account. If you run IISLockdown, add your custom user
to the Web Anonymous Users group that is created. IISLockdown denies access to
system utilities and the ability to write to Web content directories for the Web
Anonymous Users group.

If your Web server hosts multiple Web applications, you may want to use multiple
anonymous accounts, one per application, so that you can secure and audit the
operations of each application independently.

For more information about hosting multiple Web applications see Chapter 20,
“Hosting Multiple Web Applications.”

444 Part IV: Securing Your Network, Host, and Application

Enforce Strong Password Policies
To counter password guessing and brute force dictionary attacks on your application,
apply strong password policies. To enforce a strong password policy:
● Set password length and complexity. Require strong passwords to reduce the

threat of password guessing attacks or dictionary attacks. Strong passwords are
eight or more characters and must include both alphabetical and numeric
characters.

● Set password expiration. Passwords that expire regularly reduce the likelihood
that an old password can be used for unauthorized access. Frequency of expiration
is usually guided by a company’s security policy.

Table 16.3 shows the default and recommended password policy settings.

Table 16.3 Password Policy Default and Recommended Settings

Password Policy Default Setting Recommended Minimum Setting
Enforce password history 1 password

remembered.
24 passwords remembered.

Maximum password age 42 days 42 days

Minimum password age 0 days 2 days

Minimum password length 0 characters 8 characters

Passwords must meet complexity
requirement.

Disabled Enabled

Store password using reversible
encryption for all users in the domain.

Disabled Disabled

In addition, record failed logon attempts so that you can detect and trace malicious
behavior. For more information, see “Step 10. Auditing and Logging.”

Restrict Remote Logons
Remove the Access this computer from the network privilege from the Everyone
group to restrict who can log on to the server remotely.

 Chapter 16: Securing Your Web Server 445

Disable Null Sessions (Anonymous Logons)
To prevent anonymous access, disable null sessions. These are unauthenticated or
anonymous sessions established between two computers. Unless null sessions are
disabled, an attacker can connect to your server anonymously (without being
authenticated).

Once an attacker establishes a null session, he or she can perform a variety of attacks,
including enumeration techniques used to collect system-related information from
the target computer — information that can greatly assist subsequent attacks. The
type of information that can be returned over a null session includes domain and
trust details, shares, user information (including groups and user rights), registry
keys, and more.

Restrict Null sessions by setting RestrictAnonymous to 1 in the registry at the
following subkey:

HKLM\System\CurrentControlSet\Control\LSA\RestrictAnonymous=1

For more information, see Microsoft Knowledge Base article 246261, “How To: Use
the RestrictAnonymous Registry Value in Windows 2000.”

Additional Considerations
The following is a list of additional steps you can consider to further improve
security on your Web server:
● Require approval for account delegation.

Do not mark domain accounts in Active Directory as trusted for delegation unless
you first obtain special approval to do so.

● Do not use shared accounts.
Do not create shared account for use by multiple individuals. Authorized
individuals must have their own accounts. The activities of individuals can be
audited separately and group membership and privileges appropriately assigned.

● Restrict the Local Administrators Group Membership.
Try to limit administration accounts to two. This helps provide accountability.
Also, passwords must not be shared, again to provide accountability.

● Require the Administrator to log on interactively.
If you perform local administration only, you can require your Administrator
account to log on interactively by removing the Access this computer from the
network privilege.

446 Part IV: Securing Your Network, Host, and Application

Step 6. Files and Directories
Install Windows 2000 on partitions formatted with the NTFS file system so that you
benefit from NTFS permissions to restrict access. Use strong access controls to protect
sensitive files and directories. In most situations, an approach that allows access to
specific accounts is more effective than one that denies access to specific accounts. Set
access at the directory level whenever possible. As files are added to the folder they
inherit permissions from the folder, so you need to take no further action.

During this step, you:
● Restrict the Everyone group.
● Restrict the anonymous Web account(s).
● Secure or remove tools, utilities, and SDKs.
● Remove sample files.

Restrict the Everyone Group
The default NTFS permissions for Windows 2000 grant members of the Everyone
group full control access to a number of key locations, including the root directory,
\inetpub, and \inetpub\scripts.

First grant FULL CONTROL to the Administrator account to the root (\), then
remove access rights for the Everyone group from the following directories.
● Root (\)
● System directory (\WINNT\system32)
● Framework tools directory (\WINNT\Microsoft.NET\Framework\{version})
● Web site root directory and all content directories (the default is \inetpub*)

Restrict Access to the IIS Anonymous Account
The anonymous account is well known. Attackers target this well known account to
perform malicious actions. To secure the anonymous account:
● Deny write access to Web content directories.

Make sure that it is not possible for this account to write to content directories, for
example, to deface Web sites.

● Restrict access to System tools.
In particular, restrict access to command-line tools located in \WINNT\System32.

 Chapter 16: Securing Your Web Server 447

● Assign permissions to groups instead of individual accounts.
Assigning users to groups and applying permissions to groups instead of
individual accounts is good practice. For the anonymous account, create a group
and add the anonymous account to it and then explicitly deny access to the group
for key directories and files. Assigning permissions to a group allows you to more
easily change the anonymous account or create additional anonymous accounts
because you do not need to recreate the permissions.

Note IISLockdown denies write access to content directories for the anonymous account by
applying a deny write access control entry (ACE) for the Web Anonymous Users and Web
Applications groups. It also adds a deny execute ACL on command-line tools.

● Use separate accounts for separate applications.
If your Web server hosts multiple applications, use a separate anonymous account
for each application. Add the accounts to an anonymous Web users group, for
example, the Web Anonymous Users group created by IISLockdown, and then
configure NTFS permissions using this group.
For more information about using multiple anonymous accounts and hosting
multiple applications, see Chapter 20, “Hosting Multiple ASP.NET Applications.”

Secure or Remove Tools, Utilities and SDKs
SDKs and resource kits should not be installed on a production Web server. Remove
them if they are present.
● Ensure that only the .NET Framework Redistributable package is installed on the

server and no SDK utilities are installed. Do not install Visual Studio .NET on
production servers.

● Ensure that access to powerful system tools and utilities, such as those contained
in the \Program Files directory, is restricted. IISLockdown does this for you.

● Debugging tools should not be available on the Web server. If production
debugging is necessary, then you should create a CD that contains the necessary
debugging tools.

Remove Sample Files
Sample applications are typically not configured with high degrees of security. It is
possible that an attacker could exploit an inherent weakness in a sample application
or in its configuration to attack your Web site. Remove sample applications to reduce
the areas where your Web server can be attacked.

Additional Considerations
Also consider removing unnecessary Data Source Names (DSNs). These contain clear
text connection details used by applications to connect to OLE DB data sources. Only
those DSNs required by Web applications should be installed on the Web server.

448 Part IV: Securing Your Network, Host, and Application

Step 7. Shares
Remove any unused shares and harden the NTFS permissions on any essential
shares. By default all users have full control on newly created file shares. Harden
these default permissions to ensure that only authorized users can access files
exposed by the share. In addition to explicit share permissions, use NTFS ACLs for
files and folders exposed by the share.

During this step, you:
● Remove unnecessary shares.
● Restrict access to required shares.

Remove Unnecessary Shares
Remove all unnecessary shares. To review shares and associated permissions, run the
Computer Management MMC snap-in, and select Shares from Shared Folders as
shown in Figure 16.3.

Figure 16.3
Computer Management MMC snap-in Shares

Restrict Access to Required Shares
Remove the Everyone group and grant specific permissions instead. Everyone is used
when you do not have restrictions on who should have access to the share.

Additional Considerations
If you do not allow remote administration of your server, remove unused
administrative shares, for example C$ and Admin$.

Note Some applications may require administrative shares. Examples include Microsoft Systems
Management Server (SMS) and Microsoft Operations Manager (MOM). For more information, see
Microsoft Knowledge Base article 318751, “How To: Remove Administrative Shares in
Windows 2000 or Windows NT 4.0.”

 Chapter 16: Securing Your Web Server 449

Step 8. Ports
Services that run on the server use specific ports so that they can serve incoming
requests. Close all unnecessary ports and perform regular audits to detect new ports
in the listening state, which could indicate unauthorized access and a security
compromise.

During this step, you:
● Restrict Internet-facing ports to TCP 80 and 443.
● Encrypt or restrict intranet traffic.

Restrict Internet-Facing Ports to TCP 80 and 443
Limit inbound traffic to port 80 for HTTP and port 443 for HTTPS (SSL).

For outbound (Internet-facing) NICs, use IPSec or TCP filtering. For more
information, see “How To: Use IPSec” in the “How To” section of this guide.

Encrypt or Restrict Intranet Traffic
For inside (intranet-facing) NICs, if you do not have a secure data center and you
have sensitive information passing between computers, you need to consider
whether to encrypt the traffic and whether to restrict communications between the
Web server and downstream servers (such as an application server or database
server). Encrypting network traffic addresses the threat posed by network
eavesdropping. If the risk is deemed sufficiently small you may choose not to
encrypt the traffic.

The type of encryption used also affects the types of threats that it addresses.
For example, SSL is application-level encryption, whereas IPSec is transport layer
encryption. As a result, SSL counters the threat of data tampering or information
disclosure from another process on the same machine, particularly one running
under a different account in addition to the network eavesdropping threat.

Step 9. Registry
The registry is the repository for many vital server configuration settings. As such,
you must ensure that only authorized administrators have access to it. If an attacker
is able to edit the registry, he or she can reconfigure and compromise the security of
your server.

During this step, you:
● Restrict remote administration of the registry.
● Secure the SAM (stand-alone servers only).

450 Part IV: Securing Your Network, Host, and Application

Restrict Remote Administration of the Registry
The Winreg key determines whether registry keys are available for remote access. By
default, this key is configured to prevent users from remotely viewing most keys in the
registry, and only highly privileged users can modify it. On Windows 2000, remote
registry access is restricted by default to members of the Administrators and Backup
operators group. Administrators have full control and backup operators have read-
only access.

The associated permissions at the following registry location determine who can
remotely access the registry.

HKLM\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg

To view the permissions for this registry key, run Regedt32.exe, navigate to the key,
and choose Permissions from the Security menu.

Note Some services require remote access to the registry. Refer to Microsoft Knowledge Base
article 153183, “How to Restrict Access to the Registry from a Remote Computer,” to see if your
situation demands limited remote registry access.

Secure the SAM (Stand-alone Servers Only)
Stand-alone servers store account names and one-way (non-reversible) password
hashes (LMHash) in the local Security Account Manager (SAM) database. The SAM is
part of the registry. Typically, only members of the Administrators group have access
to the account information.

Although the passwords are not actually stored in the SAM and password hashes are
not reversible, if an attacker obtains a copy of the SAM database, the attacker can use
brute force password techniques to obtain valid user names and passwords.

Restrict LMHash storage in the SAM by creating the key (not value) NoLMHash in
the registry as follows:

HKLM\System\CurrentControlSet\Control\LSA\NoLMHash

For more information, see Microsoft Knowledge Base article 299656, “New Registry
Key to Remove LM Hashes from Active Directory and Security Account Manager.”

 Chapter 16: Securing Your Web Server 451

Step 10. Auditing and Logging
Auditing does not prevent system attacks, although it is an important aid in
identifying intruders and attacks in progress, and can assist you in diagnosing attack
footprints. Enable a minimum level of auditing on your Web server and use NTFS
permissions to protect the log files so that an attacker cannot cover his tracks by
deleting or updating the log files in any way. Use IIS W3C Extended Log File Format
Auditing.

During this step, you:
● Log all failed Logon attempts.
● Log all failed actions across the file system.
● Relocate and secure the IIS log files.
● Archive log files for offline analysis.
● Audit access to the Metabase.bin file.

Log All Failed Logon Attempts
You must log failed logon attempts to be able to detect and trace suspicious behavior.

� To audit failed logon attempts
1. Start the Local Security Policy tool from the Administrative Tools program group.
2. Expand Local Policies and then select Audit Policy
3. Double-click Audit account logon events.
4. Click Failure and then OK.

Logon failures are recorded as events in the Windows security event log. The
following event IDs are suspicious:
● 531. This means an attempt was made to log on using a disabled account.
● 529. This means an attempt was made to log on using an unknown user account or

using a valid user account but with an invalid password. An unexpected increase
in the number of these audit events might indicate an attempt to guess passwords.

Log All Failed Actions Across the File System
Use NTFS auditing on the file system to detect potentially malicious attempts. This is
a two-step process.

� To enable logging

1. Start the Local Security Policy tool from the Administrative Tools program group.
2. Expand Local Policies and then select Audit Policy
3. Double-click Audit object access.
4. Click Failure and then click OK.

452 Part IV: Securing Your Network, Host, and Application

� To audit failed actions across the file system

1. Start Windows Explorer and navigate to the root of the file system.
2. Right-click and then click Properties.
3. Click the Security tab.
4. Click Advanced and then click the Auditing tab.
5. Click Add and then enter Everyone in the Name field.
6. Click OK and then select all of the Failed check boxes to audit all failed events.

By default, this applies to the current folder and all subfolders and files.
7. Click OK three times to close all open dialog boxes.

Failed audit events are logged to the Windows security event log.

Relocate and Secure the IIS Log Files
By moving and renaming the IIS log files, you make it much more difficult for an
attacker to cover his tracks. The attacker must locate the log files before he or she can
alter them. To make an attacker’s task more difficult still, use NTFS permissions to
secure the log files.

Move and rename the IIS log file directory to a different volume than your Web site.
Do not use the system volume. Then, apply the following NTFS permissions to the
log files folder and subfolders.
● Administrators: Full Control
● System: Full Control
● Backup Operators: Read

Archive Log Files for Offline Analysis
To facilitate the offline analysis of IIS log files, you can use a script to automate secure
removal of log files from an IIS server. Log files should be removed at least every 24
hours. An automated script can use FTP, SMTP, HTTP, or SMB to transfer log files
from a server computer. However, if you enable one of these protocols, do so securely
so that you do not open any additional attack opportunities. Use an IPSec policy to
secure ports and channels.

Audit Access to the Metabase.bin File
Audit all failures by the Everyone group to the IIS metabase.bin file located in
\WINNT\System32\inetsrv\. Do the same for the \Metabase backup folder for the
backup copies of the metabase.

 Chapter 16: Securing Your Web Server 453

Additional Considerations
Additionally, you can configure IIS W3C Extended Log File Format Auditing. Select
W3C Extended Log File Format on the Web Site tab of the Web site’s properties
dialog box. You can then choose Extended Properties such as URI Stem and URI
Query.

Step 11. Sites and Virtual Directories
Relocate Web roots and virtual directories to a non-system partition to protect against
directory traversal attacks. These attacks allow an attacker to execute operating
system programs and utilities. It is not possible to traverse across drives. For
example, this approach ensures that any future canonicalization worm that allows an
attacker to access system files will fail. For example, if the attacker formulates a URL
that contains the following path, the request fails:

/scripts/..%5c../winnt/system32/cmd.exe

During this step, you:
● Move your Web site to a non-system volume.
● Disable the parent paths setting.
● Remove potentially dangerous virtual directories.
● Remove or secure RDS.
● Set Web permissions.
● Remove or secure FrontPage Server Extensions.

Move Your Web site to a Non-System Volume
Do not use the default \inetpub\wwwroot directory. For example, if your system is
installed on the C: drive, then move your site and content directory to the D: drive.
This mitigates the risks associated with unforeseen canonicalization issues and
directory traversal attacks.

Disable the Parent Paths Setting
This IIS metabase setting prevents the use of “..” in script and application calls to
functions such as MapPath. This helps guard against directory traversal attacks.

454 Part IV: Securing Your Network, Host, and Application

� To disable parent paths

1. Start IIS.
2. Right-click the root of your Web site, and click Properties.
3. Click the Home Directory tab.
4. Click Configuration.
5. Click the App Options tab.
6. Clear Enable parent paths.

Note If you use the Application Center 2002 Administration Site, see Microsoft Knowledge Base
article 288309, “PRB: Disabling Parent Paths Breaks User Interface.”

Remove Potentially Dangerous Virtual Directories
Sample applications are not installed by default and should not be installed on
production Web servers. Remove all sample applications, including the ones that can
be accessed only from the local computer with http://localhost, or http://127.0.0.1.

Remove the following virtual directories from production servers: IISSamples,
IISAdmin, IISHelp, and Scripts.

Note IISLockdown provides an option to remove the Scripts, IISSamples, IISAdmin, and IISHelp
virtual directories.

Remove or Secure RDS
Remote Data Services (RDS) is a component that enables controlled Internet access
to remote data resources through IIS. The RDS interface is provided by Msadcs.dll,
which is located in the following directory: program files\common files\system
\Msadc.

Removing RDS
If your applications do not use RDS, remove it.

� To remove RDS support

1. Remove the /MSADC virtual directory mapping from IIS.
2. Remove the RDS files and subdirectories at the following location:

\Program Files\Common Files\System\Msadc
3. Remove the following registry key:

HKLM\System\CurrentControlSet\Services\W3SVC\Parameters\ADCLaunch

Note IISLockdown provides an option to remove the MSADC virtual directory. Note that
IISLockdown only removes the virtual directory, not the files or registry key.

 Chapter 16: Securing Your Web Server 455

Securing RDS
If your applications require RDS, secure it.

� To secure RDS

1. Delete the samples at the following location:
\Progam Files\Common Files\System\Msadc\Samples

2. Remove the following registry key:
HKLM\System\CurrentControlSet\Services\W3SVC\Parameters
\ADCLaunch\VbBusObj.VbBusObjCls

3. Disable Anonymous access for the MSADC virtual directory in IIS.
4. Create a HandlerRequired registry key in the following location:

HKLM\Software\Microsoft\DataFactory\HandlerInfo\
5. Create a new DWORD value, and set it to 1 (1 indicates safe mode, while 0

indicates unsafe mode.

Note You can use the registry script file Handsafe.reg to change the registry key. The script file is
located in the msadc directory: \Program Files\Common Files\System\msadc

For more information about securing RDS, see the following:
● MS99-025 Microsoft Security Program: Unauthorized Access to IIS Servers through

ODBC Data Access with RDS at http://www.microsoft.com/technet/security/bulletin
/ms99-025.asp.

● MS98-004 Microsoft Security Program: Microsoft Security Bulletin: Unauthorized
ODBC Data Access with RDS and IIS at http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/bulletin/MS98-004.asp.

● Microsoft Knowledge Base article 184375, “PRB: Security Implications of RDS 1.5,
IIS 3.0 or 4.0, and ODBC.”

Set Web Permissions
Web permissions are configured through the IIS snap-in and are maintained in the IIS
metabase. They are not NTFS permissions.

Use the following Web permissions:
● Read Permissions. Restrict Read permissions on include directories.
● Write and Execute Permissions. Restrict Write and Execute permissions on virtual

directories that allow anonymous access.

http://www.microsoft.com/technet/security/bulletin/ms99-025.asp
http://www.microsoft.com/technet/security/bulletin/ms99-025.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS98-004.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/MS98-004.asp

456 Part IV: Securing Your Network, Host, and Application

● Script source access. Configure Script source access permissions only on folders
that allow content authoring.

● Write. Configure Write permissions only on folders that allow content authoring.
Grant write access only to content authors.

Note Folders that support content authoring should be configured to require authentication and
SSL for encryption.

Remove or Secure FrontPage Server Extensions
If you do not use FrontPage Server Extensions (FPSE), disable it. If you use FPSE,
take the following steps to improve security:
● Upgrade server extensions. See to the security issues covered in MSDN

article, “Microsoft FrontPage Server Extensions 2002 for Windows” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservext/html
/fpse02win.asp.

● Restrict access using FrontPage security. FPSE installs groups that are granted
permissions to those Web sites for which the server extensions are configured.
These groups are used to restrict the access available based on the role of the user.
For more information, see the Assistance Center at http://office.microsoft.com
/assistance/2002/articles/fp_colmanagesecurity.aspx.

Step 12. Script Mappings
Script mappings associate a particular file extension, such as .asp, to the ISAPI
extension that handles it, such as Asp.dll. IIS is configured to support a range of
extensions including .asp, .shtm, .hdc, and so on. ASP.NET HTTP handlers are a
rough equivalent of ISAPI extensions. In IIS, file extensions, such as .aspx, are first
mapped in IIS to Aspnet_isapi.dll, which forwards the request to the ASP.NET
worker process. The actual HTTP handler that processes the file extension is then
determined by the <HttpHandler> mapping in Machine.config or Web.config.

The main security issues associated with script mappings are:
● An attacker could exploit a vulnerability found in an extension.

This could occur if a vulnerability in an extension remains unpatched. Unused
extensions increase the area of potential attack. For example, if you do not use a
particular extension, you might not pay attention to relevant updates.

● Server-side resources could be downloaded by the client.
This could occur when a file extension is not mapped correctly. Files that should
not be directly accessible by the client should either be mapped to the appropriate
handler, based on its extension, or should be removed.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservext/html/fpse02win.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnservext/html/fpse02win.asp
http://office.microsoft.com/assistance/2002/articles/fp_colmanagesecurity.aspx
http://office.microsoft.com/assistance/2002/articles/fp_colmanagesecurity.aspx

 Chapter 16: Securing Your Web Server 457

During this step, you:
● Map IIS file extensions.
● Map .NET Framework file extensions.

Map IIS File Extensions
On Windows 2000, the IIS file extensions of interest include: .asp, .asa, .cer, .cdx, .htr,
.idc, .shtm, .shtml, .stm, and .printer.

If you do not use any one of these extensions, map the extension to the 404.dll, which
is provided by IISLockdown. For example, if you do not want to serve ASP pages to
clients, map .asp to the 404.dll.

The mappings altered by IISLockdown depend on the server template that you
choose:
● Static Web Server. If you run IISLockdown and choose the Static Web server

option, then all of the above extensions are mapped to the 404.dll.
● Dynamic Web Server. If you choose the Dynamic Web server option, which is the

preferred option when serving ASP.NET pages, then .htr, .idc, .shtm, .shtml, .stm,
and .printer are mapped to the 404.dll, while .asp, .cer, .cdx, and .asa are not. In
this case, you should manually map .cer, .cdx, and .asa to the 404.dll. If you are not
serving .asp, then you can map that as well.

Why Map to the 404.dll?
By mapping file extensions to the 404.dll, you prevent files from being returned and
downloaded over HTTP. If you request a file with an extension mapped to the 404.dll,
a Web page with the message “HTTP 404 - File not found” is displayed. You are
recommended to map unused extensions to the 404.dll rather than deleting the
mapping. If you delete a mapping, and a file is mistakenly left on the server (or put
there by mistake) it can be displayed in clear text when it is requested because IIS
does not know how to process it.

� To map a file extension to the 404.dll

1. Start IIS.
2. Right-click your server name in the left window, and then click Properties.
3. Ensure that the WWWService is selected in the Master Properties drop-down list,

and then click the adjacent Edit button.
4. Click the Home Directory tab.

458 Part IV: Securing Your Network, Host, and Application

5. Click Configuration. The tabbed page shown in Figure 16.4 is displayed.

Figure 16.4
Mapping application extensions

6. Select one of the extensions from the list, and then click Edit.
7. Click Browse and navigate to \WINNT\system32\inetsrv\404.dll.

Note This step assumes that you have previously run IISlockd.exe, as the 404.dll is installed by
the IISLockdown tool.

8. Click Open, and then click OK.
9. Repeat steps 6, 7 and 8 for all of the remaining file extensions.

Map .NET Framework File Extensions
The following .NET Framework file extensions are mapped to aspnet_isapi.dll:
.asax, .ascx, .ashx, .asmx, .aspx, .axd, .vsdisco, .jsl, .java, .vjsproj, .rem, .soap, .config,
.cs, .csproj, .vb, .vbproj, .webinfo, .licx, .resx, and .resources.

The .NET Framework protects file extensions that should not be directly called
by clients by associating them with System.Web.HttpForbiddenHandler in
Machine.config. The following file extensions are mapped to
System.Web.HttpForbiddenHandler by default: .asax, .ascx, .config, .cs,
.csproj, .vb, .vbproj, .webinfo, .asp, .licx, .resx, and .resources.

For more information on HTTP handlers, see “Step 16: Machine.config.”

 Chapter 16: Securing Your Web Server 459

Additional Considerations
Because IIS processes a Web request first, you could map .NET Framework file
extensions that you do not want clients to call, to the 404.dll directly. This does
two tasks:
● The 404.dll handles and rejects requests before they are passed to ASP.NET and

before they are processed by the ASP.NET worker process. This eliminates
unnecessary processing by the ASP.NET worker process. Moreover, blocking
requests early is a good security practice.

● The 404.dll returns the message “HTTP 404 - File not found” and
System.Web.HttpForbiddenHandler returns the message “This type of page is
not served.” Arguably, the “File not found” message reveals less information and
thus could be considered more secure.

Step 13. ISAPI Filters
In the past, vulnerabilities in ISAPI filters caused significant IIS exploitation. There
are no unneeded ISAPI filters after a clean IIS installation, although the .NET
Framework installs the ASP.NET ISAPI filter (Aspnet_filter.dll), which is loaded into
the IIS process address space (Inetinfo.exe) and is used to support cookie-less session
state management.

If your applications do not need to support cookie-less session state and they do not
set the cookieless attribute to true on the <sessionState> element, this filter can be
removed.

During this step, you remove unused ISAPI filters.

Remove Unused ISAPI Filters
Remove any unused ISAPI filters as explained in the following section.

� To view ISAPI filters

1. To start IIS, select Internet Services Manager from the Administrative Tools
programs group.

2. Right-click the machine (not Web site, because filters are machine wide), and then
click Properties.

3. Click Edit.

460 Part IV: Securing Your Network, Host, and Application

4. Click the ISAPI Filters tab.
The tabbed page shown in Figure 16.5 is displayed:

Figure 16.5
Removing unused ISAPI filters

Step 14. IIS Metabase
Security and other IIS configuration settings are maintained in the IIS metabase file.
Harden the NTFS permissions on the IIS metabase (and the backup metabase file) to
be sure that attackers cannot modify your IIS configuration in any way (for example,
to disable authentication for a particular virtual directory.)

During this step, you:
● Restrict access to the metabase using NTFS permissions.
● Restrict banner information returned by IIS.

Restrict Access to the Metabase Using NTFS Permissions
Set the following NTFS permissions on the IIS metabase file (Metabase.bin) in the
\WINNT\system32\inetsrv directory.
● Local System: Full Control
● Administrators: Full Control

Restrict Banner Information Returned by IIS
Banner information can reveal software versions and other information that may help
an attacker. Banner information can reveal the software you run, allowing an attacker
to exploit known software vulnerabilities.

 Chapter 16: Securing Your Web Server 461

When you retrieve a static page, for example, an .htm or a .gif file, a content location
header is added to the response. By default, this content header references the IP
address, and not the fully qualified domain name (FQDN). This means that your
internal IP address is unwittingly exposed. For example, the following HTTP
response header shows the IP address in bold font:

HTTP/1.1 200 OK
Server: Microsoft-IIS/5.0
Content-Location: http://10.1.1.1/Default.htm
Date: Thu, 18 Feb 1999 14:03:52 GMT
Content-Type: text/html
Accept-Ranges: bytes
Last-Modified: Wed, 06 Jan 1999 18:56:06 GMT
ETag: "067d136a639be1:15b6"
Content-Length: 4325

You can hide the content location returned in HTTP response headers by modifying a
value in the IIS metabase to change the default behavior from exposing IP addresses,
to sending the FQDN instead.

For more information about hiding the content location in HTTP responses, see
Microsoft Knowledge Base article 218180, “Internet Information Server Returns IP
Address in HTTP Header (Content-Location).”

Step 15. Server Certificates
If your Web application supports HTTPS (SSL) over port 443, you must install a
server certificate. This is required as part of the session negotiation process that
occurs when a client establishes a secure HTTPS session.

A valid certificate provides secure authentication so that a client can trust the server it
is communicating with, and secure communication so that sensitive data remains
confidential and tamperproof over the network.

During this step, you validate your server certificate.

Validate Your Server Certificate
Check the following four items to confirm the validity of your Web server certificate:
● Check that the valid from and valid to dates are in range.
● Check that the certificate is being used correctly. If it was issued as a server

certificate it should not be used for e-mail.
● Check that the public keys in the certificate chain are all valid up to a trusted root.
● Check that it has not been revoked. It must not be on a Certificate Revocation List

(CRL) from the server that issued the certificate.

462 Part IV: Securing Your Network, Host, and Application

Step 16. Machine.Config
This section covers hardening information about machine level settings that apply to
all applications. For application specific hardening settings, see Chapter 19, “Securing
Your ASP.NET Application.”

The Machine.config file maintains numerous machine wide settings for the .NET
Framework, many of which affect security. Machine.config is located in the following
directory:

%windir%\Microsoft.NET\Framework\{version}\CONFIG

Note You can use any text or XML editor (Notepad, for example) to edit XML configuration files.
XML tags are case sensitive, so be sure to use the correct case.

During this step, you:
● Map protected resources to HttpForbiddenHandler.
● Verify that tracing.is disabled.
● Verify that debug compiles are disabled.
● Verify that ASP.NET errors are not returned to the client.
● Verify session state settings.

Map Protected Resources to HttpForbiddenHandler
HTTP handlers are located in Machine.config beneath the <httpHandlers>
element. HTTP handlers are responsible for processing Web requests for specific
file extensions. Remoting should not be enabled on front-end Web servers; enable
remoting only on middle-tier application servers that are isolated from the Internet.
● The following file extensions are mapped in Machine.config to HTTP handlers:
● .aspx is used for ASP.NET pages
● .rem and .soap are used for Remoting.
● .asmx is used for Web Services.
● .asax, .ascx, .config, .cs, .csproj, .vb, .vbproj, .webinfo, .asp, .licx,

.resx, and .resources are protected resources and are mapped to
System.Web.HttpForbiddenHandler.

For .NET Framework resources, if you do not use a file extension, then map the
extension to System.Web.HttpForbiddenHandler in Machine.config, as shown in the
following example:

<add verb="*" path="*.vbproj" type="System.Web.HttpForbiddenHandler" />

 Chapter 16: Securing Your Web Server 463

In this case, the .vbproj file extension is mapped to
System.Web.HttpForbiddenHandler. If a client requests a path that ends with
.vbproj, then ASP.NET returns a message that states “This type of page is not served.”
● The following guidelines apply to handling .NET Framework file extensions:
● Map extensions you do not use to HttpForbiddenHandler. If you do not serve

ASP.NET pages, then map .aspx to HttpForbiddenHandler. If you do not use Web
Services, then map .asmx to HttpForbiddenHandler.

● Disable Remoting on Internet-facing Web servers. Map remoting extensions
(.soap and .rem) on Internet-facing Web servers to HttpForbiddenHandler.

Disable .NET Remoting

To disable .NET Remoting disable requests for .rem and .soap extensions, use the
following elements beneath <httpHandlers>:

<add verb="*" path="*.rem" type="System.Web.HttpForbiddenHandler"/>
<add verb="*" path="*.soap" type="System.Web.HttpForbiddenHandler"/>

Note This does not prevent a Web application on the Web server from connecting to a downstream
object by using the Remoting infrastructure. However, it prevents clients from connecting to objects
on the Web server.

Verify That Tracing Is Disabled
You configure tracing in Machine.config by using the <trace> element. While it is
useful on development and test servers, do not enable tracing on production servers,
because system-level trace information can greatly assist an attacker to profile an
application and probe for weak spots.

Use the following configuration on production servers:

<trace enabled="false" localOnly="true" pageOutput="false"
 requestLimit="10" traceMode="SortByTime"/>

Set enabled=“false” on production servers. If you do need to trace problems with
live applications, simulate the problem in a test environment, or if necessary, enable
tracing and set localOnly=“true” to prevent trace details from being returned to
remote clients.

Verify That Debug Compiles Are Disabled
You can control whether or not the compiler produces debug builds that include
debug symbols by using the <compilation> element. To turn off debug compiles, set
debug=“false” as shown below:

<compilation debug="false" explicit="true" defaultLanguage="vb" />

464 Part IV: Securing Your Network, Host, and Application

Verify That ASP.NET Errors Are Not Returned to Clients
You can use the <customErrors> element to configure custom, generic error messages
that should be returned to the client in the event of an application exception
condition.

Make sure that the mode attribute is set to “RemoteOnly” as shown in the following
example:

<customErrors mode="RemoteOnly" />

After installing an ASP.NET application, you can configure the setting to point to
your custom error page as shown in the following example:

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

Verify Session State Settings
If you do not use session state, verify that session state is disabled in Machine.config
as shown in the following example:

<sessionState mode="Off" . . . />

Also, ensure that the ASP.NET State Service is disabled. The default session state
mode is “InProc” and the ASP.NET State Service is set to manual. For more
information about securing session state if you install an ASP.NET application that
requires it, see “Session State,” in Chapter 19, “Securing Your ASP.NET Application
and Web Services.”

Step 17. Code Access Security
Machine level code access security policy is determined by settings in the
Security.config file located in the following directory:
%windir%\Microsoft.NET\Framework\{version}\CONFIG

Run the following command to be sure that code access security is enabled on your
server:

caspol -s On

For more information about configuring code access security for ASP.NET Web
applications, see Chapter 9, “Using Code Access Security with ASP.NET.”

During this step, you:
● Remove all permissions for the local intranet zone.
● Remove all permissions for the Internet zone.

 Chapter 16: Securing Your Web Server 465

Remove All Permissions for the Local Intranet Zone
The local intranet zone applies permissions to code running from UNC shares or
internal Web sites. Reconfigure this zone to grant no permissions by associating it
with the Nothing permission set.

� To remove all permissions for the local intranet zone

1. Start the Microsoft .NET Framework version 1.1 Configuration tool from the
Administrative Tools program group.

2. Expand Runtime Security Policy, expand Machine, and then expand Code
Groups.

3. Expand All_Code and then select LocalIntranet_Zone.
4. Click Edit Code Group Properties.
5. Click the Permission Set tab.
6. Select Nothing from the drop-down Permission list.
7. Click OK.

The dialog box shown in Figure 16.6 is displayed.

Figure 16.6
Setting LocalIntranet_Zone code permissions to Nothing

Remove All Permissions for the Internet Zone
The Internet zone applies code access permissions to code downloaded over the
Internet. On Web servers, this zone should be reconfigured to grant no permissions
by associating it with the Nothing permission set.

Repeat the steps shown in the preceding section, “Remove All Permissions for the
Local Intranet Zone,” except set the Internet_Zone to the Nothing permission set.

466 Part IV: Securing Your Network, Host, and Application

Snapshot of a Secure Web Server
A snapshot view that shows the attributes of a secure Web server allows you to
quickly and easily compare settings with your own Web server. The settings shown in
Table 16.4 are based on Web servers that host Web sites that have proven to be very
resilient to attack and demonstrate sound security practices. By following the
proceeding steps you can generate an identically configured server, with regard to
security.

Table 16.4 Snapshot of a Secure Web Server

Component Characteristics
Patches and Updates Latest service packs and patches are applied for Windows, IIS, and the

.NET Framework.

Services Unnecessary services are disabled.

NNTP, SMTP, and FTP are disabled unless you require them.

WebDAV is disabled or secured if used.

Service accounts run with least privilege.

ASP.NET Session State service is disabled if not required.

Protocols The NetBIOS and SMB protocols are not enabled on the server.

The TCP stack has been hardened.

Accounts Unused accounts are removed.

Guest account is disabled.

The default administrator account is renamed and has a strong password.

Default anonymous account (IUSR_Machine) is disabled.

Custom anonymous account is used for anonymous access.

Strong password policies are enforced.

Remote logons are restricted.

Null sessions (anonymous logons) are disabled.

Approval if required for account delegation.

Shared accounts are not used.

Membership of local administrators group is restricted (ideally to two
members).

Administrators are required to log on interactively (or a secure remote
administration solution is implemented).

 Chapter 16: Securing Your Web Server 467

Table 16.4 Snapshot of a Secure Web Server (continued)
Component Characteristics
Files and Directories Everyone group has no rights to system, Web, or tools directories.

Anonymous account has no access to Web site content directories and
system utilities.

Tools, utilities, and SDKs are removed or secured.

Sample files are removed.

Unnecessary DSNs are removed.

Shares Unused shares are removed from the server.

Access to required shares is secured (shares are not enabled to
“Everyone” unless necessary.)

Administration shares (C$ and Admin$) are removed if not required.

Ports All ports except 80 and 443 (SSL) are blocked, especially vulnerable ports
135–139 and 445.

Registry Remote administration of the registry is prevented.

SAM has been secured (stand-alone servers only).

Auditing and Logging Login failures are logged.

Object access failures by the Everyone group are logged.

Log files are relocated from %systemroot%\system32\LogFiles and
secured with ACLs: Administrators and System have full control.

IIS logging is enabled.

Log files are regularly archived for offline analysis.

Access to the metabase.bin file is audited.

IIS is configured for W3C Extended Log File Format Auditing.

IIS

Sites and Virtual
Directories

Web roots and virtual directories are located on separate volumes from the
system volume.

Parent Paths setting is disabled.

Dangerous virtual directories are removed (IIS Samples, MSADC, IISHelp,
Scripts, and IISAdmin).

RDS is removed or secured.

Web permissions restrict inappropriate access.

Include directories restrict Read Web permissions.

(continued)

468 Part IV: Securing Your Network, Host, and Application

Table 16.4 Snapshot of a Secure Web Server (continued)
Component Characteristics
Sites and Virtual
Directories (continued)

Folders with Anonymous access restrict Write and Execute Web
permissions.

Secured folders that allow content authoring allow Script Source Access
Web permissions while all other folders do not.

FPSE is removed if not required.

Script Mappings Unused script-mappings are mapped to 404.dll: .idq, .htw , .ida , .shtml ,
.shtm , .stm , idc, .htr , .printer.

Note The 404.dll is installed when you run the IIS Lockdown tool.

ISAPI Filters Unused ISAPI filters are removed.

IIS Metabase Access to IIS Metabase is restricted with NTFS permissions.

Banner information is restricted; the content location in HTTP response
headers is hidden.

Machine.config

HttpForbiddenHandler Protected resources are mapped to System.Web.HttpForbiddenHandler

Remoting .NET Remoting is disabled.

<httpHandlers>
 <add verb="*" path="*.rem"
 type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.soap"
 type="System.Web.HttpForbiddenHandler"/>
</httpHandlers>

trace Trace information and detailed error information is not returned to the
client:

<trace enabled="false">

compilation Debug compiles are disabled

<compilation debug="false"/>

customErrors Error details are not returned to the client:

<customErrors mode="On" />

A generic error page writes errors to the Event Log.

sessionState Session State is disabled if not needed:

<sessionState mode="Off" />

 Chapter 16: Securing Your Web Server 469

Table 16.4 Snapshot of a Secure Web Server (continued)
Component Characteristics
Code Access Security

Code Access Security Code Access Security is enabled for the machine.

caspol -s On

LocalIntranet_Zone Local intranet zone has no permissions:

PermissionSet=Nothing

Internet_Zone Internet zone has no permissions:

PermissionSet=Nothing

Staying Secure
You need to monitor the security state of your server and update it regularly to help
prevent newly discovered vulnerabilities from being exploited. To help keep your
server secure:
● Audit group membership.
● Monitor audit logs.
● Stay current with service packs and patches.
● Perform security assessments.
● Use security notification services.

Audit Group Membership
Keep track of user group membership, particularly for privileged groups such as
Administrators. The following command lists the members of the Administrators
group:

net localgroup administrators

Monitor Audit Logs
Monitor audit logs regularly and analyze the log files by manually viewing them or
use the technique describe in Microsoft Knowledge Base article 296085, “How To: Use
SQL Server to Analyze Web Logs.”

470 Part IV: Securing Your Network, Host, and Application

Stay Current With Service Packs and Patches
Set up a schedule to analyze your server software and subscribe to security alerts.
Use MBSA to regularly scan your server for missing patches. The following links
provide the latest updates:
● Windows 2000 service packs. The latest service packs are listed at

http://www.microsoft.com/windows2000/downloads/servicepacks/default.asp.
● .NET Framework Service Pack. For information about how to obtain the latest

.NET Framework updates, see the MSDN article, “How to Get the Microsoft .NET
Framework” at http://msdn.microsoft.com/netframework/downloads/howtoget.asp.

● Critical Updates. These updates help to resolve known issues and help protect
your computer from known security vulnerabilities. For the latest critical updates,
see “Critical Updates” at http://www.microsoft.com/windows2000/downloads/critical
/default.asp

● Advanced Security Updates. For additional security updates, see “Advanced
Security Updates” at http://www.microsoft.com/windows2000/downloads/security
/default.asp.
These also help protect your computer from known security vulnerabilities.

Perform Security Assessments
Use MBSA to regularly check for security vulnerabilities and to identify missing
patches and updates. Schedule MBSA to run daily and analyze the results to take
action as needed. For more information about automating MBSA, see “How To:
Use MBSA” in the “How To” section of this guide.

Use Security Notification Services
Use the Microsoft services listed in Table 16.5 to obtain security bulletins with
notifications of possible system vulnerabilities.

Table 16.5 Security Notification Services

Service Location
TechNet Security
Web site

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/current.asp

Use this Web page to view the security bulletins that are available for your
system.

Microsoft Security
Notification Service

http://register.microsoft.com/subscription/subscribeme.asp?ID=135

Use this service to register for regular email bulletins that notify you of the
availability of new fixes and updates.

http://www.microsoft.com/windows2000/downloads/servicepacks/default.asp
http://msdn.microsoft.com/netframework/downloads/howtoget.asp
http://www.microsoft.com/windows2000/downloads/critical/default.asp
http://www.microsoft.com/windows2000/downloads/critical/default.asp
http://www.microsoft.com/windows2000/downloads/security/default.asp
http://www.microsoft.com/windows2000/downloads/security/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://register.microsoft.com/subscription/subscribeme.asp?ID=135

 Chapter 16: Securing Your Web Server 471

Additionally, subscribe to the industry security alert services shown in Table 16.6.
This allows you to assess the threat of a vulnerability where a patch is not yet
available.

Table 16.6 Industry Security Notification Services

Service Location
CERT Advisory
Mailing List

http://www.cert.org/contact_cert/certmaillist.html

Informative advisories are sent when vulnerabilities are reported.

Windows and .NET
Magazine Security
UPDATE

http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp

Announces the latest security breaches and identifies fixes.

NTBugtraq http://www.ntbugtraq.com/default.asp?pid=31&sid=1 - 020

This is an open discussion of Windows security vulnerabilities and exploits.
Vulnerabilities which currently have no patch are discussed.

Remote Administration
Administrators often need to be able to administer multiple servers. Make sure the
requirements of your remote administration solution do not compromise security. If
you need remote administration capabilities, then the following recommendations
help improve security:
● Restrict the number of administration accounts. This includes restricting the

number of administration accounts as well as restricting which accounts are
allowed to log on remotely.

● Restrict the tools. The main options include Internet Services Manager and
Terminal Services. Another option is Web administration (using the IISAdmin
virtual directory), but this is not recommended and this option is removed by
IISLockdown.exe. Both Internet Services Manager and Terminal Services use
Windows security. The main considerations here are restricting the Windows
accounts and the ports you use.

● Restrict the computers that are allowed to administer the server. IPSec can be
used to restrict which computers can connect to your Web server.

http://www.cert.org/contact_cert/certmaillist.html
http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp
http://www.ntbugtraq.com/default.asp?pid=31&sid=1#020

472 Part IV: Securing Your Network, Host, and Application

Securing Terminal Services
It is possible to use Microsoft Terminal Services securely, to remotely administer your
Web server.

Terminal Services is based on Microsoft’s proprietary protocol known as Remote
Desktop Protocol (RDP). RDP uses the TCP 3389 port and supports two concurrent
users. The following sections describe how to install and configure Terminal Services
for secure administration:
● Install Terminal Services.
● Configure Terminal Services.

Install Terminal Services
� To install Terminal Services:

1. Install Terminal Services by using Add/Remove Programs from the Control Panel.
Use the Add/Remove Windows Components option. You do not need to install
the Terminal Services Licensing service for remote administration.

2. Configure Terminal Services for remote administration mode.
3. Remove the TsInternetUser account, which is created during Terminal Services

installation. This account is used to support anonymous Internet access to
Terminal Services, which should not be enabled on the server.

Configure Terminal Services
Use the Terminal Services Configuration MMC snap-in available from the
Administrative Tools program group to configure the following:
1. There are three levels (Low, Medium, and High) of encryption available for

connections to Terminal Services. Set the encryption to 128-bit key. Note that the
Windows high encryption pack should be installed on both the server and the
client.

2. Configure the Terminal Services session to disconnect after idle connection time
limit. Set it to end a disconnected session. A session is considered to be
disconnected if the user closes the Terminal Services client application without
logging off in a period of ten minutes.

3. Finally restrict permissions to access Terminal Services. Use the RDP permissions
tab in the RDP dialog box. By default, all members of the Administrators group
are allowed to access Terminal Services. If you don’t want all members of the
Administrators group to access Terminal Services, then remove the group and add
individual accounts that need access. Note that the SYSTEM account must be in
the list.

 Chapter 16: Securing Your Web Server 473

Use a secure VPN connection between the client and the server or an IPSec tunnel for
enhanced security. This approach provides mutual authentication and the RDP
payload is encrypted.

Copying Files over RDP
Terminal Services does not provide built-in support for file transfer. However, you
can install the File Copy utility from the Windows 2000 Server Resource Kit to add
file transfer functionality to the clipboard redirection feature in Terminal Services.
For more information about the utility and installation instructions see Microsoft
Knowledge Base article 244732, “How To: Install the File Copy Tool Included with
the Windows 2000 Resource Kit.”

Simplifying and Automating Security
This chapter has shown you how to manually configure security settings for an
ASP.NET Web server. The manual process helps you to understand the configuration
but can be time consuming Use the following resources to help automate the steps
presented in this chapter:
● For information on how to automate IISLockdown, see Microsoft Knowledge Base

article 310725 “How To: Run the IIS Lockdown Wizard Unattended in IIS.”
● You can create and deploy security policies using security templates. For more

information, see the following Microsoft Knowledge Base articles:
● 313434, “How To: Define Security Templates in the Security Templates Snap-in

in Windows 2000.”
● 309689, “How To: Apply Predefined Security Templates in Windows 2000.”
● 321679, “How To: Manage Security Templates in Windows 2000 Server.”

● For detailed guidance about customizing and automating security templates, see
the Microsoft patterns & practices, Microsoft Solution for Securing Windows 2000
Server, at http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/prodtech/windows/secwin2k/default.asp.
The Microsoft Solution for Securing Windows 2000 Server addresses the most
common server roles, including domain controllers, DNS servers, DHCP servers,
IIS Web servers, and File and Print servers. The approach used in this guide allows
you to take a default Windows 2000 installation and then create a secure server,
the precise configuration of which varies depending upon its role. Administrators
can then consciously weaken security to satisfy the needs of their particular
environment. The guide provides a foundation of baseline security
recommendations that covers services, accounts, group policies, and so on,
that you can use as a starting point for the common types of server roles.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/windows/secwin2k/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/windows/secwin2k/default.asp

474 Part IV: Securing Your Network, Host, and Application

Summary
A secure Web server provides a protected foundation for hosting your Web
applications. This chapter has shown you the main threats that have the potential
to impact your ASP.NET Web server and has provided the security steps required
for risk mitigation. By performing the hardening steps presented in this chapter,
you can create a secure platform and host infrastructure to support ASP.NET Web
applications and Web services.

The methodology used in this chapter allows you to build a secure Web server from
scratch and also allows you to harden the security configuration of an existing Web
server. The next step is to ensure that any deployed applications are correctly
configured.

Additional Resources
For additional related reading, see the following resources:
● For information about securing your developer workstation, see “How To: Secure

Your Developer Workstation” in the “How To” section of this guide.
● For more information about how to secure ASP.NET Web applications and Web

services, see Chapter 19, “Securing Your ASP.NET Application.”
● For information on how the Open Hack application was configured, see the

MSDN article, “Building and Configuring More Secure Web Sites,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/openhack.asp.

● For security-related resources on TechNet, see the TechNet Security page,
http://www.microsoft.com/technet/security/default.asp.

● For a printable checklist, see “Checklist: Securing Your Web Server” in the
“Checklists” section of this guide.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://www.microsoft.com/technet/security/default.asp

17
Securing Your Application Server

In This Chapter
● Identifying threats and countermeasures for middle-tier application servers
● Securing the communication channels between tiers
● Securing middle-tier Remoting and Web services applications
● Locking down an Enterprise Services application
● Configuring an internal firewall

Overview
Middle-tier application servers are most often used to host business logic and data
access services. This functionality is usually packaged inside Enterprise Services
applications or is exposed to front-end Web servers by using middle-tier Web services
or Microsoft® .NET Remoting technology. This chapter addresses each technology
separately and shows you how to secure your application server in each case.

Figure 17.1 shows the focus of this chapter, which includes configuring internal
firewalls that are featured in many multitiered deployment models.

476 Part IV: Securing Your Network, Host, and Application

SQL
Server

Web ServerClient

Perimeter
Firewall

Optional Internal
Firewalls

Application
Server

Enterprise Services
Web Services

.NET Remoting

Figure 17.1
Remote application server deployment model

Before delving into technology-specific configuration, the chapter identifies the main
threats to an application server. These threats are somewhat different from those that
apply to an Internet-facing Web server because middle-tier application servers are (or
should be) isolated from direct Internet access.

To secure the application server, you must apply an incremental security
configuration after the underlying operating system and Internet Information
Services (IIS) Web server (if installed) have been locked down.

How to Use This Chapter
This chapter focuses on the application server and the associated communication
channels that connect the Web server to the application server and the application
server to the database server.

To get the most out of this chapter:
● Read Chapter 2, “Threats and Countermeasures.” This will give you a better

understanding of potential threats to Web applications.
● Use the companion securing chapters. The current chapter is part of a securing

solution that includes chapters that cover host (operating system) and network
layer security. Use the following chapters in tandem with this one:
● Chapter 15, “Securing Your Network”
● Chapter 16, “Securing Your Web Server”
● Chapter 18, “Securing Your Database Server”

 Chapter 17: Securing Your Application Server 477

Threats and Countermeasures
Many threats to an application server come from within an organization because
application servers should be isolated from Internet access. The main threats to an
application server are:
● Network eavesdropping
● Unauthorized access
● Viruses, Trojan horses, and worms

Figure 17.2 shows the main threats to an application server.

SQL
Server

Web Server

Perimeter
Firewall

Application
Server

Unauthorized
Access

Network
Eavesdropping

Network
Eavesdropping

Unauthorized
Access

Viruses,
Trojan
horses,

and Worms

Figure 17.2
Top application server related threats and vulnerabilities

Network Eavesdropping
Attackers with network monitoring software can intercept data flowing from the Web
server to the application server and from the application server to downstream
systems and database servers. The attacker can view and potentially modify this
data.

Vulnerabilities

Vulnerabilities that can make your application server vulnerable to network
eavesdropping include:
● Sensitive data transmitted in clear text by the application
● Use of Microsoft SQL Server authentication to the database, resulting in clear text

credentials

478 Part IV: Securing Your Network, Host, and Application

● Lack of transport or application layer encryption
● Insecure network-hardware administrative interfaces
● Use of the .NET Remoting TCP Channel to remote components

Attacks

The attacker places packet-sniffing tools on the network to capture traffic.

Countermeasures

Countermeasures to prevent packet sniffing include the following:
● Use secure authentication, such as Windows authentication, that does not send

passwords over the network.
● Encrypt SQL Server authentication credentials. If you use SQL Server

authentication, you can encrypt credentials automatically by installing a server
certificate on the database server.

● Secure communication channels. Options include using Secure Sockets Layer
(SSL) or Internet Protocol Security (IPSec).

● Use remote procedure call (RPC) encryption with Enterprise Services applications.
● Use a segmented network, which can isolate eavesdropping to compromised

segments.
● Use the HttpChannel and SSL with .NET Remoting.

Unauthorized Access
If you fail to block the ports used by applications that run on the application server at
the perimeter firewall, an external attacker can communicate directly with the
application server. If you allow computers other than the front-end Web servers to
connect to the application server, the attack profile for the application server
increases.

Vulnerabilities

Vulnerabilities that can result in unauthorized access include:
● Weak perimeter network and firewall configurations
● Superfluous ports open on the internal firewall
● Lack of IPSec policies to restrict host connectivity
● Unnecessary active services
● Unnecessary protocols
● Weak account and password policies

 Chapter 17: Securing Your Application Server 479

Attacks

Common attacks to gain unauthorized access include:
● Port scanning that detects listening services
● Banner grabbing that gives away available services and possibly software versions
● Malicious application input
● Password attacks against default accounts with weak passwords

Countermeasures

Countermeasures to prevent unauthorized access include:
● Firewall policies that block all traffic except expected communication ports
● TCP/IP filtering or IPSec policies to prevent unauthorized hosts from establishing

connections
● Disabling unused services
● Static DCOM endpoint mapping that allows access only to authorized hosts

Viruses, Worms, and Trojan Horses
These attacks are often not noticed until they begin to consume system resources,
which slows down or halts the execution of other applications. Application servers
that host IIS are susceptible to IIS attacks.

Vulnerabilities
● Unpatched servers
● Running unnecessary services
● Unnecessary ISAPI filters and ISAPI extensions

Countermeasures

Countermeasures that help mitigate the risk posed by viruses, Trojan horses, and
worms include:
● Promptly applying the latest software patches
● Disabling unused functionality, such as unused ISAPI filters and extensions
● Running processes with least privileged accounts to reduce the scope of damage in

the event of a compromise

480 Part IV: Securing Your Network, Host, and Application

Methodology
By securing the communication channels to the application server and preventing
any hosts except authorized Web servers from accessing the application server,
attackers are limited to application-layer attacks that exploit vulnerabilities in Web
application design and development.

To mitigate this risk, developers must apply the secure design and development
approaches described in Parts II and III of this guide.

The configuration solutions in this chapter are specific to the application server and
they should not be applied in isolation. Apply them alongside the solutions presented
in Chapter 15, “Securing Your Network,” Chapter 16, “Securing Your Web Server,”
and Chapter 18, “Securing Your Database Server.”

Communication Channel Considerations
Sensitive application data and authentication credentials that are sent to and from the
application server should be encrypted to provide privacy and integrity. This
mitigates the risk associated with eavesdropping and tampering.

Encrypting network traffic addresses the network eavesdropping and tampering
threats. If you consider this threat to be negligible in your environment — for
example, because your application is located in a closed and physically secured
network — then you do not need to encrypt the traffic. If network eavesdropping is a
concern, then you can use SSL, which provides a secure communication channel at
the application layer, or IPSec, which provides a transport-level solution. IPSec
encrypts all IP traffic that flows between two servers, while SSL allows each
application to choose whether or not to provide an encrypted communication
channel.

Enterprise Services
Enterprise Services (or COM+) applications communicate over the network using
DCOM over RPC. RPC uses port 135, which provides endpoint mapping services to
allow clients to negotiate parameters, including the communication port, which by
default is dynamically assigned.

The Enterprise Service channel can be secured in one of two ways:
● RPC Encryption

You can configure an Enterprise Services application for RPC Packet Privacy
authentication. In addition to authentication, this provides encryption for every
data packet sent to and from the Enterprise Services application.

● IPSec
You can use an IPSec policy between the Web server and the application server to
encrypt the communication channel.

 Chapter 17: Securing Your Application Server 481

.NET Remoting
Two possible implementation models exist for applications that use .NET Remoting:
● HTTP channel over port 80

This model uses ASP.NET as the hosting service.
● TCP channel over any port

In this model, the application is hosted inside a custom executable, usually a
Windows service.

Depending on the performance and security requirements of the application, you can
use one of two methods to secure the Remoting channel.
● Use SSL with the HTTPChannel.

If you host in ASP.NET, you can take advantage of the built-in HTTPS
functionality provided by IIS. HTTPS provides authentication and secure data
communication.

● Use IPSec with the TCPChannel.
With the TCP channel, you can use an IPSec policy to provide transport-layer
encryption for all IP data. Note that if you use the TCP channel, you must provide
your own authentication mechanism. For more information, see Chapter 13,
“Building Secure Remoted Components.”

Web Services
Web services are hosted by ASP.NET and IIS, and the services use the HTTP protocol
for communication over the network.

SSL or IPSec can be used to secure the communication channel. Alternatively,
encryption can be handled at the application layer by encrypting the message
payload or the sensitive parts of the payload. To do this using open standards, use
the Web Services Enhancements (WSE) download available for Web services. For
more information, see Chapter 12, “Building Secure Web Services.”

SQL Server
The application server communicates with SQL Server using TCP port 1433 by
default. Unless otherwise configured, UDP port 1434 is also used for negotiation.

To secure the channel from the application server to SQL Server, use IPSec or SSL.
SSL requires a server certificate to be installed on the database server.

For more information on using SSL with SQL Server, see Microsoft Knowledge Base
article 276553, “How To: Enable SSL Encryption for SQL Server 2000 with Certificate
Server.”

482 Part IV: Securing Your Network, Host, and Application

Firewall Considerations
Your security infrastructure can include internal firewalls on either side of the
application server. This section discusses the ports that you open on these firewalls to
support the functionality of your application.

Enterprise Services
If you use middle-tier Enterprise Services, configure an internal firewall that
separates the Web server and application server to allow DCOM and RPC traffic.
Additionally, if you use Enterprise Services, your applications often use distributed
transactions and the services of the Distributed Transaction Coordinator (DTC). In
this event, open DTC ports on any firewall that separates the application server from
remote resource managers, such as the database server. Figure 17.3 shows a typical
Enterprise Services port configuration.

SQL
Server

Web Server
(Client)

Enterprise
ServicesDCOM

Port range >
1024
OR

Static port

RPC

SQL Server
Port 1433
(default)

135
(RPC Endpoint

Mapper)

RPC
DTC

Traffic

TCP
SQL

Traffic

135
(RPC Endpoint

Mapper)

DTC
Port(s)

Figure 17.3
Typical Enterprise Services firewall port configuration

Note Figure 17.3 does not show the additional ports that are required for authentication
mechanisms between a client and an Enterprise Services application and possibly between the
Enterprise Services application and the database server. Commonly, for networks that do not
use Active Directory, TCP port 139 is required for Windows authentication. For more information
on port requirements, see the TechNet articles “TCP and UDP Port Assignments,” at
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/tcpip/part4/tcpappc.asp,
and “Security Considerations for Administrative Authority,” at http://www.microsoft.com/technet
/security/bestprac/bpent/sec2/seconaa.asp.

http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/tcpip/part4/tcpappc.asp
http://www.microsoft.com/technet/security/bestprac/bpent/sec2/seconaa.asp
http://www.microsoft.com/technet/security/bestprac/bpent/sec2/seconaa.asp

 Chapter 17: Securing Your Application Server 483

By default, DCOM uses RPC dynamic port allocation, which randomly selects port
numbers above 1024. In addition, port 135 is used by the RPC endpoint mapping
service.

Restrict the ports required to support DCOM on the internal firewall in two ways:
● Define port ranges.

This allows you to control the ports dynamically allocated by RPC. For more
information about dynamic port restrictions, see Microsoft Knowledge Base article
300083, “How To: Restrict TCP/IP Ports on Windows 2000 and Windows XP.”

● Use static endpoint mapping.
Microsoft Windows 2000 SP3 (or QFE 18.1 and later) or Windows Server 2003
allows you to configure Enterprise Services applications to use a static endpoint.
Static endpoint mapping means that you only need to open two ports in the
firewall: port 135 for RPC and a nominated port for your Enterprise Services
application.
For more information about static endpoint mapping, see Microsoft Knowledge
Base article 312960, “Cannot Set Fixed Endpoint for a COM+ Application.”

Web Services
If you cannot open ports on the internal firewall, then you can introduce a Web-
services façade layer in front of the serviced components on the application server.
This means that you only need to open port 80 for HTTP traffic (specifically, SOAP
messages) to flow in both directions.

This approach does not allow you to flow transaction context from client to server,
although in many cases where your deployment architecture includes a middle-tier
application server, it is appropriate to initiate transactions in the remote serviced
component on the application server.

For information about physical deployment requirements for service agents and
service interfaces, such as the Web-services façade layer, see “Physical Deployment
and Operational Requirements” in the Reference section of MSDN article,
“Application Architecture for .NET: Designing Applications and Services,” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp.

DTC Requirements
If your application uses COM+ distributed transactions and these are used across
remote servers separated by an internal firewall, then the firewall must open the
necessary ports to support DTC traffic. The DTC uses RPC dynamic port allocation.
In addition to port 135 for RPC, DTC communication requires at least one additional
port.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/html/distapp.asp

484 Part IV: Securing Your Network, Host, and Application

If your deployment architecture includes a remote application tier, transactions are
normally initiated there within the Enterprise Services application and are
propagated to the database server. In the absence of an application server, the
Enterprise Services application on the Web server initiates the transaction and
propagates it to the SQL Server resource manager.

For information about configuring firewalls to support DTC traffic, see:
● “DTC Security Considerations” in the COM+ platform SDK at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm
/pgdtc_admin_9dkj.asp

● Microsoft Knowledge Base article 250367, “INFO: Configuring Microsoft
Distributed Transaction Coordinator (DTC) to Work Through a Firewall.”

● Microsoft Knowledge Base article 306843, “How To: Troubleshoot MS DTC
Firewall Issues.”

.NET Remoting
If you use the HTTP channel and host your remote components in ASP.NET, only
open port 80 on the internal firewall to allow HTTP traffic. If your application also
uses SSL, open port 443.

If you use the TCP channel and host in a Windows service, open the specific TCP port
or ports that your Remoting application has been configured to use. The application
might need an additional port to support callbacks.

Figure 17.4 shows a typical .NET Remoting firewall port configuration. Note that the
port numbers shown for the TCP channel scenario (5555 and 5557) are illustrations.
The actual port numbers are specified in web.config configuration files on the client
and server machines. For more information, see Chapter 13, “Building Secure
Remoted Components.”

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgdtc_admin_9dkj.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/htm/pgdtc_admin_9dkj.asp

 Chapter 17: Securing Your Application Server 485

Web Server
(Client)

HTTP
Channel ASP.NET

Host

80

Web Server
(Client)

Windows
Service

Host

Application Server

Application Server

5555
(Inbound

Only)

5557
(Outbound

Only)

TCP
Channel

Callbacks

Client
listens on

5557

Server
listens on

5555

Figure 17.4
Typical Remoting firewall port configuration for HTTP and TCP channel scenarios

Web Services
Web services communicate using SOAP over HTTP; therefore, only open port 80 on
the internal firewall.

SQL Server
If a firewall separates the application server from the database server, then
connecting to SQL Server through a firewall requires that you configure the client
using the SQL Server Client Network Utility and configure the database server using
the Server Network Utility. By default, SQL Server listens on TCP port 1433, although
this can be changed. The chosen port must be open at the firewall.

Depending on the chosen SQL Server authentication mode and use of distributed
transactions by your application, you might also need to open several additional
ports at the firewall:
● If your application uses Windows authentication to connect to SQL Server, open

the necessary ports that support the Kerberos protocol or NTLM authentication.
● If your application uses distributed transactions, for example automated COM+

transactions, configure your firewall to allow DTC traffic to flow between separate
DTC instances, and between the DTC and resource managers, such as SQL Server.

486 Part IV: Securing Your Network, Host, and Application

For more information on SQL Server port requirements, see Chapter 18, “Securing
Your Database Server.”

.NET Remoting Security Considerations
The .NET Remoting infrastructure enables applications to communicate with one
another on the same machine or across machines in a network. The Remoting
infrastructure can use the HTTP or TCP transports for communication and can send
messages in many formats, the most common of which are SOAP or binary format.

Hosting in a Windows Service (TCP Channel)
Because the Remoting infrastructure provides no default authentication and
authorization mechanisms, it is not recommended for use by Internet-facing
applications. It is designed for applications that run in a trusted environment and is
well suited for Web server communication to remote application servers, which is
shown in Figure 17.5.

Web Server
(Client)

Windows
Service

Host

TCP Channel

IPSec
(Secure

Communication)

Figure 17.5
Remoting with the TCP channel and a Windows service host

In this scenario, a Windows service hosts the Remoting objects and communication
occurs through a TCP channel. This approach offers good performance, but does not
necessarily address security. For added security, use IPSec between the Web server
and the application server and only allow the Web server to establish connections
with the application server.

Hosting in IIS (HTTP Channel)
To benefit from the security features provided by ASP.NET and IIS, host your
remote components in ASP.NET and use the HTTP channel for communication,
as Figure 17.6 shows.

 Chapter 17: Securing Your Application Server 487

Web Server
(Client)

ASP.NET
Host

HTTP
Channel

IPSec
or SSL
(Secure

Communication)

IIS

NTLM / Kerberos
(Authentication)

IIS and ASP.NET
Gatekeepers
(Authorization)

Figure 17.6
Remoting with the HTTP channel and an ASP.NET host

In this scenario, you can use Windows integrated authentication to authenticate the
ASP.NET Web application process identity. You can also use SSL for secure
communication and the gatekeepers provided by IIS and ASP.NET for authorization.

Enterprise Services (COM+) Security Considerations
COM+ provides the underlying infrastructure for Enterprise Services; therefore,
secure COM+ if you use it on the middle-tier application server. Two main steps are
involved in securing an application server that uses Enterprise Services:
● Secure the Component Services Infrastructure.

You must secure the underlying operating system and Enterprise Services
infrastructure. This includes base security measures, such as applying patches and
updates, and disabling unused services, blocking unused ports, and so on.

● Configure Enterprise Services application security.
You must secure the Enterprise Services application that is deployed on the server,
taking into account application-specific security needs.

The developer can specify many of the application and component-level security
configuration settings using metadata embedded in the deployed assemblies. These
govern the initial catalog security settings that are applied to the application when it
is registered with Enterprise Services. Then, the administrator can view and amend
these if necessary by using the Component Services tool.

Secure the Component Services Infrastructure
Enterprise Services is not an optional component, and it is installed as an integral
part of Windows 2000. From a security perspective, knowing what operating system
components are installed to support Enterprise Services helps you take appropriate
security measures.

488 Part IV: Securing Your Network, Host, and Application

What Does the Operating System Install?
The following table shows the core Component Services elements that are installed
with a standard operating system installation.

Table 17.1 Enterprise Services Components

Item Details
Administration Component Services Explorer

This provides configurable administration of COM+ applications, and is
located at \WINNT\system32\Com\comexp.msc.

COM+ Catalog

The COM+ Catalog maintains configuration information for each COM+
application.

System Application

(a COM+ server
application)

System Application

This application manages the configuration and tracking of COM+
components. It can be viewed from the Component Services Microsoft
Management Console (MMC). It has two associated roles: Administrator
and Reader. By default, the administrators are part of the Administrator
role, which can modify the COM+ Catalog, while Everyone is part of the
Reader role, which can read only COM+ Catalog values.

Services COM+ Event System

This service is required to support the COM+ loosely coupled event (LCE)
system. The LCE system is used by operating system services such as the
System Event Notification Services (SENS) service and optionally by your
applications.

Distributed Transaction Coordinator (DTC)

This service is required if your Enterprise Services solution uses COM+
automatic transactions.

Accounts Enterprise Services do not create any accounts. Library applications run as
the identity of the process they run in. Server applications can be
configured to run as the interactive user or a specific user. (You can
configure the user account on the Identity tab of the COM+ application’s
Properties dialog box in Component Services).

Log Files DTC log file: %windir%\system32\DTCLog

CRM log file: %windir%\registration

Registry Keys HKEY_CLASSES_ROOT\CLSID

HKEY_CLASSES_ROOT\AppID

 Chapter 17: Securing Your Application Server 489

What Does the .NET Framework Install?
When you install the .NET Framework, the following components that relate to
Enterprise Services are installed.

Table 17.2 .NET Framework Enterprise Services Tools and Configuration Settings

Item Description
Regsvcs.exe Command line tool used to register Enterprise Services components with

COM+

Libraries System.EnterpriseServices.dll

System.EnterpriseServices.Thunk.dll

System.EnterpriseServices.tlb

Machine.config

Configuration Elements

If you call Enterprise Services from ASP.NET, the following entries in
Machine.config are relevant:

<assemblies>

Loads the System.EnterpriseServices assembly for ASP.NET.

<processModel>

The comAuthentication attribute configures ASP.NET authentication levels.
DCOM authentication levels are negotiated between the client (for example,
the Web application) and the server (the Enterprise Services application).
The higher of the two security settings is used.

The comImpersonationLevel attribute configures ASP.NET impersonation
levels (for all outgoing DCOM calls). The client determines the
impersonation capabilities that are granted to the server.

To secure the component services infrastructure, consider the following items:
● Patches and updates
● Services
● Ports
● COM+ catalog

Patches and Updates
Update the application server with the latest service packs and patches to mitigate
the risks posed by viruses, worms, and Trojan horses. The software that needs to be
regularly updated includes the operating system, which includes IIS and the .NET
Framework.

490 Part IV: Securing Your Network, Host, and Application

Updates to the COM+ runtime are sometimes released as QFE releases. Use the
following resources to help manage patches and updates:
● Windows updates and patches

Use the Microsoft Baseline Security Analyzer (MBSA) to detect missing security
updates on application servers. For more information about how to use the MBSA
on a single computer and to keep a group of servers up-to-date, see “How to: Use
MBSA” in the “How To” section of this guide.
For information about environments that require many servers to be updated from
a centralized administration point, see “How To: Patch Management” in the “How
To” section of this guide.

● .NET Framework updates and patches

At the time of this writing (May 2003), MBSA does not have the ability to detect the
.NET Framework. Therefore, you must update the .NET Framework manually.

� To manually update the .NET Framework

1. Determine which .NET Framework service pack is installed on your Web server.
To do this, see Microsoft Knowledge Base article 318785, “INFO: Determining
Whether Service Packs Are Installed on .NET Framework.”

2. Compare the installed version of the .NET Framework to the current service pack.
To do this, use the .NET Framework versions listed in Microsoft Knowledge Base
article 318836, “INFO: How to Obtain the Latest .NET Framework Service Pack.”

● COM+ updates and patches
The latest Windows service packs include the current fixes to COM+. However,
updates to the COM+ runtime are sometimes released in the form of QFE releases.
An automatic notification service for COM+ updates does not currently exist, so
monitor the Microsoft Knowledge Base at http://support.microsoft.com. Use
“kbQFE” as a search keyword to refine your search results.

Services
To reduce the attack surface profile, disable any services that are not required.
Required services include the Microsoft DTC and the COM+ Event System service,
which is required to support the LCE COM+ feature.

To secure the services on your application server, disable the MS DTC if it is not
required.

Disable the Microsoft DTC If It Is Not Required

The DTC service is tightly integrated with COM+. It coordinates transactions that are
distributed across two or more databases, message queues, file systems, or other
resource managers. If your applications do not use the COM+ automated transaction
services, then the DTC should be disabled by using the Services MMC snap-in.

http://support.microsoft.com/

 Chapter 17: Securing Your Application Server 491

Ports
Serviced components communicate using DCOM, which in turn communicates using
the RPC transport.

By default, DCOM dynamically allocates ports, which is undesirable from a security
and firewall configuration perspective. DCOM ports should be restricted to reduce
the attack surface profile and to ensure that you do not need to open unnecessary
ports on the internal firewall. Two options exist for restricting the ports used by
DCOM:
● Use port ranges.
● Use static endpoint mapping.

Port Ranges

For incoming communication, you can configure RPC dynamic port allocation to
select ports within a restricted range above 1024. Then configure your firewall to
confine incoming external communication to only those ports and port 135, which is
the RPC endpoint mapper port.

� To control RPC dynamic port allocation

1. Start the Component Services tool.
2. Click to expand the Component Services and Computers nodes, right-click

My Computer, and then click Properties.
3. Click the Default Protocols tab, and then select Connection-oriented TCP/IP

in the DCOM Protocols list box.
4. Click Properties.
5. In the Properties for COM Internet Services dialog box, click Add.
6. In the Port range text box, add a port range, for example 5000–5020, and then

click OK.
7. Leave the Port range assignment and the Default dynamic port allocation

options set to Internet range.
8. Click OK twice to close the dialog boxes.
9. Restart your computer so the changes can take effect.

Static Endpoint Mapping

Windows 2000 (SP3 or QFE 18.1) or Windows Server 2003 allows you to configure
Enterprise Services applications to use a static endpoint. If a firewall separates the
client from the server, you only need to open two ports in the firewall. Specifically,
you must open port 135 for RPC and a port for your Enterprise Services application.

492 Part IV: Securing Your Network, Host, and Application

� To configure a static endpoint for DCOM

1. Obtain the application ID for your Enterprise Services application from the COM+
catalog. To do this:
a. Start the Component Services tool.
b. Display the Properties dialog box of the application, and retrieve the

application ID from the General page.

2. Start the registry editor (Regedt32.exe).
3. Select the following registry key:

HKEY_CLASSES_ROOT\AppID

4. From the Edit menu, click Add Value, and then add the following registry value,
where {your AppID} is the Application ID of the COM+ application that you
obtained in step 1:

Key name: {Your AppID}
Value name: Endpoints
Data type: REG_MULTI_SZ
Value data: ncacn_ip_tcp,0,<port number>

The port number that you specify in the Value data text box must be greater than
1024 and must not conflict with well-known ports that other applications on the
computer use. You cannot modify the ncacn_ip_tcp,0 portion of this key.

5. Close the registry editor.

COM+ Catalog
Enterprise Services application configuration settings are maintained in the COM+
catalog. The majority of configuration items are contained in the registration database
(RegDB), which consists of files located in the following directory:

%windir%\registration

By default, the Everyone group has permission to read the database. Modify the
access control list (ACL) for this directory to restrict read/write access to
administrators and the local system account. Also grant read access to the accounts
used to run Enterprise Services applications. Here is the required ACL:

Administrators: Read, Write
System: Read, Write
Enterprise Services Run-As Account(s): Read

 Chapter 17: Securing Your Application Server 493

Secure Enterprise Services Applications
Individual application configuration settings are maintained in the COM+ catalog
and can be configured using the Component Services tool or by using script. Many of
the settings discussed below can also be specified by application developers by using
the correct assembly level metadata in the serviced component assembly. When you
register the service component, for example by using Regsvcs.exe, the COM+ catalog
is automatically configured using this metadata, although the application run-as
identity must be configured administratively.

To secure an Enterprise Services application, you must configure the following items:
● Identity (run as)
● Authentication level
● COM+ role based security
● Impersonation
● CRM log files
● Application assemblies

Identity (Run As)
Configure Enterprise Services server applications to run with least privileged
accounts. This reduces the potential damage that might occur if the server process is
compromised by an attacker who manages to execute code using its security context.

If the serviced components within the Enterprise Services application are not
impersonating the caller’s security context, then the process-level identity specified
through the run-as account is used for downstream local and remote resource access.
To support network authentication to a remote database server, you can create a
“mirrored” local account, which is a local account on the remote server that has a
matching username and password.

Note When you set the run-as identity with Enterprise Services, the required “Logon as a batch
job” privilege is automatically granted to the account.

494 Part IV: Securing Your Network, Host, and Application

Authentication Level
Enterprise Services applications authenticate callers using RPC, which in turn uses
the underlying authentication services of the operating system provided through the
Security Service Provider Interface (SSPI) layer. This means that applications
authenticate callers using Windows authentication; either Kerberos or NTLM.

RPC defines authentication levels that determine when authentication occurs and
whether the authenticated communication should be checked for integrity or
encrypted. At minimum, you should use call-level authentication to ensure that every
method call to a serviced component method is authenticated.

Note Call-level authentication does not result in the encryption of message data. As a result, if
network eavesdropping is a real concern, use the packet privacy authentication level, or use call-level
authentication over a channel secured with IPSec.

Table 17.3 shows the various authentication levels:

Table 17.3 Enterprise Services Application Authentication Levels

Authentication Level Description
Default Choose authentication level using normal negotiation rules

None No authentication

Connect Only authenticates credentials when the client initially connects to the
server

Call Authenticates at the start of each remote procedure call

Packet Authenticates all data received from the client

Packet integrity Authenticates all data and verifies that none of the transferred data has
been modified

Packet privacy Authenticates all data and encrypts all packets transmitted using RPC
encryption

� To set call-level authentication

1. Start Component Services and display the Properties dialog box of the
application.

2. Click the Security tab.
3. Select Call from the Authentication level for calls drop-down list.

 Chapter 17: Securing Your Application Server 495

COM+ Role-Based Security
Authorization in Enterprise Services applications is provided by Enterprise Services
(COM+) roles. COM+ roles contain Windows user and group accounts and are used
to restrict access to the application, component, interfaces, and method. Ideally, your
Enterprise Services applications should be configured for component level
authorization, which allows you to authorize callers to individual serviced
component methods.

To configure role-based security:
● Enable role-based security.
● Enable component-level access checks.
● Enforce component-level access checks.

Enable Role-Based Security

Role-based security is disabled by default on Windows 2000. The reverse is true for
Windows Server 2003.

� To enable role-based security

1. Start the Component Services tool and display the Properties dialog box of the
application.

2. Click the Security tab.
3. Select Enforce access checks for this application.

Figure 17.7
Enabling role-based security

Enable Component-Level Access Checks

Without component-level access checks, any account that is used to connect to any
application component is granted access if it is a member of any role within the
application. Component-level access checks allow individual components to apply
their own authorization. This is the recommended level of granularity.

496 Part IV: Securing Your Network, Host, and Application

� To enable component level access checks

1. Start the Component Services tool and display the Properties dialog box of the
application.

2. Click the Security tab.
3. Click Perform access checks at the process and component level.

Figure 17.8
Enabling component-level access checks

Enforce Component-Level Access Checks

To allow individual components inside the Enterprise Services application to perform
access checks and authorize callers, you must enable component-level access checks
at the component level.

� To enforce component-level access checks

1. Start the Component Services tool and expand your application in the tree control.
2. Select the Components folder, right-click it, and then click Properties.
3. Click the Security tab.
4. Click Enforce component level access checks.

Note This setting is effective only if you have enabled application-level access checking and have
configured process and component level access checks, as described earlier.

 Chapter 17: Securing Your Application Server 497

Impersonation
DCOM clients set the impersonation level to determine the impersonation
capabilities of the server with which they are communicating. When an Enterprise
Services application on a middle-tier application server is configured, the configured
impersonation level affects any remote calls made to downstream components,
including the database server. The impersonation level is set on the Security page of
the Properties dialog box of the application in Component Services, as Figure 17.9
shows.

Figure 17.9
DCOM impersonation levels

The appropriate level depends on the desired application-level functionality,
although you should use the following guidelines to determine an appropriate level:
● Avoid Anonymous impersonation. The downstream component will not be able

to identify your application for authentication or authorization purposes.
● Use Identify to allow the downstream component to authenticate and authorize

your application. It will not, however, be able to access local or remote resources
using the impersonated security context of your application.

● Use Impersonate if you want to allow the downstream component to impersonate
the identity of your application so that it can access local resources on the
downstream server.

● Use Delegate if you want to allow the downstream component to impersonate the
identity of your application so that it can access local or remote resources. This
requires accounts configured for delegation in Active Directory

All downstream resource access that is performed by serviced components on your
middle-tier application server normally uses the server application’s identity. If,
however, the serviced components perform programmatic impersonation, and the
client application (usually an ASP.NET Web application or Web service on the Web
server) has been configured to support Kerberos delegation, then the client’s identity
is used.

For more information, see “How To: Enable Kerberos Delegation in Windows 2000”
in the “How To” section of “Microsoft patterns & practices Volume I, Building
Secure ASP.NET Applications: Authentication, Authorization, and Secure Communication”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/secnetlpMSDN.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp

498 Part IV: Securing Your Network, Host, and Application

CRM Log Files
If your Enterprise Services application uses the CRM, you should ensure that the
CRM log files are secured to prevent potential information disclosure. Depending on
the nature of the application, the files can contain sensitive application data. The
CRM log files are created in the following directory:

%windir%\system32\dtclog

CRM log file names are derived from the Enterprise Services application ID and have
the file name extension .crmlog. CRM log files are secured when they are created by
Enterprise Services and the file is configured with an ACL that grants Full Control to
the run-as account of the application. No other account has access.

If you change the identity of the application after the log file is created, you must
manually change the ACL on the file. Make sure that the new run-as identity of the
application has Full Control permissions.

Application Assemblies
To protect the deployed application assemblies that contain the serviced components
of the application, you should harden the ACL associated with the assembly .dll files
to ensure they cannot be replaced or deleted by unauthorized users.

Apply the following ACL to the DLL folder of your application:

Users: Execute
Application Run as account: Execute
Administrators: Read, Write and Execute

The location of the assembly DLLs of an application is specified at deployment time
and may therefore vary from installation to installation. The Properties dialog box in
the Component Services tool does not show the assembly DLL location. Instead, it
points to %windir%\System32\mscoree.dll, which provides the interception services
for the component.

� To check the location of application DLLs

1. Start the Component Services tool and expand your application in the tree control.
2. Expand the Components folder, select a component, right-click it, and then click

Properties.
3. In the Properties dialog box, retrieve the Class ID (CLSID) of the component.
4. Start Regedt32.exe and locate the retrieved CLSID beneath

HKEY_CLASSES_ROOT\CLSID.
5. Click the InprocServer32 key.

The DLL location is indicated by the CodeBase named value.

 Chapter 17: Securing Your Application Server 499

Summary
When sufficient perimeter network defenses are in place, many of the threats that
affect middle-tier application servers come from inside of an organization. A secure
infrastructure that consists of IPSec policies that restrict access to the application
server from selected Web servers only, and also provide secure communication
channels, is an effective risk mitigation strategy.

This chapter has shown you additional security measures. These measures differ
depending on the technology used on the application server.

Internal firewalls on either side of the application server present other issues. The
ports that must be open depend on application implementation choices, such as
transport protocols and the use of distributed transactions.

For a checklist that summarizes the steps in this chapter, see “Checklist: Securing
Your Application Server” in the “Checklists” section of this guide.

Additional Resources
For more information about the issues addressed in this chapter, see the following
articles in the Microsoft Knowledge Base at http://support.microsoft.com:
● Article 233256, “How to: Enable IPSec Traffic Through a Firewall”
● Article 312960, “Cannot Set Fixed Endpoint for a COM+ Application”
● Article 259011, “SAMPLE: A Simple DCOM Client Server Test Application”
● Article 248809, “PRB: DCOM Does Not Work over NAT-Based Firewall”
● Article 250367, “INFO: Configuring Microsoft Distributed Transaction Coordinator

(DTC) to Work Through a Firewall”
● Article 154596, “How To: Configure RPC Dynamic Port Allocation to Work with a

Firewall”

http://support.microsoft.com/

18
Securing Your Database Server

In This Chapter
● A proven methodology for securing database servers
● An explanation of the most common database server threats
● Steps to secure your server
● A reference table that illustrates a secure database server

Overview
There are many ways to attack a database. External attacks may exploit configuration
weaknesses that expose the database server. An insecure Web application may also be
used to exploit the database. For example, an application that is granted too much
privilege in the database or one that does not validate its input can put your database
at risk.

Internal threats should not be overlooked. Have you considered the rogue
administrator with network access? What about the database user tricked into
running malicious code? For that matter, could any malicious code on the network
compromise your database?

This chapter begins by reviewing the most common threats that affect database
servers. It then uses this perspective to create a methodology. This chapter then puts
the methodology into practice and takes a step-by-step approach that shows you how
to improve your database server’s security.

502 Part IV: Securing Your Network, Host and Application

How to Use This Chapter
This chapter provides a methodology and steps for securing a database server. The
methodology can be adapted for your own scenario. The steps put the methodology
into practice.

To gain the most from this chapter:
● Read Chapter 2, “Threats and Countermeasures.” This chapter provides an

explanation of potential threats faced by Web applications and downstream
database servers.

● Use the snapshot. The section, “Snapshot of a Secure Database Server,” later in
this chapter lists the attributes of a secure database server. It reflects distilled input
from a variety of sources including customers, industry experts, and internal
Microsoft development and support teams. Use the snapshot table as a reference
when configuring your database server.

● Use the checklist. The “Checklist: Securing Your Database Server” in the
“Checklist” section of this guide provides a quick reference. Use the checklist to
quickly evaluate the scope of the required steps and to help you work through the
individual steps.

● Use the “How To” section. The “How To” section in this guide includes the
following instructional articles that help you implement the guidance in this
chapter:
● “How To: Use Microsoft Security Baseline Analyzer”
● “How To: Use IPSec”
● “How To: Implement Patch Management”

Threats and Countermeasures
An attacker can target and compromise a database server in a number of ways by
exploiting a variety of configuration and application level vulnerabilities.

The main threats to a database server are:
● SQL injection
● Network eavesdropping
● Unauthorized server access
● Password cracking

Figure 18.1 shows the major threats and vulnerabilities that can result in a
compromised database server and the potential destruction or theft of sensitive data.

 Chapter 18: Securing Your Database Server 503

Network
Eavesdropping

SQL
Server

Web AppBrowser

Perimeter
Firewall

Internal
Firewall

Web App Vulnerabilities
Over privileged accounts

Weak input validation

Configuration Vulnerabilities
Over privileged service account

Weak permissions
No certificate

Unauthorized
External Access Network Vulnerabilities

Failure to block SQL ports

Password
Cracking

SQL
Injection

Figure 18.1
Top database server threats and vulnerabilities

The next sections describe each of these threats and vulnerabilities.

SQL Injection
With a SQL injection attack, the attacker exploits vulnerabilities in your application’s
input validation and data access code to run arbitrary commands in the database
using the security context of the Web application.

Vulnerabilities

Vulnerabilities exploited by SQL injection include:
● Poor input validation in your Web applications
● Unsafe, dynamically constructed SQL commands
● Over-privileged application logins to the database
● Weak permissions that fail to restrict the application’s login to the database

Countermeasures

To counter SQL injection attacks:
● Your application should constrain and sanitize input data before using it in SQL

queries.
● Use type safe SQL parameters for data access. These can be used with stored

procedures or dynamically constructed SQL command strings. Using SQL
parameters ensures that input data is subject to type and length checks and also
that injected code is treated as literal data, not as executable statements in the
database.

504 Part IV: Securing Your Network, Host and Application

● Use a SQL Server login that has restricted permissions in the database. Ideally, you
should grant execute permissions only to selected stored procedures in the
database and provide no direct table access.

For more information about application-level countermeasures to SQL injection
attacks, see Chapter 14, “Building Secure Data Access.”

Network Eavesdropping
The deployment architecture of most applications includes a physical separation of
the data access code from the database server. As a result, sensitive data, such as
application-specific data or database login credentials, must be protected from
network eavesdroppers.

Vulnerabilities

Vulnerabilities that increase the likelihood of network eavesdropping include:
● Insecure communication channels
● Passing credentials in clear text to the database; for example:

● Using SQL authentication instead of Windows authentication
● Using SQL authentication without a server certificate

Countermeasures

To counter network eavesdropping:
● Use Windows authentication to connect to the database server to avoid sending

credentials over the network.
● Install a server certificate on the database server. This results in the automatic

encryption of SQL credentials over the network.
● Use an SSL connection between the Web server and database server to protect

sensitive application data. This requires a database server certificate.
● Use an IPSec encrypted channel between Web and database server.

Unauthorized Server Access
Direct access to your database server should be restricted to specific client computers
to prevent unauthorized server access.

Vulnerabilities

Vulnerabilities that make your database server susceptible to unauthorized server
access include:
● Failure to block the SQL Server port at the perimeter firewall
● Lack of IPSec or TCP/IP filtering policies

 Chapter 18: Securing Your Database Server 505

Attacks

Direct connection attacks exist for both authenticated users and those without a user
name and password; for example:
● Tools such as Query Analyzer (Isqlw.exe) or the command line equivalent

(Osql.exe) are used to establish a direct connection to SQL Server and issue
commands.

● Server information, such as software version, is revealed to an attacker who sends
carefully constructed packets to listening ports.

Countermeasures

To counter these attacks:
● Make sure that SQL Server ports are not visible from outside of the perimeter

network.
● Within the perimeter, restrict direct access by unauthorized hosts, for example, by

using IPSec or TCP/IP filters.

Password Cracking
A common first line of attack is to try to crack the passwords of well known account
names, such as sa (the SQL Server administrator account).

Vulnerabilities

Common vulnerabilities that lead to password cracking are:
● Weak or blank passwords
● Passwords that contain everyday words

Attacks

Common password cracking attacks include:
● Dictionary attacks
● Manual password guessing

Countermeasures

To counter these attacks:
● Create passwords for SQL Server login accounts that meet complexity

requirements.
● Avoid passwords that contain common words found in the dictionary.

Note If you use Windows authentication, password complexity can be enforced by Windows
security policy.

506 Part IV: Securing Your Network, Host and Application

Methodology for Securing Your Server
Securing SQL Server and Windows 2000 involves many configuration changes.
The best approach is to separate the changes that must be made into specific
configuration categories. Using categories allows you to systematically walk through
the securing process from top to bottom or pick a particular category and apply
specific steps.

Configuration Categories
The securing methodology has been organized into the categories shown in
Figure 18.2.

P
a

tc
he

s
an

d
 U

pd
at

es
Logins, Users

and Roles

Shares
Auditing and

Logging

Services
Files and

Directories

Accounts Registry

Protocols Ports

S
Q

L
S

er
ve

r
O

pe
ra

tin
g

S
ys

te
m

N
e

tw
o

rk

Database
Objects

SQL Server
Security

Figure 18.2
Database server security categories

The configuration categories shown in Figure 18.2 are based on best practices
obtained from field experience, customer validation, and the study of secure
deployments. The rationale behind the categories is as follows:

 Chapter 18: Securing Your Database Server 507

● Patches and Updates
Many security threats exist because of vulnerabilities in operating systems,
services, and applications that are widely published and well known. When new
vulnerabilities are discovered, attack code is frequently posted on Internet bulletin
boards within hours of the first successful attack. Patching and updating your
server’s software is the first step toward securing your database server. There may
be cases where a vulnerability exists and no patch is available. In these cases, be
aware of the details of the vulnerability to assess the risk of attack and take
measures accordingly.

● Services
Services are prime vulnerability points for attackers who can exploit the privileges
and capabilities of the service to access the server and potentially other computers.
Some services are designed to run with privileged accounts. If these services are
compromised, the attacker can perform privileged operations. By default,
database servers generally do not need all services enabled. By disabling
unnecessary and unused services, you quickly and easily reduce the attack
surface area.

● Protocols
Limit the range of protocols that client computers can use to connect to the
database server and make sure you can secure those protocols.

● Accounts
Restrict the number of Windows accounts accessible from the database server to
the necessary set of service and user accounts. Use least privileged accounts with
strong passwords in all cases. A least privileged account used to run SQL Server
limits the capabilities of an attacker who compromises SQL Server and manages to
execute operating system commands.

● Files and Directories
Use NTFS file system permissions to protect program, database, and log files from
unauthorized access. When you use access control lists (ACLs) in conjunction with
Windows auditing, you can detect when suspicious or unauthorized activity
occurs.

● Shares
Remove all unnecessary file shares, including the default administration shares
if they are not required. Secure any remaining shares with restricted NTFS
permissions. Although shares may not be directly exposed to the Internet, a
defense in depth strategy with limited and secured shares reduces risk if a server
is compromised.

508 Part IV: Securing Your Network, Host and Application

● Ports
Unused ports are closed at the firewall, but it is required that servers behind the
firewall also block or restrict ports based on their usage. For a dedicated SQL
Server, block all ports except for the necessary SQL Server port and the ports
required for authentication.

● Registry
SQL Server maintains a number of security-related settings, including the
configured authentication mode in the registry. Restrict and control access to the
registry to prevent the unauthorized update of configuration settings, for example,
to loosen security on the database server.

● Auditing and Logging
Auditing is a vital aid in identifying intruders, attacks in progress, and to diagnose
attack footprints. Configure a minimum level of auditing for the database server
using a combination of Windows and SQL Server auditing features.

● SQL Server Security
A number of SQL Server security settings can be controlled through Enterprise
Manager. These include the authentication mode, auditing level, and the accounts
used to run the SQL Server service. For improved security, you should use
Windows authentication. You should also enable SQL Server logon auditing and
ensure that the SQL Server service runs using a least privileged account.

● SQL Server Logins, Users, and Roles
SQL Server 2000 manages access control using logins, databases, users, and roles.
Users (and applications) are granted access to SQL Server by way of a SQL server
login. The login is associated with a database user and the database user is placed
in one or more roles. The permissions granted to the role determine the tables the
login can access and the types of operations the login can perform. This approach
is used to create least privileged database accounts that have the minimum set of
permissions necessary to allow them to perform their legitimate functionality.

● SQL Server Database Objects
The ability to access SQL Server database objects, such as built-in stored
procedures, extended stored procedures and cmdExec jobs, should be reviewed.
Also, any sample databases should be deleted.

 Chapter 18: Securing Your Database Server 509

SQL Server Installation Considerations
Before taking steps to secure your database server, know the additional components
that are present on a Windows 2000 Server after SQL Server is installed.

What Does SQL Server Install?
When you install SQL Server, a number of Windows services are installed in addition
to program and data files. By default, program and data files are located in the
\Program Files\Microsoft SQL Server\ directory. Table 18.1 shows the services and
folders that are created.

Table 18.1 SQL Server Installation Defaults

Item Details
Services MSSQLSERVER

MSSQLServerADHelper
Microsoft Search
SQLSERVERAGENT

Folders \program files\Microsoft SQL Server\mssql\binn (program files)
\program files\Microsoft SQL Server\mssql\data (data files including .mdf, .log, and .ndf)
\program files\Microsoft SQL Server\80\tools (shared tools/books online)
\program files\Microsoft SQL Server\mssql\logs (error logs)
\program files\Microsoft SQL Server\mssql\backup (backup files)
\program files\Microsoft SQL Server\mssql\jobs (temp job output files)

For named instances, the instance name is used in the file path:

\program files\Microsoft SQL Server\MSSQL$InstanceName\binn
\program files\Microsoft SQL Server\MSSQL$InstanceName\data

SQL Server Installation Recommendations
If you are building a new database server from scratch, there are a number of
considerations to take into account before installing SQL Server. Also, it is a good idea
to perform a custom installation of SQL Server so you can select the most secure
installation options.

510 Part IV: Securing Your Network, Host and Application

Before Running SQL Server Setup
Before you run the SQL Server setup program, check the following items:
● Create a least privileged local account with which to run the SQL Server service.

Use this account when you are prompted for service settings during setup. Do not
use the local system account or an administrator account.

● Make sure you do not install SQL Server on a domain controller.
● Make sure you install SQL Server on a partition formatted with NTFS.
● Install SQL Server program and database files on a non-system volume, separate

from the operating system.

Installing SQL Server
When installing SQL Server on a production server, choose the custom setup option.
When you do this, you can selectively choose the items to install. You should not
install the items listed in Table 18.2 on a production database server.

Table 18.2 Items Not to Install During Custom Installation

Tool Purpose
Upgrade tools Used to upgrade SQL Server 6.5 databases

Replication support Script and binary files used for replication. (Do not install unless you need
replication.)

Full text search Full text search engine (Microsoft Search service). Do not install unless you
require full text search.

Books online SQL Server documentation

Development tools Headers and library files used by C developers and Microsoft Data Access
(MDAC), and XML software development kits (SDKs), and an interface for
stored procedure debugging.

Code samples Sample code used to educate developers.

Also, select Windows authentication mode unless SQL Server authentication is
specifically required. Windows authentication offers the following advantages:
● Existing domain and local security policies can be used to enforce strong

passwords and account management best practices.
● Credentials are not passed over the network.
● Application database connection strings do not require credentials.

If you select Mixed Mode, create a strong password for the sa account. The sa account
is a prime target for password guessing and dictionary attacks.

 Chapter 18: Securing Your Database Server 511

Steps for Securing Your Database Server
This section guides you through the process of securing your database server using
the configuration categories introduced earlier. The steps cover Windows 2000 and
SQL Server 2000. Each step may contain one or more actions to secure a particular
area or feature.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Patches and Updates

Services

Protocols

Accounts

Files and Directories

Shares

Step 7

Step 8

Step 9

Step 10

Step 11

Step 12

Ports

Registry

Auditing and Logging

SQL Server Security

SQL Server Logins, Users, and Roles

SQL Server Database Objects

Step 1. Patches and Updates
Failure to apply the latest patches and updates in a timely manner means that you are
providing opportunities for attackers to exploit known vulnerabilities. You should
verify that your database server is updated with the latest Windows 2000 and SQL
Server service packs and updates.

Important Make sure to test patches and updates on test systems that mirror your production
servers as closely as possible before applying them on production servers.

Detect Missing Service Packs and Updates
Use the Microsoft Baseline Security Analyzer (MBSA) to detect the necessary
Windows and SQL Server updates that may be missing. MBSA uses an XML file as
the reference of existing updates. This XML file is either downloaded by MBSA when
a scan runs, or the file can be downloaded on the local server or from a network
server.

� To detect and install patches and updates

1. Download and install MBSA.
You can do this from the MBSA home page at http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp.
If you do not have Internet access when you run MBSA, it will not be able to
retrieve the XML file containing the latest security settings from Microsoft. In this
event, download the XML file manually and put it in the MBSA program directory.
The XML file is available from http://download.microsoft.com/download/xml/security
/1.0/nt5/en-us/mssecure.cab.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab

512 Part IV: Securing Your Network, Host and Application

2. Run MBSA by double-clicking the desktop icon or selecting it from the Programs
menu.

3. Click Scan a computer. MBSA defaults to the local computer.
4. Clear all check boxes apart from Check for security updates. This option detects

which patches and updates are missing.
5. Click Start scan. Your server is now analyzed. When the scan is complete, MBSA

displays a security report, which it also writes to the %userprofile%\SecurityScans
directory.

6. Download and install the missing updates.
Click the Result details link next to each failed check to view the list of security
updates that are missing. The resulting dialog box displays the Microsoft security
bulletin reference number. Click the reference to find out more about the bulletin
and to download the update.

For more information about using MBSA, see “How To: Use the Microsoft Baseline
Security Analyzer” in the “How To” section of this guide.

For more information about applying service packs, hot fixes, and security patches,
see http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bestprac
/bpsp.asp.

Patching MSDE
The Microsoft Desktop Edition (MSDE) of SQL Server must be patched differently
than the full version of SQL Server. For details about patching MSDE, see “How To:
Secure Your Developer Workstation” in the “How To” section of this guide.

Step 2. Services
To reduce the attack surface area and to make sure you are not affected by
undiscovered service vulnerabilities, disable any service that is not required. Run
those services that remain using least privileged accounts.

In this step, you:
● Disable unused SQL Server services.
● Disable the Microsoft DTC (if not required).

Note To disable a service, set its startup type to Disabled using the Services MMC snap-in in the
Computer Management tool.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bestprac/bpsp.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bestprac/bpsp.asp

 Chapter 18: Securing Your Database Server 513

Disable Unused SQL Server Services
During a SQL Service installation, the following four Windows services are installed:
● MSSQLSERVER (or MSSQL$InstanceName for a named instance). This is the

SQL Server database engine and is the only mandatory service.
● SQLSERVERAGENT (or SQLAgent$InstanceName for a named instance). With

this support service, you can schedule commands and notify operators when
errors occur.

● MSSQLServerADHelper. This provides Active Directory integration services,
including database instance registration.

● Microsoft Search. This provides full text search capabilities. This service must
always run under the local system account.

Only the MSSQLSERVER database engine is required. The remaining services
provide additional functionality and are required only in specific scenarios. Disable
these services if they are not required.

Note SQL Server should not be configured to run as the local System account or any account that
is a member of the local Administrators group. For details about configuring the service account
used to run MSSQLSERVER, see “Step 4: Accounts.”

Disable the Microsoft DTC (if not required)
If you do not use distributed transactions through the Microsoft DTC, disable the
service.

Step 3. Protocols
By preventing the use of unnecessary protocols, you reduce the surface area of attack.
Configure SQL Server to support only clients that connect using the TCP/IP protocol.
Disable all other protocols, unless required.

In this step, you:
● Restrict SQL Server to TCP/IP.
● Harden the TCP/IP Stack.

514 Part IV: Securing Your Network, Host and Application

Restrict SQL Server to TCP/IP
By enforcing the use of TCP/IP you can control who connects to the server on specific
ports using IPSec policies or TCP/IP filtering. To support IPSec or TCP/IP filtering,
your SQL Server should support client connections over TCP/IP only.

� To configure SQL Server network protocol support

1. In the Microsoft SQL Server programs group, start the Server Network Utility.
2. Make sure that TCP/IP is the only SQL Server protocol that is enabled as shown in

Figure 18.3. Disable all other protocols.

Figure 18.3
Disabling all protocols except TCP/IP in the SQL Server Network Utility

Harden the TCP/IP Stack
Windows 2000 allows you to control many parameters to configure its TCP/IP
implementation. Some of the defaults are geared toward server availability and
specific features.

For information about how to harden the TCP/IP stack, see “How To: Harden the
TCP/IP Stack” in the “How To” section of this guide.

Additional Considerations
To further improve your database server security, disable NetBIOS and SMB. Both
protocols can be used to glean host configuration information, so you should remove
them when possible. For more information about removing NetBIOS and SMB, see
“Protocols” in Chapter 16, “Securing Your Web Server.”

Also consider using IPSec to restrict the ports on which your database server accepts
incoming connections. For more information about how to do this, see “How To: Use
IPSec for Filtering Ports and Authentication” in the “How To” section of this guide.

 Chapter 18: Securing Your Database Server 515

Step 4. Accounts
Follow the principle of least privilege for the accounts used to run and connect to
SQL Server to restrict the capabilities of an attacker who manages to execute SQL
commands on the database server. Also apply strong password policies to counter the
threat of dictionary attacks.

In this step, you:
● Secure the SQL Server service account.
● Delete or disable unused accounts.
● Disable the Windows guest account.
● Rename the administrator account.
● Enforce strong password policy.
● Restrict remote logins.
● Disable null sessions (anonymous logons).

Secure the SQL Server Service Account
Run the SQL Server service using a least privileged account to minimize the damage
that can be done by an attacker who manages to execute operating system commands
from SQL Server. The SQL Server service account should not be granted elevated
privileges such as membership to the Administrators group.

� To create a new account to run the SQL Server service

1. Start the Computer Management tool, and then expand Local Users and Groups.
2. Right-click the Users folder, and then click New User.
3. Create a new user making sure you use a strong password.

In the New User dialog box, clear the User must change password at next logon
check box, and then select the User cannot change password and Password never
expires check boxes.

4. Remove the new account from the Users group because this group is granted
liberal access across the computer.

You can now configure SQL Server to run using this new account. For more
information, see “Step 10: SQL Server Security.”

Accessing the Network from SQL Server
If you need to access network resources from SQL Server, for example to perform
network backups, for replication or log shipping, the SQL Server service account
must be capable of being authenticated across the network. You have two choices.
Either create a duplicate local account with the same name and password on the
remote server, or use a least privileged domain account.

516 Part IV: Securing Your Network, Host and Application

Delete or Disable Unused Accounts
Unused accounts and their privileges may be a haven for an attacker who has gained
access to a server. Audit local accounts on the server and delete those that are unused.
The recommendation is to first disable an account to see if this causes any problems
before deleting the account, because deleted accounts cannot be recovered. Note that
the administrator account and guest account cannot be deleted.

Note During SQL Server 200 SP3 installation, Sqldbreg2.exe creates the SQL Debugger account.
Visual Studio .NET uses this account when debugging stored procedures from managed .NET code.
Because this account is only used to support debugging, you can delete it from production database
servers.

Disable the Windows Guest Account
The Windows guest account is the account used when an anonymous connection is
made to the computer. To restrict anonymous connections to your database server,
keep this account disabled. By default, the guest account in Windows 2000 is
disabled. To see if it is enabled, display the Users folder in the Computer
Management tool. It is represented by a cross icon. If it isn’t disabled, display its
Properties dialog box and select the Account is disabled check box.

Rename the Administrator Account
The default local administrator account is a target for malicious use because of its
high privileges on the computer. To improve security, rename the default
administrator account and assign it a strong password.

Enforce Strong Password Policy
To counter password guessing and brute force dictionary attacks, apply strong
password policies by configuring security policy. The keys to strong account and
password policies are:
● Set password length and complexity. Enforcing strong passwords reduces the

chance of successful password guessing or dictionary attacks.
● Set password expiration. Regularly expiring passwords reduces the chance that

an old password will be used for unauthorized access. The expiration period is
typically guided by a company’s security policy.

Table 18.3 shows the default and recommended password policy settings.

 Chapter 18: Securing Your Database Server 517

Table 18.3 Password Policy Default and Recommended Settings

Password Policy Default Setting Recommended Minimum Setting
Enforce password history 1 password remembered 24 passwords remembered

Maximum password age 42 days 42 days

Minimum password age 0 days 2 days

Minimum password length 0 characters 8 characters

Passwords must meet complexity
requirement

Disabled Enabled

Strong password using reversible
encryption for all users in the
domain

Disabled Disabled

Additionally, log failed login attempts to detect and trace malicious behavior. For
more information, see “Step 9: Auditing and Logging.”

For more information about password policies, see password “Best Practices” on the
Microsoft TechNet Web site at http://www.microsoft.com/technet/treeview/default.asp?url=
/technet/prodtechnol/windowsserver2003/proddocs/entserver/windows_password_protect.asp.

Restrict Remote Logons
Use the Local Security Policy tool to remove the “Access this computer from the
network” user right from the Everyone group to restrict who can log on to the server
remotely.

Disable Null Sessions (Anonymous Logons)
To prevent anonymous access, disable null sessions. These are unauthenticated or
anonymous sessions established between two computers. Unless null sessions are
disabled, an attacker can connect to your server anonymously, that is, without
requiring authentication.

As soon as an attacker establishes a null session, a variety of attacks can be
performed, including enumeration used to obtain system-related information from
the target computer. The type of information that can be returned over a null session
includes domain and trust details, shares, user information including groups and
user rights, registry keys, and more. Disable them because they represent a significant
security threat.

Restrict null sessions by setting RestrictAnonymous=1 in the registry at the following
location.

HKLM\System\CurrentControlSet\Control\LSA\RestrictAnonymous=1

For more information, see Microsoft Knowledge Base article 246261, “How To: Use
the RestrictAnonymous Registry Value in Windows 2000.”

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/entserver/windows_password_protect.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windowsserver2003/proddocs/entserver/windows_password_protect.asp

518 Part IV: Securing Your Network, Host and Application

Additional Considerations
Consider the following steps to improve security for your database server:
● Require approval for account delegation. Do not mark domain accounts as

trusted for delegation in Active Directory without special approval.
● Do not use shared accounts. Do not create shared account for use by multiple

individuals. Give authorized individuals their own accounts. The activities of
individuals can be audited separately and group membership and privileges
appropriately assigned.

● Restrict the local Administrators group membership. Ideally, have no more than
two administration accounts. This helps provide accountability. Also, do not share
passwords, again to provide accountability.

● Limit the administrator account to interactive logins. If you perform only local
administration, you can restrict your administrator account to interactive logons
by removing the “Access this computer from the network” user right to deny
network logon rights. This prevents users (well intentioned or otherwise) from
remotely logging on to the server using the administrator account. If a policy of
local administration is too inflexible, implement secure remote administration.
For more information about remote administration, see “Remote Administration”
later in this chapter.

● Enable NTLMv2 authentication. If client computers connect to your database
server by using Windows authentication, you should configure your database
server to use the strongest version of Windows authentication, which is NTLMv2.

Note To support NTLMV2, clients must be running Windows 2000, Windows Server 2003, or
Windows NT operating system version 4.0 with Service Pack 4.

� To enable NTLMv2 authentication from the Local Security Policy Tool

1. Expand Local Policies, select Security Options, and then double-click LAN
Manager Authentication Level.

2. Select Send NTLMv2 response only\refuse LM & NTLM.

This is the most secure setting.

Note This is equivalent to setting the HKLM\System\CurrentControlSet\Control\Lsa
\LMCompatibilityLevel DWORD value to 5.

 Chapter 18: Securing Your Database Server 519

Step 5. Files and Directories
In addition to securing operating system files using ACLs, harden NTFS permissions
to restrict access to SQL Server program files, data files, and log files together with
system level tools. Additionally, the SQL Server service account should have access
only to what it needs.

In this step, you:
● Verify permissions on SQL Server install directories.
● Verify Everyone group does not have permissions to SQL Server files.
● Secure setup log files.
● Secure or remove tools, utilities, and SDKs.

Verify Permissions on SQL Server Install Directories
Verify the permissions listed in Table 18.4 to the account the SQL Server service is
running under. The location specified in parentheses is the default install location.
This may vary for your installation.

Table 18.4 NTFS Permissions for SQL Server Service Account

Location Permissions for SQL Service Account
Install location
(\Program Files\Microsoft SQL Server\MSSQL\)

Read and Execute
List Folder Contents
Read

Database file directory (.mdf, .ndf, .ldf files)
(\Program Files\Microsoft SQL Server\MSSQL\Data)

Full Control

Error log file directory
(\Program Files\Microsoft SQL Server\MSSQL\LOG)

Full Control

Backup file directory
(\Program Files\Microsoft SQL Server\MSSQL\Backup)

Full Control

Job temporary file output directory
(\Program Files\Microsoft SQL Server\MSSQL\Jobs)

Full Control

If you use Enterprise Manager to set the SQL Server service account, it gives the
account Full Control permissions on the SQL Server installation directory and all
subfolders (\Program Files\Microsoft SQL Server\MSSQL*).

By removing write permissions on this folder and all subfolders, and then selectively
granting full control to the data, error log, backup and job file directories, the new
account cannot overwrite SQL Server binaries.

520 Part IV: Securing Your Network, Host and Application

Verify Everyone Group Does Not Have Permissions for SQL Server Files
The Everyone group should not have access to the SQL Server file location (by
default, \Program Files\Microsoft SQL Server\MSSQL) This is achieved by verifying
the Everyone group is not granted access via an ACL and giving explicit full control
to only the SQL Service account, the Administrators group, and the local system
account.

Secure Setup Log Files
After installing SQL Server 2000 Service Pack 1 or 2, the system administrator or
service account password may be left in the SQL installation directory. Use the
Killpwd.exe utility to remove instances of passwords from the log files.

For information about obtaining and using this utility, see Microsoft Knowledge Base
article 263968, “FIX: Service Pack Installation May Save Standard Security Password
in File.”

Secure or Remove Tools, Utilities, and SDKs
SDKs and resource kits should not be installed on a production database server.
Remove them if they are. In addition:
● Ensure that access to powerful system tools and utilities, such as those contained

in the \Program Files directory, is restricted.
● Debugging tools should not be available on the database server. If production

debugging is necessary, you should create a CD that contains the necessary
debugging tools.

Additional Considerations
To further improve your database server security:
● Remove unused applications that may be installed on the server. If you have

applications on the server that you do not use, then remove them.
● Encrypt your data files using Encrypting File System (EFS). You can use EFS to

protect your data files. If your data files are stolen, encrypted files are more
difficult to read. The use of EFS for SQL Server data files is supported.
When using EFS, you should be aware of the following:
● Encrypt the database files (.MDF) and not the log files (.LDF). If you encrypt

the log files, then SQL Server cannot open your database.
● Encrypt at the file level, not the directory level. While it is often a best practice

to encrypt at the directory level when using EFS so that when new files are
added they are automatically encrypted, you should encrypt your SQL Server
data files at the file level only. This avoids encrypting your log files.

 Chapter 18: Securing Your Database Server 521

● Evaluate the performance cost. The use of EFS incurs a performance penalty.
Test EFS before using it in your scenario to determine the actual performance
impact. Usually the performance penalty is negligible because the data file is
decrypted by SQL Server when the process starts.

To implement EFS, right-click the directory, click Advanced, and then click
Encrypt contents to be secure. For more information about EFS, see the following
resources:
● Microsoft Knowledge Base article 23050, “How To: Encrypt Data Using EFS in

Windows 2000.”
● TechNet article, “Step-by-Step Guide to Encrypting File System (EFS)” at

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol
/windows2000serv/deploy/walkthru/efsguide.asp.

Step 6. Shares
Remove any unused shares and harden the NTFS permissions on any required
shares. By default, all users have full control on newly created file shares. Harden
these default permissions to make sure that only authorized users can access files
exposed by the share. Also, use NTFS ACLs on files and folders exposed by the share
in addition to explicit share permissions.

In this step, you:
● Remove unnecessary shares.
● Restrict access to required shares.

Remove Unnecessary Shares
Remove all unnecessary shares. To review shares, start the Computer Management
MMC snap-in and select Shares under Shared Folders.

Restrict Access to Required Shares
Remove the Everyone group and grant specific permissions instead. Everyone is used
when you do not have restrictions on who has access to the share.

Additional Considerations
If you are not allowing remote administration of the computer, remove unused
administrative shares, for example, C$ and Admin$.

Note Some applications may require administrative shares such as Microsoft Management
Server (SMS) or Microsoft Operations Manager (MOM). For more information, see Microsoft
Knowledge Base article 318751, “How To: Remove Administrative Shares in Windows 2000 or
Windows NT 4.0.”

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windows2000serv/deploy/walkthru/efsguide.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/windows2000serv/deploy/walkthru/efsguide.asp

522 Part IV: Securing Your Network, Host and Application

Step 7. Ports
By default, SQL Server listens on TCP port 1433 and uses UDP port 1434 for client-
server negotiation. Use a combination of firewalls and IPSec policies to restrict access
to these ports to minimize the avenues of attack open to an attacker.

In this step, you:
● Restrict access to the SQL server port.
● Configure named instances to listen on the same port.
● Configure the firewall to support DTC traffic (if necessary).

Restrict Access to the SQL Server Port
Use a perimeter firewall to prevent direct access from the Internet to the SQL Server
ports — by default, TCP port 1433 and UDP port 1434. This does not protect your
server against internal attacks. Configure IPSec policies to limit access, through TCP
port 1433 and UDP port 1434, from Web or application servers that connect to the
database by design.

For more information, see “How To: Use IPSec” in the “How To” section of this
guide.

Configure Named Instances to Listen on the Same Port
By default, named instances of SQL Server dynamically allocate a port number and
use UDP negotiation with the client to allow the client to locate the named instance.
To avoid opening a range of port numbers on the internal firewall or having to create
multiple IPSec policies, use the Server Network Utility to configure the instance to
listen on a specific port number.

If you reconfigure the port number on the server, you must also reconfigure any
clients to make sure they connect to the correct port number. You might be able to use
the Client Network Utility, but this utility should not be installed on a Web server.
Instead, applications can specify the port number in their connection strings by
appending the port number to either the Server or Data Source attributes as shown in
the following code.

"Server=YourServer|YourServerIPAddress,PortNumber"

 Chapter 18: Securing Your Database Server 523

Configure the Firewall to Support DTC Traffic (if necessary)
If your applications use Enterprise Services (COM+) transactions and require the
services of the DTC, you may have to specifically configure the firewall that separates
your Web application and database server to allow DTC traffic between separate DTC
instances and between the DTC and SQL Server.

For more information about opening ports for the DTC, see Microsoft Knowledge
Base article 250367, “INFO: Configuring Microsoft Distributed Transaction
Coordinator (DTC) to Work Through a Firewall.”

Additional Considerations
Consider using the Hide Server option from the Server Network Utility as shown in
Figure 18.4. If you select this option in the TCP/IP properties dialog box in the SQL
Network Utility, SQL Server is reconfigured to listen on port 2433. It also disables
responses to broadcast requests from clients that try to enumerate SQL Server
instances.

This measure cannot be relied upon to completely hide the SQL Server port. This is
not possible because there are a variety of ways to enumerate ports to discover its
location.

Note This option can be used only if you have a single instance of SQL Server. For more
information, see Microsoft Knowledge Base article 308091, “BUG: Hide Server Option Cannot Be
Used on Multiple Instances of SQL Server 2000.”

Figure 18.4
Setting the Hide Server option from the Server Network Utility

Step 8. Registry
When you install SQL Server, it creates a number of registry entries and subentries
that maintain vital system configuration settings. It is important to secure these
settings to prevent an attacker from changing them to compromise the security of
your SQL Server installation.

524 Part IV: Securing Your Network, Host and Application

When you install SQL Server, it creates the following registry entries and subentries:
● For a default instance:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\MSSQLSERVER

● For a named instance:

HKEY_LOCAL_MACHINE\SOFTWARE\MICROSOFT\MICROSOFT SQL SERVER\INSTANCENAME

● For the SQL service:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\MSSQLSERVER

In this step, you:
● Verify permissions for the SQL Server registry keys.
● Secure the SAM (stand-alone servers only).

Verify Permissions for the SQL Server Registry Keys
Use Regedt32.exe to verify the Everyone group does not have permissions on the
SQL Server registry keys, listed above. The following controls are in place by default:

Administrators: Full Control
SQL Server service account: Full Control

Note The Microsoft Baseline Security Analyzer will verify the registry permissions. Use the tool as
an alternative to manually verifying the permissions with Regedt32.exe.

Secure the SAM (Stand-alone Servers Only)
Stand-alone servers store account names and one-way password hashes (LMHash) in
the local SAM database, which is part of the registry. Generally, only members of the
Administrators group have access to the account information.

Although the passwords are not actually stored in the SAM and password hashes are
not reversible, if an attacker obtains a copy of the SAM database, he or she can use
brute force password cracking techniques to obtain valid credentials.

Restrict LMHash storage in the SAM by creating the key (not value) NoLMHash in
the registry as shown below.

HKLM\System\CurrentControlSet\Control\LSA\NoLMHash

For more information, see Microsoft Knowledge Base article 299656, “New Registry
Key to Remove LM Hashes from Active Directory and Security Account Manager.”

 Chapter 18: Securing Your Database Server 525

Step 9. Auditing and Logging
Auditing does not prevent system attacks, although it is a vital aid in identifying
intruders, attacks in progress, and to diagnose attack footprints. It is important to
enable all auditing mechanisms at your disposal, including Windows operating
system level auditing and SQL Server login auditing. SQL Server also supports C2
level extended auditing. This may be required in specific application scenarios, where
auditing requirements are stringent.

In this step, you:
● Log all failed Windows login attempts.
● Log all failed actions across the file system.
● Enable SQL Server login auditing.

Log All Failed Windows Logon Attempts
You must log failed Windows logon attempts to be able to detect and trace malicious
behavior.

� To audit failed logon attempts

1. Start the Local Security Policy tool.
2. Expand Local Policies and then select Audit Policy.
3. Double-click Audit account logon events.
4. Click Failure, and then click OK.

Windows logon failures are recorded as events in the Windows security event log.
The following event IDs are suspicious:
● 531. This means an attempt was made to log on using a disabled account.
● 529. This means an attempt was made to log on using an unknown user account or

using a valid user account but with an invalid password. An unexpected increase
in the number of these audit events might indicate an attempt to guess passwords.

Log All Failed Actions Across the File System
Use NTFS auditing on the file system to detect potentially malicious attempts. This is
a two-step process:

� To enable logging

1. Start the Local Security Policy tool.
2. Expand Local Policies, and then select Audit Policy.
3. Double click Audit object access.
4. Click Failure, and then click OK.

526 Part IV: Securing Your Network, Host and Application

� To audit failed actions across the file system

1. Start Windows Explorer and navigate to the root of the file system.
2. Right-click the root of the file system, and then click Properties.
3. Click the Security tab.
4. Click Advanced, and then click the Auditing tab.
5. Click Add, and then enter Everyone into the object name to select field.
6. Click OK, and then select the Full Control check box in the Failed column to audit

all failed events.
By default, this applies to the current folder and all subfolders and files.

7. Click OK three times to close all open dialog boxes.

Failed audit events are logged to the Windows security event log.

Enable SQL Server Login Auditing
By default, SQL Server login auditing is not enabled. Minimally, you should audit
failed logins. Auditing failed login attempts is a useful way of detecting an attacker
who is trying to crack account passwords. For more information, about how to enable
SQL Server auditing, see “Step 10: SQL Server Security.”

Additional Considerations
The following are additional measures to consider when auditing and logging:
● Consider shutting down the system if unable to log security audits. This policy

option is set in the Security Options of the Local Security Settings management
console. Consider this setting for highly secure servers.

● Consider C2 level auditing. SQL Server offers an auditing capability that
complies with the U.S. Government C2 certification. C2 level auditing provides
substantially more audit information at the expense of increased disk storage
requirements.
For more information about the configuration of a C2-compliant system, see the
TechNet article “SQL Server 2000 C2 Administrator’s and User’s Security Guide”
at http://www.microsoft.com/technet/prodtechnol/sql/maintain/security
/sqlc2.asp?frame=true#d.

http://www.microsoft.com/technet/prodtechnol/sql/maintain/security/sqlc2.asp?frame=true#d
http://www.microsoft.com/technet/prodtechnol/sql/maintain/security/sqlc2.asp?frame=true#d

 Chapter 18: Securing Your Database Server 527

Step 10. SQL Server Security
The settings discussed in this section are configured using the Security tab of the
SQL Server Properties dialog box in Enterprise Manager. The settings apply to all the
databases in a single instance of SQL Server. The SQL Server Properties dialog box is
shown in Figure 18.5.

Figure 18.5
SQL Server security properties

In this step, you:
● Set SQL Server authentication to Windows only.
● Set SQL Server audit level to Failure or All.
● Run SQL Server using a least privileged account.

Set SQL Server Authentication to Windows Only
You should configure SQL Server to support Windows-only authentication because it
provides a number of benefits. Credentials are not passed over the network, you
avoid embedding usernames and passwords in database connection strings, security
is easier to manage because you work with the single Windows security model
instead of a separate SQL Server security model, and login security improves through
password expiration periods, minimum lengths, and account lockout policies.

528 Part IV: Securing Your Network, Host and Application

� To configure Windows only authentication

1. Start SQL Server Enterprise Manager, expand the SQL Server Group, and then
expand your SQL Server.

2. Right-click your SQL Server, and then click Properties.
3. Click the Security tab.
4. Select Windows only, and then click OK.
5. Restart SQL Server for the changes to take effect.

Set SQL Server Audit Level to Failure or All
By default, SQL Server login auditing is not enabled. Minimally, you should audit
failed logins.

Note Log entries are written to SQL log files. By default, these are located in C:\Program
Files\Microsoft SQL Server\MSSQL\LOG. You can use any text reader, such as Notepad, to view
them.

� To enable SQL Server auditing

1. Start SQL Server Enterprise Manager, expand the SQL Server Group, and then
expand your SQL Server.

2. Right-click your SQL Server, and then click Properties.
3. Click the Security tab.
4. Set the Audit level to either All or Failure.
5. Restart SQL Server for the changes to audit policy to take effect.

For more information about SQL Server audit logs, see the TechNet article and its
section “Understanding the Audit Log” in the “SQL Server 2000 Auditing” article at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/dbsql
/sql2kaud.asp?frame=true.

Run SQL Server Using a Least Privileged Account
Run the SQL Server service using a least privileged account to minimize the damage
that can be done by an attacker who manages to execute operating system commands
from SQL Server. The SQL Server service account should not be granted elevated
privileges such as membership to the Administrators group.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/dbsql/sql2kaud.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/dbsql/sql2kaud.asp?frame=true

 Chapter 18: Securing Your Database Server 529

� To configure the SQL Server run as account

This procedure uses Enterprise Manager instead of the Services MMC snap-in
because Enterprise Manager automatically grants the user rights that a SQL Server
service account requires.
1. Start SQL Server Enterprise Manager, expand the SQL Server Group, and then

expand your SQL Server.
2. Right-click your SQL Server, and then click Properties.
3. Click the Security tab.
4. Click This account in the Startup service account group. Enter the user name and

password of your least privileged account.
5. Restart SQL Server for the changes to take effect.

Note If you use the SQLSERVERAGENT service, the run-as account must also be changed. Use the
Services MMC snap-in to change this setting.

For more information about creating a least privileged account to run SQL Server, see
“Step 4: Accounts.”

Step 11. SQL Server Logins, Users, and Roles
To be able to access objects in a database you need to pass two layers of security
checks. First, you need to present a valid set of login credentials to SQL Server. If you
use Windows authentication, you need to connect using a Windows account that has
been granted a SQL Server login. If you use SQL Server authentication, you need to
supply a valid user name and password combination.

The login grants you access to SQL Server. To access a database, the login must be
associated with a database user inside the database you want to connect to. If the
login is associated with a database user, the capabilities of the login inside the
database are determined by the permissions associated with that user. If a login is not
associated with a specific database user, the capabilities of the login are determined
by the permissions granted to the public role in the database. All valid logins are
associated with the public role, which is present in every database and cannot be
deleted. By default, the public role within any database that you create is not granted
any permissions.

Use the following recommendations to improve authorization settings in the
database:
● Use a strong sa (system administrator) password.
● Remove the SQL guest user account.
● Remove the BUILTIN\Administrators server login.
● Do not grant permissions for the public role.

530 Part IV: Securing Your Network, Host and Application

Use a Strong sa (System Administrator) Password
The default system administrator (sa) account has been a subject of countless attacks.
It is the default member of the SQL Server administration fixed server role sysadmin.
Make sure you use a strong password with this account.

Important The sa account is still active even when you change from SQL authentication to
Windows authentication.

Apply strong passwords to all accounts, particularly privileged accounts such as
members of the sysadmin and db_owner roles. If you are using replication, also
apply a strong password to the distributor_admin account that is used to establish
connections to remote distributor servers.

Remove the SQL Guest User Account
When you install SQL Server, a guest user account is created if the Windows 2000
guest account is enabled. A login assumes the identity of guest if the login has access
to SQL Server but does not have access to a database through a database user
account.

It is a good idea to disable the Windows guest account. Additionally, remove the
guest account from all user-defined databases. Note that you cannot remove guest
from the master, tempdb, and replication and distribution databases.

Remove the BUILTIN\Administrators Server Login
By default, the BUILTIN\Administrators local Windows group is added to the
sysadmin fixed server role to administer SQL Server. This means that domain
administrators who are members of BUILTIN\Administrators have unrestricted
access to the SQL Server database. Most companies differentiate the role of domain
administrator and database administrator. If you do this, remove the
BUILTIN\Administrators SQL Server login. It is a good idea to create a specific
Windows group containing specific database administrations in its place and added
to SQL server as a server login as shown in the following procedure.

� To add a new login for database administrators

1. Start Enterprise Manager.
2. Expand Microsoft SQL Server, expand SQL Server Group, and then expand your

SQL Server.
3. Expand the Security folder, select and right-click Logins, and then click

New Login.
4. In the Name field, enter a custom Windows group that contains only database

administrators.
5. Click the Server Roles tab, and then select System Administrators.

 Chapter 18: Securing Your Database Server 531

This adds the new login to the sysadmin server role.

� To delete the BUILTIN\Administrators login

1. Start Enterprise Manager.
2. Expand Microsoft SQL Server, expand SQL Server Group, and then expand your

SQL Server.
3. Expand the Security folder, and select Logins. If BUILTIN\Administrators

appears in the list of logins, right-click it, and then click Delete to remove the
login.

For more information about reconfiguring the SQL service accounts after the
installation, see the MSDN article, “Changing Passwords and User Accounts”
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/instsql
/in_afterinstall_4p0z.asp.

Do Not Grant Permissions for the Public Role
All databases contain a public database role. Every other user, group, and role is a
member of the public role. You cannot remove members of the public role. Instead,
do not grant the permissions for the public role that grant access to your application’s
database tables, stored procedures, and other objects. Otherwise, you cannot get the
authorization that you want using user-defined database roles because the public role
grants default permissions for users in a database.

Additional Considerations
Also consider the following recommendations when configuring SQL Server logins,
users, and roles:
● Limit the members of sysadmin. To make sure there is individual accountability,

restrict the number of accounts that are members of the sysadmin role. Ideally, no
more than two users are members of this role.

● Grant restricted database permissions. Assign accounts only the absolute
minimum permissions required to do a job. Avoid using the built-in roles, such as
db_datareader and db_datawriter. These roles do not provide any authorization
granularity and these roles have access to all of your custom database objects.

● Do not change the default permissions that are applied to SQL Server objects.
In versions of SQL Server earlier than Service Pack 3, the public role does have
access to various default SQL Server database objects. With Service Pack 3, the
security design has been reviewed and security has been improved by removing
the public role where it is unnecessary and by applying more granular role checks.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/instsql/in_afterinstall_4p0z.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/instsql/in_afterinstall_4p0z.asp

532 Part IV: Securing Your Network, Host and Application

Step 12. SQL Server Database Objects
SQL Server provides two sample databases for development and education together
with a series of built-in stored procedures and extended stored procedures. The
sample databases should not be installed on production servers and powerful stored
procedures and extended stored procedures should be secured.

In this step, you:
● Remove the sample databases.
● Secure stored procedures.
● Secure extended stored procedures.
● Restrict cmdExec access to the sysadmin role.

Remove the Sample Databases
Use SQL Server Enterprise Manager to remove any sample databases. By default SQL
Server includes the Pubs and Northwind sample databases.

Secure Stored Procedures
Restrict access to your application’s stored procedures. Do not grant the public role or
the guest user access to any stored procedures that you create. Your main line of
defense for securing stored procedures is to ensure that you use strong
authentication, and then to provide granular authorization, allowing only the
necessary users permission to run the stored procedures.

The recommended approach is to create a SQL Server login for your application, map
the login to a database user, add the user to a user-defined database role, and then
grant permissions to the role.

Secure Extended Stored Procedures
Deleting stored procedures is not tested and not supported.

Restrict cmdExec Access to the sysadmin Role
The cmdExec function is used by the SQL Server Agent to execute Windows
command-line applications and scripts that are scheduled by the SQL Server Agent.
Prior to SQL Server Service Pack 3, by default the SQL Server Agent allows users who
are not in the sysadmin role to schedule jobs that may require privileged access to the
system. You should change this setting to allow members only of the sysadmin role
to schedule jobs.

 Chapter 18: Securing Your Database Server 533

� To restrict cmdExec access to the sysadmin role

1. Start SQL Server Enterprise Manager, expand the SQL Server Group, and then
expand your SQL Server.

2. Expand the Management node, right-click SQL Server Agent, and then click
Properties.
The SQL Server Agent Properties dialog box is displayed.

3. Click the Job System tab.
4. At the bottom of the dialog, select the Only users with SysAdmin privileges can

execute CmdExec and ActiveScripting job steps check box.
5. Click OK.

Note This change may require you to supply a user name and password. If the SQL Server service
account is least privileged user (as advocated earlier in this chapter), you will be prompted for the
user name and password of an administrator account that has privileges to modify the service.

Snapshot of a Secure Database Server
When you have a snapshot view that shows the attributes of a secured SQL Server
database server, you can quickly and easily compare settings with your own server.
The settings shown in Table 18.5 are based on an analysis of SQL Server database
servers that have proven to be very resilient to attack and demonstrate sound
security practices.

Table 18.5 Snapshot of a Secure Database Server

Component Characteristics
Patches and Updates Latest service packs and patches are applied for Windows 2000 and SQL

Server

Services Nonessential services are disabled.

The MSDTC is disabled if not used.

The MSSearch service is disabled if not required.

The SQLServerAgent service is disabled if not required.

The MSSQLServerADHelper service is disabled if not required.

Protocols Unnecessary protocols are removed or disabled.

The following protocols are not enabled on the server: NetBIOS and SMB.

The TCP/IP stack is hardened.

(continued)

534 Part IV: Securing Your Network, Host and Application

Table 18.5 Snapshot of a Secure Database Server (continued)
Component Characteristics
Accounts SQL Server service account is secured (least privileged).

Unnecessary Windows accounts are deleted or disabled.

The Windows guest account is disabled.

A new administrator account is created.

Strong password policy is enforced.

Remote logons are restricted.

Null sessions (anonymous logons) are disabled.

Approval is required for account delegation.

Shared accounts are not used.

Membership of the local Administrators group is limited (ideally, no more than
two members).

The administrator account is limited to interactive logins (or a secure remote
administration solution is provided).

NTLMv2 authentication is enabled and enforced (LMCompatibilityLevel is set
to 5).

Files and Directories Volumes are formatted with NTFS.

Everyone group has no rights to system or tools directories.

Samples directories, Help directories, and unused admin directories are
removed from the server.

Permissions are hardened on SQL Server installation folder.

Passwords removed from Service Pack 1 and Service Pack 2 setup log files.

Tools, utilities and SDKs are removed.

Unused applications are removed.

Sensitive data files are encrypted using EFS. (This is optional for database
files (.mdf), but not for log files (.ldf)).

Shares Unnecessary shares are removed from the server.

Access is restricted to required shares.

Shares are not accessible by Everyone, unless necessary.

Administration shares (C$, Admin$) are removed if they are not required.

 Chapter 18: Securing Your Database Server 535

Table 18.5 Snapshot of a Secure Database Server (continued)
Component Characteristics
Ports All ports except SQL Server listening port [Default 1433] are blocked

Named instances are configured to listen on the same port.

A non-standard SQL Server port (not TCP 1443) is used as an additional layer
of defense.

The hide server option is used as an additional layer of defense (optional).

The firewall is configured to support DTC traffic (if necessary).

A firewall is used to separate users from the SQL TCP/IP port.

Registry Everyone group is removed from SQL Server registry keys.

SAM is secured (stand-alone servers only).

Auditing and Logging Failed Windows logon attempts are logged.

Failed actions across the file system are logged.

SQL Server login auditing is enabled.

SQL Server Settings

SQL Server Security Authentication setting for SQL Server is Windows Only if possible.

SQL Server audit level set to Failure or All.

The SQL Server Startup Service account is a least privileged account.

SQL Server Logins,
Users and Roles

The sa account has a strong password.

SQL Server guest accounts are removed from non-system databases.

The BUILTIN\Administrators group is removed from the SQL Server logins.

The sysadmin role does not contain the BUILTIN\Administrators group.

Permissions are not granted for the public role.

The sysadmin role contains no more than two users.

Restricted (granular) database permissions are granted (Built-in, non-granular
roles such as db_datareader and db_datawriter are avoided)

Default permissions for SQL Server objects are not changed.

SQL Server Database
Objects

All sample databases are removed from the server.

Stored procedures are secured.

Extended stored procedures are secured.

cmdExec is restricted to the sysadmin role only.

536 Part IV: Securing Your Network, Host and Application

Additional Considerations
In addition to the steps described in this chapter, consider the following guidelines:
● Install a certificate on the database server. If you use Windows authentication

(NTLM or Kerberos), logon credentials are not passed over the network to SQL
Server. If you use SQL authentication, it is a good idea to secure the credentials
because they are passed to SQL Server in unencrypted format. Do this by
installing a certificate on the database server. This automatically results in the
encryption of SQL credentials over the wire. It is also a good idea to make sure
that your application securely stores database connection strings. For more
information, see Chapter 14, “Building Secure Data Access.”

● Restrict access to sensitive commands and stored procedures. SQL Server
provides powerful hooks into the operating system. For example, you can use the
xp_cmdshell extended stored procedure to run any operating system command. If
an attacker manages to run arbitrary commands in the database, for example
through a SQL injection vulnerability, the ability to execute operating system
commands is limited only by the security credentials of the account used to run
SQL Server. This is the primary reason for running SQL Server with a least
privileged local account.

● Use a dedicated computer as a database server. Also cluster it for failover.
● Physically protect the database server. Locate the server in a secure computer

room.
● Restrict local logons. Do not allow anyone to locally log on to the server, apart

from the administrator.

Staying Secure
You need to regularly monitor the security state of your database server and update it
regularly to help prevent newly discovered vulnerabilities from being exploited. To
help keep your database server secure:
● Perform regular backups.
● Audit group membership.
● Monitor audit logs.
● Stay current with service packs and patches.
● Perform security assessments.
● Use security notification services.

 Chapter 18: Securing Your Database Server 537

Perform Regular Backups
You must be able to restore data in the event of a compromise. If you have a recovery
system in place, test it before you actually need it. The first time you need to recover
data should not be the first time you test your backup and restore process. For more
information on backing up and restoring SQL Server, see the following resources:
● SQL Server 2000 documentation, “Backing Up and Restoring Databases”
● “Backup and Restore Strategies with SQL Server 2000,” by Rudy Lee Martinez,

http://www.dell.com/us/en/biz/topics/power_ps4q00-martin.htm

Audit Group Membership
Keep track of user group membership, particularly for privileged groups such as
Administrators. The following command lists the members of the Administrators
group:

net localgroup administrators

Monitor Audit Logs
Monitor audit logs regularly and analyze the log files by manually viewing them or
use the technique described in Microsoft Knowledge Base article 296085, “How To:
Use SQL Server to Analyze Web Logs.”

Stay Current with Service Packs and Patches
Set up a schedule to analyze your server’s software and subscribe to security alerts.
Use MBSA to regularly scan your server for missing patches. The following links
provide the latest updates:
● Windows 2000 service packs. The latest service packs are listed at

http://www.microsoft.com/windows2000/downloads/servicepacks/default.asp.
● Critical updates. These updates help to resolve known issues and help protect

your computer from known security vulnerabilities. For the latest critical updates,
see http://www.microsoft.com/windows2000/downloads/critical/default.asp.

● Advanced security updates. Also monitor the advanced security updates at
http://www.microsoft.com/windows2000/downloads/security/default.asp.
These also help protect your computer from known security vulnerabilities.

http://www.dell.com/us/en/biz/topics/power_ps4q00-martin.htm
http://www.microsoft.com/windows2000/downloads/servicepacks/default.asp
http://www.microsoft.com/windows2000/downloads/critical/default.asp
http://www.microsoft.com/windows2000/downloads/security/default.asp

538 Part IV: Securing Your Network, Host and Application

Perform Security Assessments
Use MBSA to regularly check for security vulnerabilities and to identify missing
patches and updates. Schedule MBSA to run daily and analyze the results to take
action as needed. For more information about automating MBSA, see “How To: Use
MBSA” in the “How To” section of this guide.

Use Security Notification Services
Use the Microsoft services listed in Table 18.6 to obtain security bulletins with
notifications of possible system vulnerabilities.

Table 18.6 Security Notification Services

Service Location
TechNet security Web site http://www.microsoft.com/technet/treeview/default.asp?url=/technet

/security/current.asp

Use this Web page to view the security bulletins that are available for
your system.

Microsoft Security
Notification Service

http://register.microsoft.com/subscription/subscribeme.asp?ID=135

Use this service to register for regular email bulletins that notify you of
the availability of new fixes and updates

Additionally, subscribe to the industry security alert services shown in Table 18.7.
This allows you to assess the threat of a vulnerability where a patch is not yet
available.

Table 18.7 Industry Security Notification Services

Service Location
CERT Advisory Mailing List http://www.cert.org/contact_cert/certmaillist.html

Informative advisories are sent when vulnerabilities are reported.

Windows and .NET
Magazine Security UPDATE

http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp

Announces the latest security breaches and identifies fixes.

NTBugtraq http://www.ntbugtraq.com/default.asp?pid=31&sid=1#020

This is an open discussion of Windows security vulnerabilities and
attacks. Vulnerabilities which currently have no patch are discussed.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://www.cert.org/contact_cert/certmaillist.html
http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp
http://www.ntbugtraq.com/default.asp?pid=31&sid=1#020

 Chapter 18: Securing Your Database Server 539

Remote Administration
Administrators often need to be able to administer multiple servers. Make sure the
requirements of your remote administration solution do not compromise security. If
you need remote administration capabilities, the following recommendations help
improve security:
● Restrict the number of administration accounts. This includes restricting the

number of administration accounts as well as restricting which accounts are
allowed to logon remotely.

● Restrict the tools. The main options include SQL Enterprise Manager and
Terminal Services. Both SQL Enterprise Manager and Terminal Services use
Windows security. As such, the main considerations here are restricting the
Windows accounts and the ports you use.

● Restrict the computers that are allowed to administer the server. IPSec can be
used to restrict which computers can connect to your SQL Server.

Securing Terminal Services
It is possible to use Microsoft Terminal Services securely to remotely administer your
database server.

Terminal Services is based on Microsoft’s proprietary protocol known as Remote
Desktop Protocol (RDP). RDP uses the TCP 3389 port and supports two concurrent
users. The following sections describe how to install and configure Terminal Services
for secure administration:
● Install Terminal Services.
● Configure Terminal Services.

Install Terminal Services
� To install terminal services, do the following

1. Install Terminal Services by using Add/Remove Programs from the Control Panel.
Use the Add/Remove Windows Components option. You do not need to install
the Terminal Services Licensing service for remote administration.

2. Configure Terminal Services for remote administration mode.
3. Remove the TsInternetUser user account from the system, which is created during

Terminal Services installation. This account is used to support anonymous Internet
access to Terminal Services, which should not be enabled on the server.

540 Part IV: Securing Your Network, Host and Application

Configure Terminal Services
� Use the Terminal Services configuration MMC snap-in available from the Administrative

Tools program group to configure the following

1. There are three levels (Low, Medium, and High) of encryption available for
connections to Terminal Services. Set the encryption to 128-bit key. Note that the
Windows high encryption pack should be installed on both the server and the
client.

2. Configure the Terminal Services session to disconnect after idle connection time
limit. Set it to end a disconnected session. A session is considered to be
disconnected if the user closes the Terminal Services client application without
logging off in a period of 10 minutes.

3. Finally, restrict permissions to access Terminal Services. Use the RDP permissions
tab in the RDP dialog box. By default, all members of the Administrators group
are allowed to access Terminal Services. If you do not want all members of the
Administrators group to access Terminal Services, remove the group and add
individual accounts that need access. Note that the SYSTEM account must be in
the list.

Use a secure VPN connection between the client and the server or an IPSec tunnel for
enhanced security. This approach provides mutual authentication and the RDS
payload is encrypted.

Copying Files over RDP
Terminal Services does not provide built-in support for file transfer. However, you
can install the File Copy utility from the Windows 2000 Server Resource Kit to add
file transfer functionality to the clipboard redirection feature in Terminal Services.
For more information about the utility and installation instructions, see Microsoft
Knowledge Base article 244732, “How To: Install the File Copy Tool Included with the
Windows 2000 Resource Kit.”

Summary
Database servers are a prime target for attackers. The database server must be
secured against internal, external, network level, and application level attacks. A
secure database server includes a hardened SQL Server 2000 installation on top of a
hardened Windows 2000 installation, coupled with secure network defenses
provided by routers and firewalls.

For a quick reference checklist, see “Checklist: Securing Your Database Server” in the
“Checklists” section of this guide.

 Chapter 18: Securing Your Database Server 541

Additional Resources
For more information about SQL Server security, see the following resources:
● Microsoft SQL Server Security home page: http://www.microsoft.com/sql/techinfo

/administration/2000/security.asp.
● SQL Server 2000 Resource Kit CD, Chapter 10 — Implementing Security:

http://www.microsoft.com/technet/prodtechnol/sql/reskit/sql2000/part3/c1061.asp.
● “SQL Server 2000 Security,” by Richard Waymire and Ben Thomas:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sql
/maintain/security/sql2ksec.asp.

● For information about changing the SQL Server service account, see Microsoft
Knowledge Base article 283811, “How To: Change the SQL Server Service Account
Without Using SQL Enterprise Manager in SQL Server 2000.”

● For information about SQL Server auditing, see the TechNet article, “SQL Server
2000 Auditing,” by John Howie, at http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/prodtech/dbsql/sql2kaud.asp?frame=true.

http://www.microsoft.com/sql/techinfo/administration/2000/security.asp
http://www.microsoft.com/sql/techinfo/administration/2000/security.asp
http://www.microsoft.com/technet/prodtechnol/sql/reskit/sql2000/part3/c1061.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sql/maintain/security/sql2ksec.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sql/maintain/security/sql2ksec.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/dbsql/sql2kaud.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/dbsql/sql2kaud.asp?frame=true

19
Securing Your ASP.NET Application
and Web Services

In This Chapter
● Locking down an ASP.NET application
● ASP.NET process identity security considerations
● Using Aspnet_setreg.exe to encrypt account credentials in configuration files
● Enforcing machine-wide and Web application security policy
● Accessing resources securely from ASP.NET
● Securing a Web service configuration
● Securing a Forms authentication configuration
● Securing ASP.NET session state and view state
● Securing a Web farm
● A reference table that illustrates a secure ASP.NET application
● Attributes of a secure ASP.NET application

Overview
Secure ASP.NET Web applications rely on a fully secured network, host, and platform
infrastructure. When trust boundaries are set at each level to block the intruder, the
attacker will attempt to exploit vulnerabilities in Web applications and Web services
that are listening on port 80. If the Web application is configured defectively, attackers
can gain access and exploit the system. As an administrator, you should review the
default machine-level configuration and the individual application configurations to
address and remove any vulnerable and insecure settings.

544 Part IV: Securing Your Network, Host, and Application

This chapter describes what is new with ASP.NET from a system administrator’s
standpoint and how to configure machine-wide and application-specific security
settings.

How to Use This Chapter
This chapter focuses on the key security considerations for ASP.NET applications.
To get the most out of this chapter:
● Read Chapter 16, “Securing Your Web Server.” This shows you how to secure the

Windows 2000 operating system and the Microsoft .NET Framework. A secure
underlying platform is a prerequisite for securing an ASP.NET Web application or
Web service.

● Use the snapshot. Table 19.4, which is at the end of this chapter, gives a snapshot
of a secure ASP.NET application with secure configuration settings in
Machine.config and Web.config. Use this table when configuring your server and
application settings.

● Use the checklist. The “Checklist: Securing Your ASP.NET Application” in the
“Checklist” section of this guide provides a printable job aid for quick reference.
Use the task-based checklist to quickly evaluate the scope of the required steps
and to help you work through individual steps.

For related guidance, read Chapter 20, “Hosting Multiple ASP.NET Applications,”
which shows you how to isolate multiple Web applications running on the same
server from critical system resources and from one another. For more information
about configuring code access security (CAS) policy for partial-trust Web applications
and Web services, see Chapter 9, “Using Code Access Security with ASP.NET.”

Methodology
To secure your ASP.NET application, start with a hardened operating system and
.NET Framework installation base, and then apply secure application configuration
settings to reduce the application’s attack profile. The methodology that is applied in
this chapter to secure ASP.NET Web applications and Web services is consistent with
the methodology used to secure the underlying Web server host, and it shares
common configuration categories. These include:
● Services. The .NET Framework installs the ASP.NET state service to manage out-

of-process ASP.NET session state. Secure the ASP.NET state service if you install it.
Disable the ASP.NET state service if you do not require it.

● Protocols. Restrict Web service protocols to reduce the attack surface area.

 Chapter 19: Securing Your ASP.NET Application and Web Services 545

● Accounts. The default ASPNET account is created for running Web applications,
Web services, and the ASP.NET state service. If you create custom accounts to run
processes or services, they must be configured as least privileged accounts with
the minimum set of required NTFS permissions and Windows privileges.

● Files and Directories. Application Bin directories that are used to hold private
assemblies should be secured to mitigate the risk of an attacker downloading
business logic.

● Configuration Store. Many security-related settings that control functional areas
such as authentication, authorization, session state, and so on, are maintained in
the Machine.config and Web.config XML configuration files. To secure ASP.NET
applications, you must use secure configuration settings.

What You Must Know
Before you begin securing your Web applications and Web services, there are
overarching considerations and details of which you should be aware.

ASP.NET Process Model
In Microsoft Windows 2000, Internet Information Services (IIS) 5.0 runs all Web
applications and Web services in the ASP.NET worker process (Aspnet_wp.exe).
The unit of isolation is the application domain and each virtual directory has its
own application domain. Process-level configuration settings are maintained by
the <processModel> element in Machine.config.

In Microsoft Windows Server 2003, IIS 6.0 application pools allow you to isolate
applications using separate processes. For more information, see Chapter 20,
“Hosting Multiple ASP.NET Applications.”

ASP.NET Account
The ASPNET account is a least privileged, local account created when you install the
.NET Framework. By default, it runs the ASP.NET worker process and the ASP.NET
state service.

If you decide to run Web applications using a custom account, make sure you
configure the account with minimum privileges. This reduces the risks associated
with an attacker who manages to execute code using the application’s security
context. You must also specify the account’s credentials on the <processModel>
element. Make sure you do not store credentials in plaintext. Instead, use the
Aspnet_setreg.exe tool to store encrypted credentials in the registry. The custom
account must also be granted the appropriate NTFS permissions.

546 Part IV: Securing Your Network, Host, and Application

Aspnet_setreg.exe and Process, Session, and Identity
Aspnet_setreg.exe allows you to store credentials and connection strings in encrypted
format in the registry. This tool allows you to encrypt the following attributes:
● <processModel userName = password= />
● <identity username = password= />
● <sessionState sqlConnectionString = stateConnectionString= />

The following example shows the <processModel> element with a custom account
both before and after running Aspnet_setreg.exe to secure the credentials:

<!--Before-->
<processModel userName="CustomAccount" password="Str0ngPassword" />
<!--After-->
<processModel
 userName="registry:HKLM\SOFTWARE\YourApp\process\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\process\ASPNET_SETREG,password"/>

You can choose the registry location that stores the encrypted data, although it must
be beneath HKEY_LOCAL_MACHINE. In addition to encrypting the data using the
Data Protection API (DPAPI) and storing it in the registry, the tool applies a secure
ACL to restrict access to the registry key. The ACL on the registry key grants Full
Control to System, Administrators, and Creator Owner. If you use the tool to
encrypt the credentials for the <identity> element or the connection string for the
<sessionState> element, you must also grant read access to the ASP.NET process
account.

To obtain the Aspnet_setreg.exe tool and for more information, see Microsoft
Knowledge Base article 329290, “How To: Use the ASP.NET Utility to Encrypt
Credentials and Session State Connection Strings.”

Impersonation is Not the Default
By default, ASP.NET applications do not impersonate. As a result, resource access is
performed using the ASP.NET worker process identity. You must grant the process
identity read access (at minimum) to the Windows resources that your application
requires access to by creating an appropriately configured ACL.

If you do enable impersonation, you can either impersonate the original caller — that
is, the IIS authenticated identity — or a fixed identity specified on the <identity>
element. For more information, see “Impersonation” later in this chapter.

 Chapter 19: Securing Your ASP.NET Application and Web Services 547

Generally, ASP.NET applications do not use impersonation because it can negatively
affect design, implementation, and scalability. For example, using impersonation
prevents effective middle-tier connection pooling, which limits application scalability.
Impersonation might make sense in specific scenarios, for example, when the
application uses the anonymous user account’s security context for resource access.
This is a common technique often used when multiple applications are hosted on the
same server. For more information, see Chapter 20, “Hosting Multiple Web
Applications.”

HttpForbiddenHandler, Urlscan, and the 404.dll
There are a number of techniques you can use to prevent access to restricted
resources. ASP.NET provides the HttpForbiddenHandler to which you can map
ASP.NET file types that should not be downloadable over HTTP. Mappings are
applied using the <httpHandlers> element.

IISLockdown.exe provides the 404.dll. Using this, you can configure IIS to map
unwanted file extensions to the 404.dll, which results in the “HTTP 404 - File not
found” message when the file type is requested.

Finally, the URLScan ISAPI filter can be used to block requests for restricted file types
and program executables. URLScan ships with the IISLockdown tool, although it can
be obtained separately. For more information, see Microsoft Knowledge Base article
307608, “INFO: Availability of URLScan Version 2.5 Security Tool,” and “How To: Use
URLScan” in the “How To” section of this guide.

For more information about IISLockdown and URLScan, see Chapter 16, “Securing
Your Web Server.”

AppSettings
The <appSettings> element in Web.config allows applications to store configuration
data, such as database connection strings or service account credentials. The
advantage of this element is that it allows developers to centralize and standardize
the storage and retrieval of configuration data. A single location in Web.config also
eases administration and deployment.

Sensitive data, such as connection strings and credentials, should not be stored in
plaintext format in configuration files. Instead, the developer should use DPAPI to
encrypt secrets prior to storage.

For more information about AppSettings, see the “AppSettings in ASP.NET” show on
MSDN® TV at http://msdn.microsoft.com/msdntv.

http://msdn.microsoft.com/msdntv

548 Part IV: Securing Your Network, Host, and Application

Machine.Config and Web.Config Explained
The configuration management provided by the .NET Framework encompasses a
broad range of settings that allow an administrator to manage the Web application
and its environment. These settings are stored in XML configuration files, some of
which control machine-wide settings, while others control application-specific
configuration.

XML configuration files can be edited with any text editor, such as Notepad, or with
XML editors. XML tags are case sensitive, so ensure that the correct case is used.

Figure 19.1 shows the configuration files used to configure ASP.NET Web
applications that are available to administrators.

Configuration Files

For the machine For applications For code access
security

Machine.config Web.config
app.exe.config Enterprise Policy

enterprisesec.config

Machine and User
Policy

security.config

ASP. NET Policy
web_hightrust.config

web_mediumtrust.config
web_lowtrust.config

web_minimaltrust.config

Figure 19.1
ASP.NET configuration files

The Machine.config and Web.config files share many of the same configuration
sections and XML elements. Machine.config is used to apply machine-wide policy to
all .NET Framework applications running on the local computer. Developers can also
use application-specific Web.config files to customize settings for individual
applications.

 Chapter 19: Securing Your ASP.NET Application and Web Services 549

Note Windows executables, such as WinForm applications, are configured using configuration files.
The names of these files are derived from the application executable name, for example,
App.exe.config, where app is the application name.

Changes that you make to configuration files are applied dynamically and do not
normally require that you restart the server or any service, except if changes are made
to the <processModel> element in Machine.config, which is discussed later in this
chapter.

Table 19.1 shows where the configuration files are located.

Table 19.1 Configuration File Locations

Configuration file Location
Machine.config
(one per machine per installed version
of the .NET Framework)

%windir%\Microsoft.NET\Framework\{version}\CONFIG

Web.config
(zero, one, or many per application)

\inetpub\wwwroot\web.config

\inetpub\wwwroot\YourApplication\web.config

\inetpub\wwwroot\YourApplication\SubDir\web.config

Enterprisesec.config
(enterprise-level CAS) configuration)

%windir%\Microsoft.NET\Framework\{version}\CONFIG

Security.config
(machine-level CAS configuration)

%windir%\Microsoft.NET\Framework\{version}\CONFIG

Security.config
(user-level CAS configuration)

\Documents and Settings\{user}\Application Data
\Microsoft\CLR Security Config\{version}

Web_hightrust.config

Web_mediumtrust.config

Web_lowtrust.config

Web_minimaltrust.config
(ASP.NET Web application CAS
configuration)

%windir%\Microsoft.NET\Framework\{version}\CONFIG

For more information about ASP.NET Web application CAS configuration files, see
Chapter 9, “Using Code Access Security with ASP.NET.”

550 Part IV: Securing Your Network, Host, and Application

Hierarchical Policy Evaluation
For centralized administration, settings can be applied in Machine.config. The
settings in Machine.config define machine-wide policy and can also be used to apply
application-specific configuration using <location> elements. Developers can
provide application-configuration files to override aspects of machine policy. For
ASP.NET Web applications, a Web.config file is located in the application’s virtual
root directory and optionally in subdirectories beneath the virtual root. Consider the
arrangement shown in Figure 19.2.

Machine.config

SubDir1

You rApp
v-dir

Web Server

SubDir2

Web.config

Web.config

v-dir

v-dir

Figure 19.2
Hierarchical configuration

In Figure 19.2, the AppRoot Web application has a Web.config file in its virtual root
directory. SubDir1 (not a virtual directory) also contains its own Web.config file,
which gets applied when an HTTP request is directed at http://AppRoot/SubDir1.
If a request is directed at SubDir2 (a virtual directory) through AppRoot, for example,
http://Server/AppRoot/SubDir2, settings from Machine.config and the Web.config
in the AppRoot directory are applied. If, however, a request is directed at SubDir2
bypassing AppRoot, for example, http://Server/SubDir2, then only the settings from
Machine.config are applied.

In all cases, base settings are obtained from Machine.config. Next, overrides and
additions are applied from any relevant Web.config files.

 Chapter 19: Securing Your ASP.NET Application and Web Services 551

If the same configuration element is used in Machine.config and in one or more
Web.config files, the setting from the file lowest in the hierarchy overrides the higher-
level settings. New configuration settings that are not applied at the machine level
can also be applied to Web.config files and certain elements can clear the parent-level
settings using the <clear> element.

The following table shows where the combined configuration settings are obtained
from for a combination of Web requests that apply to Figure 19.2.

Table 19.2 Applying Configuration Settings

HTTP Request Combined Settings Obtained From
http://Server/AppRoot Machine.config

Web.config (AppRoot v-dir)

http://Server/AppRoot/SubDir1 Machine.config

Web.config (AppRoot v-dir)

Web.config (SubDir1)

http://Server/AppRoot/SubDir2 Machine.config

Web.config (AppRoot v-dir)

http://Server/Subdir2 Machine.config

<location>
The <location> element is used for three main purposes:
● To apply configuration settings to specific application files.
● To centralize administration by applying application-specific settings in

Machine.config.
● To lock configuration settings to prevent override at the application level.

The <location> tag can be used in Machine.config or Web.config. With
Machine.config, if you specify the path, then it must be fully qualified and include
the Web site name, virtual directory name, and optionally, a subdirectory and file
name. For example:

<location path="Web Site Name/VDirName/SubDirName/PageName.aspx" >
 <system.web>
 . . .
 </system.web>
</location>

Note You must include the Web site name when using the location tag from Machine.config.

552 Part IV: Securing Your Network, Host, and Application

With Web.config, the path is relative from the application’s virtual directory. For
example:

<location path="SubDirName/PageName.aspx" >
 <system.web>
 . . .
 </system.web>
</location>

Applying Configuration Settings to Specific Files
Use the path attribute to apply configuration settings for a specific file. For example,
to apply authorization rules to the file Pagename.aspx from within Web.config, use
the following <location> element:

<location path="SubDirName/PageName.aspx" >
 <system.web>
 <authorization>
 <deny roles="hackers" />
 </authorization>
 </system.web>
</location>

Applying Application Configuration Settings in Machine.config
You can also apply application-specific settings in Machine.config by using
<location> statements that specify paths to application directories. This has the
advantage of centralizing administration. For example, the following fragment shows
how to enforce the use of Windows authentication and prevent the use of
impersonation in a particular application.

<location path="Default Web Site/YourApp">
 <system.web>
 <authentication mode="Windows"/>
 <identity impersonate="false"/>
 </system.web>
</location>

Locking Configuration Settings
To prevent individual applications from overriding machine-level policy
configuration, place settings within a <location> element in Machine.config and set
the allowOverride=“false” attribute.

 Chapter 19: Securing Your ASP.NET Application and Web Services 553

For example, to apply machine-wide policy that cannot be overridden at the
application level, use the following <location> element:

<location path="" allowOverride="false">
 <system.web>
 … machine-wide defaults
 </system.web>
</location>

By leaving the path attribute empty, you indicate that the settings apply to the
machine, while allowOverride=“false” ensures that Web.config settings do not
override the specified values. Any attempt to add elements in Web.config will
generate an exception, even if the elements in Machine.config match with those
of Web.config.

Machine.Config and Web.Config Guidelines
Settings in Machine.config apply machine-level defaults for your server. Where you
want to enforce a particular configuration for all applications on your server, use
allowOverride=“false” on the <location> element as described above. This is
particularly appropriate for hosting scenarios, where you need to enforce aspects of
security policy for all applications on the server.

For those settings that can be configured on an individual application basis, it is
normal for the application to provide a Web.config file. While it is possible to
configure individual applications from Machine.config using multiple <location>
elements, separate Web.config files provide deployment advantages and lead to
smaller Machine.config files.

The main item to consider is which settings should be enforced by machine policy.
This depends on your specific scenario. Some common scenarios follow:
● Windows authentication. Consider a corporate intranet portal scenario where you

want authentication to be abstracted away from the application and controlled by
the organization through Active Directory. In this scenario, you can enforce
Windows authentication, but allow individual applications to impersonate with
the following configuration:

<location path="" allowOverride="false">
 <system.web>
 <authentication mode="Windows"/>
 </system.web>
</location>

554 Part IV: Securing Your Network, Host, and Application

● Hosting scenario. Hosting companies need to constrain applications so they
cannot access each other’s resources and so that they have limited access to critical
system resources. To do so, you can configure all applications to run at a partial-
trust level. For example, the medium-trust level constrains an application so that it
can only access files within its own virtual directory hierarchy and restricts access
to other types of resources. For more information, see Chapter 9, “Using Code
Access Security with ASP.NET.” To apply a medium-trust policy for all
applications on your server, use the following configuration:

<location path="" allowOverride="false>
 <system.web>
 <trust level="Medium" />
 </system.web>
</location>

ACLs and Permissions
Configuration files contain sensitive data and therefore require appropriately
configured ACLs to restrict access.

Machine.config
By default, Machine.config is configured with the following ACL:

Administrators: Full Control
System: Full Control
Power Users: Modify
Users: Read and Execute
LocalMachine\ASPNET (process identity): Read and Execute

Note On Windows Server 2003, the Local Service and Network Service accounts are also granted
read access.

Members of the Users group are granted read access by default, since all managed
code that runs on the computer must be able to read Machine.config.

The default ACL on Machine.config is a secure default. If, however, you only have a
single Web application running on the server, or all of your Web applications use the
same process identity, you can further restrict the ACL by removing the user’s access
control entry (ACE). If you do remove “users” from the DACL, you need to explicitly
add the Web process identity.

 Chapter 19: Securing Your ASP.NET Application and Web Services 555

Web.config
The .NET Framework does not install any Web.config files. If you install an
application that supplies its own Web.config, it usually inherits its ACL from the
inetpub directory, which by default grants read access to members of the Everyone
group. To lock down an application-specific Web.config, use one the following ACLs.

For .NET Framework version 1.0:

Administrators: Full control
System: Full control
ASP.NET process identity: Read
UNC Identity: Read
Impersonated Identity (Fixed Identity): Read
Impersonated Identity (Original Caller): Read

For .NET Framework version 1.1:

Administrators: Full control
System: Full control
ASP.NET process identity: Read
UNC Identity: Read
Impersonated Identity (Fixed Identity): Read

If your applications use impersonation of an explicit account (that is, if they
impersonate a a fixed identity), such as <identity impersonate=“true”
username=“WebUser” password=“Y0urStr0ngPassw0rd$”/>, then both that
account (WebUser, in this case) and the process need Read access.

If your code base is on a Universal Naming Convention (UNC) share, you must grant
read access to the IIS-provided UNC token identity.

If you are impersonating but not using explicit credentials, such as <identity
impersonate=“true”/>, and no UNC, then only the process should need access in the
.NET Framework 1.1. For the .NET Framework 1.0, you must additionally configure
the ACL to grant read access to any identity that will be impersonated (that is, you
must grant read access to the original caller).

Trust Levels in ASP.NET
An application’s trust level determines the permissions it is granted by CAS policy.
This determines the extent to which the application can access secure resources and
perform privileged operations.

556 Part IV: Securing Your Network, Host, and Application

<trust>
Use the <trust> element to configure the application’s trust level. By default, the
configuration level is set to Full, as shown below:

<!-- level="[Full|High|Medium|Low|Minimal]" -->
<trust level="Full" originUrl=""/>

This means that the application is granted full and unrestricted CAS permissions.
With this configuration, the success or failure of any resource access performed by the
application depends only on operating system security.

If you change the trust level to a level other than Full, you may break existing
ASP.NET Web applications depending on the types of resources they access and the
operations they perform. Applications should be thoroughly tested at each trust level.

For more information about building partial-trust Web applications that use CAS, see
Chapter 9, “Using Code Access Security with ASP.NET.” For more information about
using trust levels to provide application isolation, see Chapter 20, “Hosting Multiple
ASP.NET Web Applications.”

Process Identity for ASP.NET
ASP.NET Web applications and Web services run in a shared instance of the ASP.NET
worker process (Aspnet_wp.exe). Process-level settings, including the process
identity, are configured using the <processModel> element in Machine.config.

<processModel>
The identity for the ASP.NET worker process is configured using the userName and
password attributes on the <processModel> element. When you configure process
identity:
● Use the default ASPNET account.
● Use a least-privileged custom account.
● Encrypt <processModel> credentials.
● Do not run ASP.NET as SYSTEM.

Use the Default ASPNET Account
The local ASPNET account is the default least privileged account specifically for
running ASP.NET Web applications and Web services. Use this account if you can by
using the following default configuration:

<processModel enable="true" userName="machine" password="AutoGenerate" ... />

 Chapter 19: Securing Your ASP.NET Application and Web Services 557

Use a Least Privileged Custom Account
If you must use an alternate identity to run the ASP.NET worker process, make sure
the account that you use is configured as a least privileged account. This limits the
damage that can be done by an attacker who manages to execute code using the
process security context.

You might decide to use an alternate account because you need to connect to a remote
Microsoft SQL Server™ database or network resource using Windows authentication.
Note that you can use the local ASPNET account for this purpose. For more
information, see “Data Access” later in this chapter.

For more information about the NTFS permissions that the ASP.NET process account
requires, see “NFTS Permission Requirements” later in this chapter.

You should also grant the following user rights to the ASP.NET process accounts:
● Access this computer from the network.
● Logon as a batch job.
● Logon as a service.
● Deny logon locally.
● Deny logon through terminal services.

Encrypt <processModel> Credentials
If you need to use a custom account, do not store plaintext credentials in
Machine.config. Use the Aspnet_setreg.exe utility to store encrypted credentials in
the registry.

� To encrypt credentials for <processModel>

1. Run the following command from the command prompt:

aspnet_setreg -k:Software\YourApp\process -u:CustomAccount :p:StrongPassword

This stores the encrypted credentials in the specified registry key and secures
the registry key with a restricted ACL that grants Full Control to System,
Administrators, and Creator Owner.

2. Reconfigure the <processModel> element and add the following userName and
password attributes.

<processModel
userName="registry:HKLM\SOFTWARE\YourApp\process\ASPNET_SETREG,userName"
password="registry:HKLM\SOFTWARE\YourApp\process\ASPNET_SETREG,password"/>

For more information, see Microsoft Knowledge Base article 329290, “How To: Use
the ASP.NET Utility to Encrypt Credentials and Session State Connection Strings.”

558 Part IV: Securing Your Network, Host, and Application

Do Not Run ASP.NET as SYSTEM
Do not use the SYSTEM account to run ASP.NET and do not grant the ASP.NET
process account the “Act as part of the operating system” user right. Doing so defeats
the principle of least privilege and increases the damage that can be done by an
attacker who is able to execute code using the Web application’s process security
context.

Impersonation
By default, ASP.NET applications do not impersonate. The security context of the
ASP.NET worker process account (ASPNET by default) is used when your
application accesses Windows resources.

<identity>
The <identity> element is used to enable impersonation. You can impersonate:
● The original caller (the IIS authenticated identity)
● A fixed identity

Impersonating the Original Caller
To impersonate the original caller, use the following configuration:

<identity impersonate="true" />

The impersonation uses the access token provided by IIS that represents the
authenticated caller. This may be the anonymous Internet user account, for example,
if your application uses Forms authentication, or it may be a Windows account that
represents the original caller, if your application uses Windows authentication.

If you do enable original caller impersonation, note the following issues:
● Application scalability is reduced because database connections cannot be

effectively pooled.
● Administration effort increases as ACLs on back-end resources need to be

configured for individual users.
● Delegation requires Kerberos authentication and a suitably configured

Windows 2000 environment.

For more information, see “How To: Implement Kerberos Delegation for
Windows 2000” in the “How To” section of “Microsoft patterns & practices Volume I,
Building Secure ASP.NET Applications: Authentication, Authorization, and Secure
Communication” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnnetsec/html/SecNetHT05.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT05.asp

 Chapter 19: Securing Your ASP.NET Application and Web Services 559

Impersonating a Fixed Identity
To impersonate a fixed identity, specify the identity using the userName and
password attributes on the <identity> element:

<identity impersonate="true" userName="MyServiceAccount"
 password="Str0ng!Passw0rd"/>

Do not store credentials in plaintext as shown here. Instead, use the
Aspnet_setreg.exe tool to encrypt the credentials and store them in the registry.

� To encrypt credentials for <identity>

1. Run the following command from the command prompt:

aspnet_setreg -k:Software\YourApp\identity -u:CustomAccount :p:StrongPassword

This stores the encrypted credentials in the specified registry key and secures the
registry key with a restricted ACL that grants Full Control to System,
Administrators, and Creator Owner.

2. Reconfigure the <identity> element and add the following userName and
password attributes.

<identity impersonate="true"
userName="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,userName"
password="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,password"/>

3. Use Regedt32.exe to create an ACL on the above registry key that grants read
access to the ASP.NET process account.

For more information, see Microsoft Knowledge Base article 329290, “How To: Use
the ASP.NET Utility to Encrypt Credentials and Session State Connection Strings.”

Act as Part of the Operating System

The ASP.NET version 1.0 process account requires the “Act as part of the operating
system” user right on Windows 2000 when you impersonate a fixed identity by
specifying userName and password attributes. Because this effectively elevates the
ASP.NET process account to a privilege level approaching the local System account,
impersonating a fixed identity is not recommended with ASP.NET version 1.0.

Note If you are running ASP.NET version 1.1 on Windows 2000 or Windows 2003 Server, this user
right is not required.

NTFS Permission Requirements
NTFS permissions must be appropriately configured for impersonation identities.
For more information, see “NTFS Permission Requirements” later in this chapter.

560 Part IV: Securing Your Network, Host, and Application

Authentication
The <authentication> element configures the authentication mode that your
applications use.

<authentication>
The appropriate authentication mode depends on how your application or Web
service has been designed. The default Machine.config setting applies a secure
Windows authentication default as shown below.

<!-- authentication Attributes:
 mode="[Windows|Forms|Passport|None]" -->
<authentication mode="Windows" />

Forms Authentication Guidelines
To use Forms authentication, set mode=“Forms” on the <authentication> element.
Next, configure Forms authentication using the child <forms> element. The
following fragment shows a secure <forms> authentication element configuration:

<authentication mode="Forms">
 <forms loginUrl="Restricted\login.aspx" Login page in an SSL protected folder
 protection="All" Privacy and integrity
 requireSSL="true" Prevents cookie being sent over http
 timeout="10" Limited session lifetime
 name="AppNameCookie" Unique per-application name
 path="/FormsAuth" and path
 slidingExpiration="true" > Sliding session lifetime
 </forms>
</authentication>

Use the following recommendations to improve Forms authentication security:
● Partition your Web site.
● Set protection=“All”.
● Use small cookie time-out values.
● Consider using a fixed expiration period.
● Use SSL with Forms authentication.
● If you do not use SSL, set slidingExpiration = “false”.
● Do not use the <credentials> element on production servers.
● Configure the <machineKey> element.
● Use unique cookie names and paths.

 Chapter 19: Securing Your ASP.NET Application and Web Services 561

Partition Your Web Site
Separate the public and restricted access areas of your Web site. Place your
application’s logon page and other pages and resources that should only be accessed
by authentication users in a separate folder from the public access areas. Protect the
restricted subfolders by configuring them in IIS to require SSL access, and then use
<authorization> elements to restrict access and force a login. For example, the
following Web.config configuration allows anyone to access the current directory
(this provides public access), but prevents unauthenticated users from accessing the
restricted sub folder. Any attempt to do so forces a Forms login.

<system.web>
 <!-- The virtual directory root folder contains general pages.
 Unauthenticated users can view them and they do not need
 to be secured with SSL. -->
 <authorization>
 <allow users="*" />
 </authorization>
</system.web>

<!-- The restricted folder is for authenticated and SSL access only. -->
<location path="Restricted" >
 <system.web>
 <authorization>
 <deny users="?" />
 </authorization>
 </system.web>
</location>

For additional programmatic considerations, such as how to navigate between
restricted and non-restricted pages, see “Forms Authentication” in Chapter 10,
“Building ASP.NET Web Pages and Controls.”

Set Protection=“All”
This setting ensures that the Forms authentication cookie is encrypted to provide
privacy and integrity. The keys and algorithms used for cookie encryption are
specified on the <machineKey> element.

Encryption and integrity checks prevent cookie tampering, although they do not
mitigate the risk of cookie replay attacks if an attacker manages to capture the cookie.
Also use SSL to prevent an attacker from capturing the cookie by using network
monitoring software. Despite SSL, cookies can still be stolen with cross-site scripting
(XSS) attacks. The application must take adequate precautions with an appropriate
input validation strategy to mitigate this risk.

562 Part IV: Securing Your Network, Host, and Application

Use Small Cookie Time-out Values
Use small time-out values to limit the session lifetime and to reduce the window of
opportunity for cookie replay attacks.

Consider Using a Fixed Expiration Period
Consider setting slidingExpiration=“false” on the <forms> element to fix the cookie
expiration, rather than resetting the expiration period after each Web request. This is
important if you are not using SSL to protect the cookie.

Note This feature is available with .NET Framework version 1.1.

Use SSL with Forms Authentication
Use SSL to protect credentials and the authentication cookie. SSL prevents an attacker
from capturing credentials or the Forms authentication cookie that is used to identify
you to the application. A stolen authentication cookie is a stolen logon.

Set requireSSL=“true”. This sets the Secure attribute in the cookie, which ensures
that the cookie is not transmitted from a browser to the server over an HTTP link.
HTTPS (SSL) is required.

Note This is a .NET Framework version 1.1 setting. It takes explicit programming to set the cookie
Secure attribute in applications built on version 1.0. For more information and sample code, see
Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

If You Do Not Use SSL, Set slidingExpiration = “false”
With slidingExpiration set to false, you fix the cookie time-out period as a number
of minutes from initial cookie creation. Otherwise, the time-out is renewed on each
request to the Web server. If the cookie is captured, it gives an attacker as much time
as he needs to access your application as an authenticated user.

Note This feature is available in .NET Framework version 1.1.

Do Not Use the <credentials> Element on Production Servers
The ability to store user credentials in XML configuration files is provided to support
rapid development and limited testing. Do not use actual end-user credentials. End-
user credentials should not be stored in configuration files on production servers.
Production applications should implement custom user credential stores, for
example, in a SQL Server database.

 Chapter 19: Securing Your ASP.NET Application and Web Services 563

Configure the MachineKey
The <machineKey> element defines the encryption algorithms that are used to
encrypt the Forms authentication cookie. This element also maintains encryption
keys. For more information, see the “MachineKey” section in this chapter.

Use Unique Cookie Names and Paths
Use unique name and path attribute values. By ensuring unique names, you prevent
problems that can occur when you host multiple applications on the same server.

Authorization
Unless a user has explicit permission to access a resource, such as a particular Web
page, a resource file, a directory, and so on, the configuration should deny access by
default. ASP.NET provides two configurable gatekeepers that you can use to control
access to restricted resources. These are:
● File Authorization. This gatekeeper is implemented by the ASP.NET

FileAuthorizationModule HTTP module.
● URL Authorization. This gatekeeper is implemented by the ASP.NET

UrlAuthorizationModule HTTP module.

File Authorization
Only applications that use Windows authentication and have the following
configuration can use this gatekeeper:

<authentication mode="Windows"/>

This gatekeeper is automatically effective when you use Windows authentication,
and there is no need to impersonate. To configure the gatekeeper, configure Windows
ACLs on files and folders. Note that the gatekeeper only controls access to the file
types mapped by IIS to the following ASP.NET ISAPI extension: Aspnet_isapi.dll.

564 Part IV: Securing Your Network, Host, and Application

URL Authorization
Any application can use this gatekeeper. It is configured using <authorization>
elements that control which users and groups of users should have access to the
application. The default element from Machine.config is shown below:

<authorization>
 <!-- allow/deny Attributes:
 users="[*|?|name]"
 * - All users
 ? - Anonymous users
 [name] - Named user
 roles="[name]" -->
 <allow users="*"/>
</authorization>

URL Authorization Notes
Use the following to help you successfully configure URL Authorization:
● Authorization settings in Web.config usually refer to all of the files in the current

directory and all subdirectories, unless a subdirectory contains its own Web.config
with an <authorization> element. In this case, the settings in the subdirectory
override the parent directory settings.

● URL authorization only applies to file types that are mapped by IIS to the
ASP.NET ISAPI extension: Aspnet_isapi.dll.

● When your application uses Windows authentication, you are authorizing access
to Windows user and group accounts. User names take the form of
“authority\WindowsUserName” and role names take the form of
“authority\WindowsGroupName”, where authority is either a domain name or
the local machine name depending on the account type.
A number of well known accounts are represented with “BUILTIN”
strings. For example, the local administrators group is referred to as
“BUILTIN\Administrators”. The local users group is referred to as
“BUILTIN\Users”.

Note With.NET Framework version 1.0, the authority and the group name are case sensitive.
The group name must match the group name that appears in Windows exactly.

● When your application uses Forms authentication, you authorize the custom user
and roles maintained in your custom user store. For example, if you use Forms to
authenticate users against a database, you authorize against the roles retrieved
from the database.

 Chapter 19: Securing Your ASP.NET Application and Web Services 565

● You can use the <location> tag to apply authorization settings to an individual file
or directory. The following example shows how you can apply authorization to a
specific file (page.aspx):

<location path="page.aspx" />
 <authorization>
 <allow users="DomainName\Bob, DomainName\Mary" />
 <deny users="*" />
 </authorization>
</location>

Session State
Applications that rely on per user session state can store session state in the following
locations:
● In the ASP.NET worker process
● In an out-of-process state service, which can run on the Web server, or on a

remote server
● In a SQL Server data store

<sessionState>
The relevant location, combined with connection details, is stored in the
<sessionState> element in Machine.config. This is the default setting:

<sessionState mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 stateNetworkTimeout="10" sqlConnectionString="data
 source=127.0.0.1;Integrated Security=SSPI"
 cookieless="false" timeout="20"/>

Note If you do not use the ASP.NET state service on the Web server, use the MMC Services snap-
in to disable it.

Securing a SQL Server Session State Store
If you use a SQL Server session state store, use the following recommendations to
help secure the session state:
● Use Windows authentication to the database
● Encrypt sqlConnectionString
● Limit the application’s login in the database
● Secure the channel

566 Part IV: Securing Your Network, Host, and Application

For more information about setting up the SQL Server session state store database,
see Microsoft Knowledge Base article 311209, “How To: Configure ASP.NET for
Persistent SQL Server Session State Management.”

Use Windows Authentication to the Database
If you use mode=“SQLServer”, use Windows authentication to connect to the state
database and use a least privileged account, such as a duplicate local ASPNET
account. This means that you can use a trusted connection, you do not have
credentials in the connection string, and credentials are not passed over the wire to
the database.

Encrypt the sqlConnectionString
Encrypt the sqlConnectionString attribute value using the Aspnet_setreg.exe tool.
This is particularly important if you use SQL authentication to connect to the state
database because of the credentials in the connection string, but it is also
recommended if you use Windows authentication.

� To encrypt the sqlConnectionString

1. Run the following command from the command prompt.

aspnet_setreg -k:Software\YourApp\sessionState -c:{your connection string}

This stores the encrypted connection string in the specified registry key and
secures the registry key with a restricted ACL that grants Full Control to System,
Administrators, and Creator Owner.

2. Reconfigure the <sessionState> element and add the following
sqlConnectionString attribute.

<sessionState mode="SQLServer"
sqlConnectionString="registry:HKLM\SOFTWARE\YourApp\sessionState\ASPNET_SETREG,
sqlConnectionString" />

3. Use Regedt32.exe to create an ACL on the above registry key that grants read
access to the ASP.NET process account.

Limit the Application’s Login in the Database
The application’s login in the database should be restricted so that it can only be used
to access the necessary state tables and the stored procedures used by ASP.NET to
query the database.

 Chapter 19: Securing Your ASP.NET Application and Web Services 567

� To limit the application’s login in the state database

1. Create a duplicate local account on the state database server with the same name
and strong password of the account that runs your ASP.NET application.
For more information about using the ASPNET account to access a remote
database, see “Data Access” later in this chapter.

2. Create a local Windows group, for example ASPNETWebApps, on the database
server and add the local ASPNET account to the group.

3. Grant the Windows group access to SQL Server by creating a new login.

sp_grantlogin 'MACHINE\ASPNETWebApps'

Note Replace MACHINE with your database server name.

4. Grant the SQL login access to the ASPState database. The following T-SQL creates
a database user called WebAppUser, with which the login is associated.

USE ASPState
GO
sp_grantdbaccess 'MACHINE\ASPNETWebApps', 'WebAppUser'

5. Create a user-defined database role.

USE ASPState
GO
sp_addrole 'WebAppUserRole'

6. Add the database user to the new database role.

USE ASPState
GO
sp_addrolemember 'WebAppUserRole', 'WebAppUser'

7. Configure permissions in the database for the database role. Grant execute
permissions for the stored procedures that are provided with the ASPState
database.

grant execute on CreateTempTables to WebAppUserRole

Repeat this command for all of the stored procedures that are provided with the
ASPState database. Use SQL Server Enterprise Manager to see the full list.

568 Part IV: Securing Your Network, Host, and Application

Secure the Channel
To protect sensitive session state over the network between the Web server and
remote state store, secure the channel to the two servers using IPSec or SSL. This
provides privacy and integrity for the session state data across the network. If you
use SSL, you must install a server certificate on the database server. For more
information about using SSL with SQL Server, see Chapter 18, “Securing Your
Database Server.”

Securing the Out-of-Process State Service
If you use mode=StateServer, use the following recommendations to help secure
session state:
● Use a least privileged account to run the state service
● Secure the channel
● Consider changing the default port
● Encrypt the state connection string

Use a Least Privileged Account to Run the State Service
The state service runs by default using the ASPNET local, least privileged account.
You should not need to change this configuration.

Secure the Channel
If the state service is located on a remote server, secure the channel to the remote state
store using IPSec to ensure the user state remains private and unaltered.

Consider Changing the Default Port
The ASP.NET state service listens on port 42424. To avoid using this default, well
known port, you can change the port by editing the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\aspnet_state\Parameters

The port number is defined by the Port named value. If you change the port number
in the registry, for example, to 45678, you must also change the connection string on
the <sessionState> element, as follows:

stateConnectionString="tcpip=127.0.0.1:45678"

 Chapter 19: Securing Your ASP.NET Application and Web Services 569

Encrypt the stateConnectionString
Encrypt the stateConnectionString attribute value to hide the IP address and port
number of your state store. Use the Aspnet_setreg.exe tool.

� To encrypt the stateConnectionString

1. Run the following command from the command prompt.

aspnet_setreg -k:Software\YourApp\sessionState -d:{your connection string}

This stores the encrypted connection string in the specified registry key and
secures the registry key with a restricted ACL that grants Full Control to System,
Administrators, and Creator Owner.

2. Reconfigure the <sessionState> element and add the following
stateConnectionString attribute:

<sessionState mode="StateServer"
sqlConnectionString="registry:HKLM\SOFTWARE\YourApp\sessionState\ASPNET_SETREG,
sqlConnectionString" ... />

3. Use Regedt32.exe to create an ACL on the above registry key that grants read
access to the ASP.NET process account.

View State
If your applications use view state, make sure it is protected with message
authentication codes (MACs) to ensure it is not modified at the client. View state and
MAC protection can be enabled or disabled for all applications on the machine using
the <pages> element in Machine.config.

<pages>
By default, the enableViewStateMac attribute on the <pages> element in
Machine.config ensures that view state is protected with a MAC.

<pages buffer="true" enableSessionState="true"
 enableViewState="true" enableViewStateMac="true"
 autoEventWireup="true" validateRequest="true"/>

If you use view state, make sure that enableViewStateMac is set to true. The
<machineKey> element defines the algorithms used to protect view state.

570 Part IV: Securing Your Network, Host, and Application

Machine Key
The <machineKey> element is used to specify encryption keys, validation keys, and
algorithms that are used to protect Forms authentication cookies and page-level view
state. The following code sample shows the default setting from Machine.config:

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" validation="SHA1"/>

Consider the following recommendations when you configure the <machineKey>:
● Use unique encryption keys with multiple applications
● Set validation=“SHA1”
● Generate keys manually for Web farms

Use Unique Encryption Keys with Multiple Applications
If you host multiple applications on a single Web server, use unique keys for each
application on the machine instead of using a single key across all applications. This
eliminates the likelihood that one application can spoof view state or encrypted
Forms authentication cookies in hosting environments.

Also use the IsolateApps setting. This is a new .NET Framework version 1.1 setting
that instructs ASP.NET to automatically generate encryption keys and to make them
unique for each application.

Set validation=“SHA1”
The validation attribute specifies the algorithm used for integrity-checking, page-
level view state. Possible values are “SHA1”, “MD5”, and “3DES”.

If you used protection=“All” on the <forms> element, then the Forms authentication
cookie is encrypted, which also ensures integrity. Regardless of the validation
attribute setting, Forms authentication uses TripleDES (3DES) to encrypt the cookie.

Note Forms-authentication cookie encryption is independent of the validationkey setting, and the
key is based on the decryptionKey attribute.

If you set validation=“SHA1” on the <machineKey>, then page-level view state is
integrity checked using the SHA1 algorithm, assuming that the <pages> element is
configured for view state MACs. For more information, see “View State” earlier in
this chapter.

You can also set the validation attribute to MD5. You should use SHA1 because this
produces a larger hash than MD5 and is therefore considered more secure.

 Chapter 19: Securing Your ASP.NET Application and Web Services 571

If you set validation=“3DES” on the <machineKey>, then page-level view state is
encrypted (which also provides integrity checking) using the 3DES algorithm, even if
the <pages> element is configured for view state MACs.

Generate Keys Manually For Web Farms
In Web farms, you must set explicit key values and use the same ones across all
machines in the Web farm. See “Web Farm Considerations” later in this chapter.

Debugging
The <compilation> element controls compiler settings that are used for dynamic
page compilation, which is initiated when a client requests a Web page (.aspx file) or
Web service (.asmx file). It is important that debug builds are not used on the
production server because debug information is valuable to attackers and can reveal
source code details.

<compilation>
This element controls the compilation process. Make sure that debug compiles are
disabled on production servers. Set debug=“false” as follows:

<compilation debug="false" explicit="true" defaultLanguage="vb" />

By default, temporary files are created and compiled in the following directory:

%winnt%\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files

You can specify the location on a per application basis using the tempDirectory
attribute, although this provides no security benefit.

Note The ASP.NET process identity specified on the <processModel> element requires Full Control
access rights on the temporary compilation directory.

Make sure you do not store debug files (with .pdb extensions) on a production server
with your assemblies.

Tracing
Tracing should not be enabled on production servers because system-level trace
information can greatly help an attacker profile an application and probe for weak
spots.

572 Part IV: Securing Your Network, Host, and Application

<trace>
Tracing is configured using the <trace> element. Set enabled=“false” on production
servers as follows:

<trace enabled="false" localOnly="true" pageOutput="false"
 requestLimit="10" traceMode="SortByTime"/>

If you do need to trace problems with live applications, it is preferable that you
simulate the problem in a test environment, or if necessary, enable tracing and set
localOnly=“true” to prevent trace details from being returned to remote clients.

Exception Management
Do not allow exception details to propagate from your Web applications back to the
client. A malicious user could use system-level diagnostic information to learn about
your application and probe for weaknesses to exploit in future attacks.

<customErrors>
The <customErrors> element can be used to configure custom, generic error
messages that should be returned to the client in the event of an application exception
condition. The error page should include a suitably generic error message, optionally
with additional support details. You can also use this element to return different error
pages depending on the exception condition.

Make sure that the mode attribute is set to “On” and that you have specified a
default redirect page as shown below:

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

The defaultRedirect attribute allows you to use a custom error page for your
application, which for example might include support contact details.

Note Do not use mode=“Off” because it causes detailed error pages that contain system-level
information to be returned to the client.

If you want separate error pages for different types of error, use one or more <error>
elements as shown below. In this example, “404 (not found)” errors are redirected to
one page, “500 (internal system errors)” are directed to another page, and all other
errors are directed to the page specified on the defaultRedirect attribute.

<customErrors mode="On" defaultRedirect="YourErrorPage.htm">
 <error statusCode="404" redirect="YourNotFoundPage.htm"/>
 <error statusCode="500" redirect="YourInternalErrorPage.htm"/>
</customErrors>

 Chapter 19: Securing Your ASP.NET Application and Web Services 573

Remoting
Do not expose .NET Remoting endpoints on Internet-facing Web servers. To disable
Remoting, disable requests for .rem and .soap extensions by mapping requests for
these file extensions to the HttpForbiddenHandler. Use the following elements
beneath <httpHandlers>:

<httpHandlers>
 <add verb="*" path="*.rem" type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.soap" type="System.Web.HttpForbiddenHandler"/>
 . . .
</httpHandlers>

Note This does not prevent a Web application on the Web server from connecting to a downstream
object by using the Remoting infrastructure. However, it prevents clients from being able to connect
to objects on the Web server.

Web Services
Configure Web services using the <webServices> element. To establish a secure Web
services configuration:
● Disable Web services if they are not required
● Disable unused protocols
● Disable the automatic generation of WSDL

Disable Web Services if They Are Not Required
If you do not use Web services, disable them by mapping requests for the .asmx
(Web service) file extension to HttpForbiddenHandler in Machine.config as follows:

<httpHandlers>
 <add verb="*" path="*.asmx" type="System.Web.HttpForbiddenHandler"/>
 . . .
</httpHandlers>

574 Part IV: Securing Your Network, Host, and Application

Disable Unused Protocols
The <protocols> element defines the protocols that Web services support. By default,
HttpPost and HttpGet are disabled on .NET Framework version 1.1 as follows:

<webServices>
 <protocols>
 <add name="HttpSoap1.2"/>
 <add name="HttpSoap"/>
 <!-- <add name="HttpPost"/> -->
 <!-- <add name="HttpGet"/> -->
 <add name="HttpPostLocalhost"/>
 <add name="Documentation"/>
 </protocols>
</webServices>

By disabling unnecessary protocols, including HttpPost and HttpGet, you reduce
the attack surface area. For example, it is possible for an external attacker to embed a
malicious link in an e-mail to execute an internal Web service using the end user’s
security context. Disabling the HttpGet protocol is an effective countermeasure.
In many ways, this is similar to an XSS attack. A variation of this attack uses an
 tag on a publicly accessible Web page to embed a GET call to an
intranet Web service. Both attacks can allow an outsider to invoke an internal Web
service. Disabling protocols mitigates the risk.

If your production server provides publicly discoverable Web services, you must
enable HttpGet and HttpPost to allow the service to be discovered over these
protocols.

Disable the Automatic Generation of WSDL
The Documentation protocol is used to dynamically generate Web Service
Description Language (WSDL). WSDL describes the characteristics of a Web service,
such as its method signatures and supported protocols. Clients use this information
to construct appropriately formatted messages. By default, Web services publicly
expose WSDL, which makes it available to anyone who can connect to the Web server
over the Internet.

At times, you might want to distribute the WSDL files manually to your partners and
prevent public access. With this approach, the development team can provide
individual .wsdl files for each Web service to the operations team. The operations
team can then distribute them to specified partners who want to use the Web
services.

 Chapter 19: Securing Your ASP.NET Application and Web Services 575

To disable the Documentation protocol, comment it out in Machine.config as follows:

<webServices>
 <protocols>
 <add name="HttpSoap"/>
 <!-- <add name="Documentation"/> -->
 </protocols>
</webServices>

Forbidden Resources
To prevent protected resources and files from being downloaded over HTTP, map
them to the ASP.NET HttpForbiddenHandler.

Map Protected Resources to HttpForbiddenHandler
HTTP handlers are located in Machine.config beneath the <httpHandlers> element.
HTTP handlers are responsible for processing Web requests for specific file
extensions. Remoting should not be enabled on front-end Web servers; enable
Remoting only on middle-tier application servers that are isolated from the Internet.
● The following file extensions are mapped in Machine.config to HTTP handlers:
● .aspx is used for ASP.NET pages.
● .rem and .soap are used for Remoting.
● .asmx is used for Web Services.
● .asax, .ascx, .config, .cs, .csproj, .vb, .vbproj, .webinfo, .asp, .licx, .resx, and

.resources are protected resources and are mapped to
System.Web.HttpForbiddenHandler.

For .NET Framework resources, if you do not use a file extension, then map the
extension to System.Web.HttpForbiddenHandler in Machine.config, as shown in the
following example:

<add verb="*" path="*.vbproj" type="System.Web.HttpForbiddenHandler" />

In this case, the .vbproj file extension is mapped to
System.Web.HttpForbiddenHandler. If a client requests a path that ends with
.vbproj, then ASP.NET returns a message that states “This type of page is not served.”

The following guidelines apply to handling .NET Framework file extensions:
● Map extensions you do not use to HttpForbiddenHandler. If you do not serve

ASP.NET pages, then map .aspx to HttpForbiddenHandler. If you do not use Web
Services, then map .asmx to HttpForbiddenHandler.

● Disable Remoting on Internet-facing Web servers. Map remoting extensions
(.soap and .rem) on Internet-facing Web servers to HttpForbiddenHandler.

576 Part IV: Securing Your Network, Host, and Application

Bin Directory
The bin directory beneath an ASP.NET application’s virtual root directory contains
the application’s private assemblies, including the application’s page-class
implementations if code-behind files have been used during development.

Secure the Bin Directory
To secure the application’s bin directory and protect your business logic against
inadvertent download:
● Remove Web permissions.
● Remove all authentication settings.

Remove Web Permissions
Use the IIS snap-in and ensure that the bin directory does not have Read, Write, or
Directory browsing permissions. Also ensure Execute permissions are set to None.

Remove All Authentication Settings
Use the IIS snap-in to remove authentication settings from the bin directory. This
results in all access being denied.

Event Log
Least privileged accounts, such as ASPNET, have sufficient permissions to be able to
write records to the event log using existing event sources. However, they do not
have sufficient permissions to create new event sources. To do this, you must place a
new entry beneath the following registry key:

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\<log>

To avoid this issue, you can create event sources at installation time when
administrator privileges are available. You can use a .NET installer class, which can
be instantiated by the Windows Installer (if you are using .msi deployment) or by the
InstallUtil.exe system utility if you are not. For more information about using event
log installers, see Chapter 10, “Building Secure ASP.NET Web Pages and Controls.”

If you are unable to create event sources at installation time, you must add
permission to the following registry key and grant access to the ASP.NET process
account or to any impersonated account if your application uses impersonation.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog

 Chapter 19: Securing Your ASP.NET Application and Web Services 577

At minimum, the account(s) must have the following permissions:
● Query key value
● Set key value
● Create subkey
● Enumerate subkeys
● Notify
● Read

File Access
Any file that your application accesses must have an access control entry (ACE) in
the ACL that grants, at minimum, read access to the ASP.NET process account or
impersonated identity. Normally, ACLs are configured on the directory and the file
inherits the setting.

In addition to using NTFS permissions to restrict access to files and directories, you
can also use ASP.NET trust levels to place constraints on Web applications and Web
services to restrict which areas of the file system they can access. For example,
Medium-trust Web applications can only access files within their own virtual
directory hierarchy.

For more information about ASP.NET CAS policy, see Chapter 9, “Using Code Access
Security with ASP.NET.”

ACLs and Permissions
The ASP.NET process account and, for certain directories, any impersonation
identities (if your applications use impersonation) require the following NTFS
permissions. The permissions shown in Table 19.3 should be used in addition to any
permissions your applications might require to access application-specific file system
resources.

578 Part IV: Securing Your Network, Host, and Application

Table 19.3 Required NTFS Permissions for ASP.NET Process Accounts

Directory Required permissions
Temporary ASP.NET Files

%windir%\Microsoft.NET\Framework\
{version}Temporary ASP.NET Files

Process account and impersonated identities:

Full Control

Temporary Directory

(%temp%)

Process account:

Full Control

.NET Framework directory

%windir%\Microsoft.NET\Framework\
{version}

Process account and impersonated identities:

Read and Execute
List Folder Contents
Read

.NET Framework configuration directory

%windir%\Microsoft.NET\Framework\
{version}\CONFIG

Process account and impersonated Identities:

Read and Execute
List Folder Contents
Read

Web site root

C:\inetpub\wwwroot

or the path that the default Web site points to

Process account:

Read

System root directory

%windir%\system32

Process account:

Read

Global assembly cache

%windir%\assembly

Process account and impersonated identities:

Read

Content directory

C:\inetpub\wwwroot\YourWebApp

Process account:

Read and Execute
List Folder Contents
Read

Note With .NET Framework version 1.0, all
parent directories, back up to the file system root
directory, also require the above permissions.
Parent directories include:

C:\
C:\inetpub\
C:\inetpub\wwwroot\

 Chapter 19: Securing Your ASP.NET Application and Web Services 579

Registry
Any registry key that your application accesses must have an ACE in the ACL that
grants, at minimum, read access to the ASP.NET process account or impersonated
identity.

Data Access
To access a remote database using Windows authentication from your ASP.NET
application, you have the following options:
● Use the default ASP.NET process account. Use the default ASP.NET process

account by creating a mirrored account with the same user name and password on
the database server. On Windows 2000, the default process account is ASPNET.
On Windows Server 2003, the default process account is NetworkService.
The disadvantage of using local accounts is that if you can dump the SAM
database, which requires administration privileges, then you can access the
credentials. The main advantage is that local accounts can be scoped to specific
servers, which is difficult to achieve using domain accounts.

● Use a least privileged domain account to run ASP.NET. This approach simplifies
administration, and it means that you do not need to synchronize the passwords
of mirrored accounts. It will not work if the Web server and database server are in
separate non-trusting domains, or if a firewall separates the two servers and the
firewall does not permit the necessary ports for Windows authentication.

● Impersonate the Anonymous Web account. If you are using Forms or Passport
authentication, you can impersonate the anonymous Web account
(IUSR_MACHINE by default) and create a mirrored account on the database
server. This approach is useful in scenarios where you host multiple Web
applications on the same Web server. You can use IIS to configure each
application’s virtual directory with a different anonymous account.
On Windows Server 2003, you can run multiple applications in separate worker
processes, using IIS 6.0 application pools and configuring a separate identity for
each one.

Configuring Data Access for Your ASP.NET Application
Whichever approach you use, restrict the application’s account in the database.
To do this, create a SQL Server login for the account, grant it access to the required
database, and restrict its permissions so that it only has access to the minimum
required database objects. Ideally, you should restrict permissions so that the login
has access only to the stored procedures used by your application or Web service.

The following procedure assumes that you are using a mirrored local account, but
you can use the same approach with a domain account to restrict the account’s
capabilities in the database.

580 Part IV: Securing Your Network, Host, and Application

� To configure database access for your ASP.NET application

1. Use the Computer Management tool to change the password of the local ASPNET
account on the Web server to a known strong password.
You need to do this so that you can create a mirrored account on the database
server.

2. Change the password attribute on the <processModel> element in Machine.config
so that the ASP.NET worker process continues to run using the ASPNET account.
Use Aspnet_setreg.exe to store the encrypted credentials in the registry.

3. Create a local account on the database server with the same name (ASPNET) and
strong password on the database server.

4. Create a local Windows group, such as ASPNETWebApp, on the database server,
and then add the local ASPNET account to the group.

5. Grant the Windows group access to SQL Server by creating a new login, as
follows:

sp_grantlogin 'MACHINE\ASPNETWebApp'

Note Replace MACHINE with your database server name.

6. Grant the SQL login access to the database. The following T-SQL creates a
database user called WebAppUser to which the login is associated.

USE YourDatabase
GO
sp_grantdbaccess 'MACHINE\ASPNETWebApp', 'WebAppUser'

7. Create a user-defined database role.

USE YourDatabase
GO
sp_addrole 'WebAppUserRole'

8. Add the database user to the new database role.

USE YourDatabase
GO
sp_addrolemember 'WebAppUserRole', 'WebAppUser'

9. Configure permissions in the database for the database role. Ideally, grant execute
permissions only for the stored procedures that the application uses to query the
database and do not provide direct table access.

grant execute on sprocname to WebAppUserRole

 Chapter 19: Securing Your ASP.NET Application and Web Services 581

UNC Shares
There are two main ways that your ASP.NET application might use UNC shares:
● Accessing files on UNC shares

For example, your application must access a remote file such as
\\remoteserver\share\somefile.dat.

● Hosting applications on UNC shares
Your application’s IIS virtual directory is mapped to a remote share, for example,
\\remoteserver\appname. In this scenario, HTTP requests are processed by your
Web server, but the application’s pages, resources, and private assemblies are
located on the remote share.

Accessing Files on UNC Shares
If your application accesses files on a UNC share, the ASP.NET process account or
any impersonation identities must have the appropriate access rights defined by the
ACL on the share and on the underlying directory or file.

If you use the local ASPNET process account, this does not have a network identity,
so you must create a mirrored account on the remote server with a matching user
name and password, or you must use a least privileged domain account that has
access to both servers. On Windows Server 2003, the NetworkService account that is
used to run ASP.NET Web applications can be authenticated over the network, so all
you need to do is grant access rights to the machine account.

Hosting Applications on UNC Shares
You can use IIS to configure a virtual directory to point to a UNC share located on
another computer, for example \\remoteserver\appname. When you do so, IIS
prompts you to supply account credentials, which it uses to establish a connection to
the remote computer.

Note The account credentials are stored in encrypted format in the IIS metabase but are available
through an API. You should ensure that you use a least privileged account. For more information, see
Microsoft Knowledge Base article 280383, “IIS Security Recommendations When You Use a UNC
Share and Username and Password Credentials.”

If your application resides on a UNC share, ASP.NET impersonates the IIS-provided
UNC token (created from the account credentials that you supplied to IIS) to access
that share, unless you have enabled impersonation and have used a fixed
impersonation identity, as shown with the following configuration:

<identity impersonate="true"
 userName="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,password"/>

582 Part IV: Securing Your Network, Host, and Application

If a fixed impersonation account is provided through the userName and password
attributes, ASP.NET uses that account instead of the IIS UNC token to access the
share. Any resource access performed by your application also uses the fixed
impersonation account.

Note In the above example, Aspnet_setreg.exe has been used to store the encrypted account
credentials in the registry.

If you enable impersonation of the original caller (IIS authenticated identity) by using
the following configuration, ASP.NET still uses the UNC-provided token to access
your application’s files on the share, although any resource access performed by your
application uses the impersonation token.

<identity impersonate="true" />

Note The account used for the UNC share must also be able to read Machine.config.

Code Access Security Considerations
Applications on a UNC share are granted the intranet permission set by code access
security policy. The intranet permission set does not contain
AspNetHostingPermission, which ASP.NET Web applications require to run, so your
application will not run without explicit policy modifications.

You have two options:
● Grant full trust to the UNC share on which your application is hosted.

This is the simplest option to manage and if you run .NET Framework version 1.0,
this is the only option because ASP.NET version 1.0 Web applications require full
trust.

● Configure code access security policy to grant your code the
AspNetHostingPermission and any other permission it might require based on
the types of resources it accesses and the operations it performs.
Because of the way in which ASP.NET dynamically creates code and compiles
page classes, you must use a code group for the UNC and the Temporary ASP.NET
Files directory when you configure policy. The default temporary directory is
\WINNT\Microsoft.NET\Framework\{version}\Temporary ASP.NET Files, but
the location is configurable on a per application basis by using the tempDirectory
attribute of the <compilation> element.
For more information about ASP.NET code access security policy and sandboxing
privileged code, see Chapter 9, “Using Code Access Security with ASP.NET.”

Note When configuring policy, you should grant trust to the share (by using a file location) rather
than to the zone. This provides finer granularity because you do not affect all the applications in
a particular zone.

 Chapter 19: Securing Your ASP.NET Application and Web Services 583

COM/DCOM Resources
Your application uses the process or impersonation identity when it calls COM-based
resources, such as serviced components. Client-side authentication and
impersonation levels are configured using the comAuthenticationLevel and
comImpersonation level attributes on the <processModel> element in
Machine.config.

For more information and recommendations, see “Enterprise Services
Considerations” in Chapter 17, “Securing Your Application Server.”

Denial of Service Considerations
ASP.NET has the following features to help counteract denial of service attacks aimed
at your ASP.NET applications:
● POST requests are constrained by default to 4 megabytes (MB).
● Clients are checked to ensure that they are still connected before requests are

queued for work. This is done in case an attacker sends multiple requests and then
disconnects them.

● Request execution times out after a configurable limit.

<httpRuntime>
Configuration values are maintained on the <httpRuntime> element in
Machine.config. The following code sample shows default settings from a version 1.1
Machine.config:

<httpRuntime executionTimeout="90"
 maxRequestLength="4096"
 useFullyQualifiedRedirectUrl="false"
 minFreeThreads="8"
 minLocalRequestFreeThreads="4"
 appRequestQueueLimit="100"
 enableVersionHeader="true"/>

You might want to reduce the maxRequestLength attribute to prevent users from
uploading very large files. The maximum allowed value is 4 MB. In the Open Hack
competition, the maxRequestLength was constrained to 1/2 MB as shown in the
following example:

<system.web>
 <!-- 1/2 MB Max POST length -->
 <httpRuntime maxRequestLength="512"/>
</system.web>

584 Part IV: Securing Your Network, Host, and Application

Note ASP.NET does not address packet-level attacks. You must address this by hardening the
TCP/IP stack. For more information about configuring the TCP/IP stack, see “How To: Harden the
TCP/IP Stack” in the “How To” section of this guide.

Web Farm Considerations
If your ASP.NET Web application runs in a Web farm, there is no guarantee that
successive requests from the same client will be serviced by the same Web server.
This has implications for:
● Session state
● Encryption and verification
● DPAPI

Session State
To avoid server affinity, maintain ASP.NET session state out of process in the
ASP.NET SQL Server state database or in the out-of-process state service that runs on
a remote machine. For more information about securing session state in a remote
state store, see the “Session State” section earlier in this document.

Encryption and Verification
The keys used to encrypt and verify Forms authentication cookies and view state
must be the same across all servers in a Web farm. The AutoGenerate settings on the
<machineKey> element must be replaced with common key values.

For more information on generating and configuring the keys, see Microsoft
Knowledge Base article 312906, “How To: Create Keys by Using Visual C# .NET for
Use in Forms.”

DPAPI
To encrypt data, developers sometimes use DPAPI. If you use DPAPI with the
machine key to store secrets, the encrypted string is specific to a given computer and
you cannot copy the encrypted data across computers in a Web farm or cluster.

If you use DPAPI with a user key, you can decrypt the data on any computer with a
roaming user profile. However, this is not recommended because the data can be
decrypted by any machine on the network that can execute code using the account
which encrypted the data.

DPAPI is ideally suited to storing configuration secrets, for example, database
connection strings, that live on the Web server. Other encryption techniques should
be used when the encrypted data is stored on a remote server, for example, in a
database. For more information about storing encrypted data in the database, see
Chapter 14, “Building Secure Data Access.”

 Chapter 19: Securing Your ASP.NET Application and Web Services 585

Snapshot of a Secure ASP.NET Application
The following snapshot view shows the attributes of a secure ASP.NET application
and allows you to quickly and easily compare settings with your own configuration.

Table 19.4 Snapshot of a Secure ASP.NET Application Configuration

Component Characteristics
Process identity The ASP.NET worker process runs as ASPNET:

<processModel username="machine"
 password="AutoGenerate" />

The custom account (if used) is least privileged.

The custom account credentials are encrypted in the registry:

<processModel
 userName="registry:HKLM\SOFTWARE\YourApp\
process\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\
process\ASPNET_SETREG,password"/>

Impersonation Impersonation identities are encrypted in the registry:

<identity impersonate="true"
 userName="registry:HKLM\SOFTWARE\YourApp\
identity\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\
identity\ASPNET_SETREG,password"/>

Authentication The Web site is partitioned for public and restricted access.

The Forms authentication configuration is secure:

<forms loginUrl="Restricted\login.aspx"
 protection="All"
 requireSSL="true"
 timeout="10"
 name="AppNameCookie"
 path="/FormsAuth"
 slidingExpiration="true" />

The authentication cookie is encrypted and integrity checked.

SSL is required for authentication cookie.

Sliding expiration is set to false, if SSL is it is not used.

The session lifetime is restricted.

Cookie names and paths are unique.

The <credentials> element is not used.

(continued)

586 Part IV: Securing Your Network, Host, and Application

Table 19.4 Snapshot of a Secure ASP.NET Application Configuration (continued)
Component Characteristics
Authorization ACLs are configured on ASP.NET resources.

<authorization> elements are configured.

Session state The ASP.NET state service is disabled if it is not required.

<sessionState mode=”Off “ />

The communication channel to the remote state store is encrypted if necessary.

Windows authentication is used to connect to ASPState database.

The application login has restricted access to ASPState database.

The connection parameters (sqlConnectionString and stateConnectionString)
are encrypted in the registry.

The ASP.NET state service is configured for a non-default port.

View state The view-state MAC is enabled on the <pages> element in Machine.config.

Machine key The validation attribute set to SHA1.

Keys are unique for each application running on the Web server.

ViewState and Forms Authentication are protected:

<machineKey validationKey=”AutoGenerate,IsolateApps”
 decryptionKey=”AutoGenerate,IsolateApps”
 validation=”SHA1”/>

Forbidden
resources

Protected resources are mapped to System.Web.HttpForbiddenHandler.

Debugging Debug builds are disabled:

<compilation debug=”false” . . .

Tracing Tracing is disabled.

<trace enabled=’false’ localOnly=’true . . .

Exception
management

Custom errors are enabled.

Default redirect page is used:

<customErrors mode=”On”
 defaultRedirect=”YourErrorPage.htm” />

 Chapter 19: Securing Your ASP.NET Application and Web Services 587

Table 19.4 Snapshot of a Secure ASP.NET Application Configuration (continued)
Component Characteristics
Remoting Remoting is disabled on Internet-facing Web servers:

<httpHandlers>
 <add verb="*" path="*.soap"
 type="System.Web.HttpForbiddenHandler"/>
 <add verb="*" path="*.rem"
 type="System.Web.HttpForbiddenHandler"/>
 . . .
</httpHandlers>

Web services Web services are disabled if they are not required:

<httpHandlers>
 <add verb="*" path="*.asmx"
 type="System.Web.HttpForbiddenHandler"/>
 . . .
</httpHandlers>

Unnecessary protocols are disabled:

<webServices>
 <protocols>
 <!-- <add name="HttpPost"/> -->
 <!-- <add name="HttpGet"/> -->
 . . .

The documentation protocol is disabled to prevent the automatic generation of
WSDL:

<webServices>
 <protocols>
 <!--<add name="Documentation"/>-->
. . .

Bin directory The bin directory is secured.

(Read, Write, and Directory browsing permissions removed from bin. Execute
permissions are set to None.)

Authentication settings are removed from bin directory

588 Part IV: Securing Your Network, Host, and Application

Summary
This chapter has shown you how to secure an ASP.NET Web application or Web
service by focusing on configuration categories that include accounts, services,
protocols, files and directories, and configuration data that are maintained in
Machine.config and Web.config files. This chapter has also shown you how to secure
the various functional areas that are relied upon by ASP.NET Web applications and
Web services, including authentication, authorization, session state, and data access.

For a related checklist, see “Checklist: Securing ASP.NET” in the “Checklist” section
of this guide.

Additional Resources
For more information, see the following resources and articles:
● You can download Web Services Enhancements (WSE) 1.0 SP1 for Microsoft .NET

at http://microsoft.com/downloads/details.aspx?FamilyId=06255A94-2635-4D29-A90C
-28B282993A41&displaylang=en.

● Microsoft Knowledge Base article 329290, “How To: Use the ASP.NET Utility to
Encrypt Credentials and Session State Connection Strings.”

● Microsoft Knowledge Base article 311209, “How To: Configure ASP.NET for
Persistent SQL Server Session State Management.”

● Microsoft Knowledge Base article 312906, “How To: Create Keys by Using Visual
C# .NET for Use in Forms.”

● “How To: Implement Kerberos Delegation for Windows 2000” in the “How To”
section of “Microsoft patterns & practices Volume I, Building Secure ASP.NET
Applications: Authentication, Authorization, and Secure Communication” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetHT05.asp.

● For more information on security considerations from the Open Hack competition,
see MSDN article “Building and Configuring More Secure Web Sites” at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/openhack.asp.

http://microsoft.com/downloads/details.aspx?FamilyId=06255A94-2635-4D29-A90C-28B282993A41&displaylang=en
http://microsoft.com/downloads/details.aspx?FamilyId=06255A94-2635-4D29-A90C-28B282993A41&displaylang=en
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT05.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/openhack.asp

20
Hosting Multiple Web Applications

In This Chapter
● Using multiple identities for application isolation
● Using Microsoft Windows Server 2003 application pools for application isolation
● Using code access security for application Isolation

Overview
If you host multiple ASP.NET Web applications on a shared Web server, you need to
consider application isolation. For example, how can you ensure that individual
applications will not affect one another at runtime? How can you prevent a single
rogue or badly written application from consuming critical system level resources on
the server that keeps other applications from running properly?

The issue is particularly significant for Internet Service Providers (ISPs) who host
large numbers of applications from different companies. In a hosting scenario, it is
essential to ensure that the installation of a new application cannot adversely impact
the operation of existing applications.

There are a number of ways in which application isolation can be achieved. The
available options vary depending on the version of the .NET Framework and the
version of the operating system that you run on the Web server. If you are running
version 1.1 of the .NET Framework, you can use the resource constraint model
provided by code access security to provide one level of application isolation. This
application isolation is achieved by restricting an application from to access different
types of resources such as the file system, registry, event log, Active Directory,
databases, network resources, and so on.

590 Part IV: Securing Your Network, Host, and Application

In addition, Windows Server 2003 provides process isolation through Internet
Information Services 6.0 (IIS 6) application pools that enable multiple applications to
run in separate IIS worker process instances. Process isolation is not possible on
Windows 2000 because all Web applications run in a single instance of the ASP.NET
worker process, with application domains providing isolation.

The Table 20.1 summarizes the various options for application isolation that are
available on Windows 2000 and Windows Server 2003.

Table 20.1 Application Isolation Features for Windows 2000 and Windows Server 2003

Isolation Feature Windows 2000 Windows Server 2003
Process isolation No Yes (IIS 6 App Pools)

Application domain isolation Yes Yes

Multiple thread identities Yes Yes

Code access security resource
constraint

Yes
(.NET Framework version 1.1)

Yes
(.NET Framework version 1.1)

Windows Server 2003 running version 1.1 of the .NET Framework is the
recommended platform for hosting multiple ASP.NET applications because it
supports process isolation and provides the richest range of options for application
isolation.

 Chapter 20: Hosting Multiple Web Applications 591

ASP.NET Architecture on Windows 2000
On Windows 2000, multiple Web applications run in a single instance of the ASP.NET
worker process (Aspnet_wp.exe). Each application resides in its own application
domain that provides a degree of isolation for managed code. The Windows 2000/IIS
5 architecture is shown in Figure 20.1.

IIS
(inetinfo.exe)

aspnet_isapi.dll

ASP.NET
Worker Process
(aspnet_wp.exe)

Named Pipe

Web App1

Web App1

Application
Domains

Runs as
SYSTEM

Runs as
ASPNET

ASP.NET State
Service

(aspnet_state.exe)

aspnet_filter.dll

Runs as
ASPNET

Figure 20.1
ASP.NET architecture on Windows 2000 with IIS 5

592 Part IV: Securing Your Network, Host, and Application

The components of the architecture depicted by Figure 20.1 are summarized in
Table 20.2.

Table 20.2 Components of the Windows 2000 ASP.NET Architecture

Component Description
Inetinfo.exe The main IIS process. A Windows service that runs under the local SYSTEM

account.

Aspnet_isapi.dll IIS script mappings associate ASP.NET file types with this ASP.NET ISAPI
extension that runs inside Inetinfo.exe. It is responsible for forwarding requests
to the ASP.NET worker process through an asynchronous named pipe. It also
starts the worker process and performs health monitoring. The ISAPI extension
contains no managed code and performs no request processing itself.

Aspnet_filter.dll A lightweight ISAPI filter used only to support cookie-less session state for
ASP.NET applications. Runs inside Inetinfo.exe.

Aspnet_wp.exe The ASP.NET worker process. Hosts multiple Web applications in separate
application domains that are used to provide isolation. Generally one instance
per server, although on multi-processor servers, a Web garden mode supports
multiple identical processes with an affinity for a given processor. It is not
possible to separate specific Web applications into different processes. This
requires IIS 6 and Windows Server 2003. Aspnet_wp.exe runs under the local
ASPNET account, although a custom account can be used.

Aspnet_state.exe An optional Windows service used to store session state for ASP.NET
applications. It can run on the Web server or on a remote machine (required for
Web farm scenarios). It runs under the local ASPNET account, although a
custom account can be used, configured via the Services snap-in.

ASP.NET Architecture on Windows Server 2003
On Windows Server 2003, the architecture changes because IIS 6 allows multiple
processes to be used to host separate Web applications. This is shown in Figure 20.2.

Note IIS 6 supports a backwards compatibility mode that, in turn, supports the IIS 5 ASP.NET
worker process model.

 Chapter 20: Hosting Multiple Web Applications 593

IIS Worker Process
(w3wp.exe)

Web App1

Run as “NT Authority\NetworkService” or configured
account

ASP.NET State
Service

(aspnet_state.exe)

aspnet_isapi.dll

Runs as
ASPNET

IIS Worker Process
(w3wp.exe)

Web App2

aspnet_isapi.dll

IIS Worker Process
(w3wp.exe)

Web App3

aspnet_isapi.dll

Kernel Mode

User Mode

http.sysHTTP
Requests

Figure 20.2
ASP.NET architecture on Windows Server 2003 with IIS 6

Compared to the ASP.NET architecture under Windows 2000, the primary difference
in Windows Server 2003 is that separate IIS worker process instances (W3wp.exe) can
be used to host Web applications. By default, these run using the NT
Authority\NetworkService account, which is a least privileged local account that
acts as the computer account over the network. A Web application that runs in the
context of the Network Service account presents the computer’s credentials to remote
servers for authentication.

Configuring ACLs for Network Service
Configuring an access control list (ACL) for the Network Service account varies for
local and remote machines. If you want to grant access to the Network Service
account on the local machine, add the Network Service account to an ACL. If you
want to grant access to the Network Service account on a remote machine, add the
DomainName\MachineName$ account to an ACL.

Note Do not confuse the Network Service account with the Network built-in group, which includes
users who were authenticated across the network.

594 Part IV: Securing Your Network, Host, and Application

The main components of the architecture depicted by Figure 20.2 are summarized in
Table 20.3.

Table 20.3 Components of the Windows Server 2003 ASP.NET Architecture

Component Description
Aspnet_isapi.dll Queues requests for processing by the managed code ASP.NET engine and

performs health monitoring.

Aspnet_filter.dll A lightweight ISAPI filter used only to support cookie-less session state for
ASP.NET applications. Runs inside W3wp.exe.

W3wp.exe The IIS worker process that contains the managed code ASP.NET processing
engine. The URL space can be arbitrarily divided among different W3wp.exe
instances using IIS 6 application pools. A Web garden mode is also supported.
Requests are routed to the W3wp.exe process instance directly from Http.sys
which runs in kernel mode. By default, the process runs under the Network
Service account but can be configured.

Aspnet_state.exe An optional Windows service used to store session state for ASP.NET
applications. It can run on the Web server or on a remote machine (required for
Web farm scenarios). Runs under the Network Service account but can be
configured using the Services snap-in.

Isolating Applications by Identity
You can isolate ASP.NET Web applications from an operating system identity
standpoint by controlling the account identity used to run each application. If each
application uses a separate fixed account identity, you can authorize and audit each
application separately.

Note If you host an ASP.NET Web application built using the .NET Framework version 1.0, the
process account needs appropriate permissions to the root of the current file system drive. For more
information, see Microsoft Knowledge Base article 317955, “FIX: ‘Failed to Start Monitoring
Directory Changes’ Error Message When You Browse to an ASP.NET Page.”

There are two ways to use separate fixed identities for each application on a shared
Web server:
● Anonymous account impersonation
● Fixed identity impersonation

 Chapter 20: Hosting Multiple Web Applications 595

Anonymous Account Impersonation
With anonymous account impersonation, your application impersonates the
anonymous account specified by IIS and configured for your application’s virtual
directory. You can use this approach if your application authenticates users
independently of IIS, for example, by using Forms or Microsoft Passport
authentication. In these scenarios, you can isolate the application by using a fixed
anonymous account. Once the caller is authenticated and roles are checked, the
trusted server model can be used for downstream resource access, where the
configured anonymous account provides the trusted identity.

To support this approach, the application’s virtual directories in IIS must support
anonymous access and a separate anonymous account must be configured for each
application. The application must then be configured for impersonation. This
approach is shown in Figure 20.3. Local and remote resource access assumes the
security context of the impersonated anonymous account.

Web Server Remote
Computer(s)

Anonymous
Authentication

Impersonation

IUSR_2 Remote
Resource

IIS
(inetinfo.exe)

ASP. NET
(aspnet_wp.exe)

v-dir1

v-dir2

v-dir3

AppDomain1

AppDomain2

AppDomain3

IUSR_1

IUSR_2

IUSR_3

IUSR_1

IUSR_3 Remote
Resource

Remote
Resource

Figure 20.3
Multiple anonymous accounts used for each application

596 Part IV: Securing Your Network, Host, and Application

� To use multiple anonymous accounts for resource access

This procedure describes how to use multiple anonymous accounts, one per Web
application, for resource access to support individual application authorization and
auditing.
1. Create new anonymous user accounts, one per application.

For more information about creating an anonymous user account, see the
“Accounts” section in Chapter 16, “Securing Your Web Server.”
If you need to access remote resources using the anonymous account, either use a
least privileged domain account, or use a local account and create a duplicated
local account on the remote server with a matching user name and password.

2. Use <location> tags in Machine.config to configure each Web application for
impersonation.

<location path="Web Site Name/VDirName" allowOverride="false" >
 <system.web>
 <identity impersonate="true" />
 <system.web>
<location>

The allowOverride=“false” setting prevents an individual application from
overriding this setting in a Web.config file. For more information about the
<location> element, see “Machine.config and Web.config Explained” in
Chapter 19, “Securing Your ASP.NET Application and Web Services.”

3. Use Internet Services Manager to configure each application’s virtual directory to
use a separate anonymous user account.
a. Start Internet Services Manager from the Administrative Tools program group.
b. Select the application’s application directory, right-click and then click

Properties.
c. Click the Security tab and then click the Edit button.
d. Ensure Anonymous access is selected and click Edit.
e. Enter the user name for the anonymous account that you have created, or click

Browse to select the user name from a list.
f. If you want to use the account to access a remote resource, clear the Allow IIS

to Control Password checkbox for the anonymous account.

If you select Allow IIS to Control Password, the logon session created using
the specified anonymous account has NULL network credentials and cannot be
used to access network resources where authentication is required. If you clear
this checkbox, the logon session is an interactive logon session with network
credentials. However, if the account is local to the machine, no other machine
on the network can authenticate the account. In this scenario, create a duplicate
account on the target remote server.

 Chapter 20: Hosting Multiple Web Applications 597

Note The type of logon session created is controlled by the LogonMethod IIS Metabase
setting. The default is an interactive logon session, which requires the account to have the
“Allow Log on Locally” user privilege.

The Allow IIS to Control Password option is not available on IIS 6. IIS 6 sets the default
LogonMethod to Network Cleartext, which requires the account to have the “Access this
computer from the network” user privilege. This allows the account to be authenticated by a
network server.

4. Configure NTFS permissions for each account to ensure that each account has
access only to the appropriate file system files and folders, and cannot access
critical resources such as operating system tools.
For more information about configuring NTFS permissions for the anonymous
account, see Chapter 16, “Securing Your Web Server.”

Note If you run the IISLockdown wizard, it creates a Web Anonymous Users group. Members of
this group are denied access to system directories and tools.

Fixed Identity Impersonation
When you need IIS to authenticate users for your application, for example by using
Integrated Windows authentication or certificate authentication, you can use a fixed
impersonation identity to execute your ASP.NET application. This scenario is shown
in Figure 20.4.

Web Server Remote
Computer(s)

Integrated Windows
Authentication

Fixed Account
Impersonation

App2User Remote
Resource

IIS
(inetinfo.exe)

ASP. NET
(aspnet_wp.exe)

v-dir1

v-dir2

AppDomain1

AppDomain2

App1User Remote
Resource

A
B

C

D

A
B

C

D

App3User Remote
Resource

v-dir3 AppDomain3
E

F
E

F

Figure 20.4
Applications impersonate a fixed account and use that to access resources

598 Part IV: Securing Your Network, Host, and Application

You can configure individual ASP.NET applications to impersonate a fixed account.
The advantage of this configuration is that it can be used with any IIS authentication
method, and does not require IIS anonymous authentication.

� To use multiple fixed impersonation accounts for resource access

This procedure describes how to use multiple fixed impersonation accounts, one per
Web application, for resource access to support individual application authorization
and auditing.
1. Create new anonymous user accounts, one per application.

For more information about creating an anonymous user account, see the
“Accounts” section in Chapter 16, “Securing Your Web Server.”
If you need access to remote resources using the anonymous account, either use a
least privileged domain account, or use a local account and create a duplicated
local account on the remote server with a matching user name and password.

2. Store the encrypted account credentials in the registry.
Run Aspnet_setreg.exe to store the new account’s encrypted credentials in the
registry. For more information, see Microsoft Knowledge Base article 329290,
“How To: Use the ASP.NET Utility to Encrypt Credentials and Session State
Connection Strings.”

3. Configure Web applications for impersonation.
You can do this in Machine.config or Web.config. To configure multiple
applications with different identities, use <location> tags in Machine.config. The
output of Aspnet_setreg.exe run in the previous step shows you the required
format of the userName and password attribute values for the <identity>
element. Some examples are shown below.

<location path="Web Site Name/appvDir1" allowOverride="false" >
 <system.web>
 <identity impersonate="true"
 userName=
 "registry:HKLM\SOFTWARE\YourApp1\identity\ASPNET_SETREG,userName"
 password=
 "registry:HKLM\SOFTWARE\YourApp1\identity\ASPNET_SETREG,password"/>
 </system.web>
</location>

<location path="Web Site Name/appvDir2" allowOverride="false" >
 <system.web>
 <identity impersonate="true"
 userName=
 "registry:HKLM\SOFTWARE\YourApp2\identity\ASPNET_SETREG,userName"
 password=
 "registry:HKLM\SOFTWARE\YourApp2\identity\ASPNET_SETREG,password"/>
 </system.web>
</location>

 Chapter 20: Hosting Multiple Web Applications 599

To configure impersonation at the application level, use an <identity> element in
the application’s Web.config file as shown below.

<identity impersonate="true"
 userName="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\identity\ASPNET_SETREG,password"/>

4. Configure NTFS permissions for each account to ensure that each account has
access only to the appropriate file system files and folders, and no access to critical
resources such as operating system tools.
For more information about configuring NTFS permissions for the anonymous
account, see Chapter 16, “Securing Your Web Server.”

Note On Windows 2000 and the .NET Framework version 1.0, if you impersonate a fixed identity by
using the above configuration, you must grant the “Act as part of the operating system” privilege to
the ASP.NET process account used to run your Web applications. This is contrary to the principle of
least privilege. You are recommended to upgrade to the .NET Framework version 1.1 where this is no
longer a requirement.

Isolating Applications with Application Pools
If your applications run on Windows Server 2003, you can use application pools and
configure each application to run in its own worker process that provides process-
level isolation. By default, all applications run in a default application pool. With
application pools, you can configure each process to run using a separate identity
and, as a result, you do not need to use impersonation.

� To provide process level isolation

1. Create a set of new Windows accounts, one per application to run each worker
process instance.

2. Configure NTFS permissions for each account to ensure that each account only has
access to the appropriate file system files and folders, and cannot access critical
resources such as operating system tools.
For more information about configuring NTFS permissions for the anonymous
account, see Chapter 16, “Securing Your Web Server.”

3. Disable Web application impersonation.
You can do this in Machine.config or Web.config. To disable impersonation for
multiple applications in Machine.config, place <identity> elements inside
<location> elements as shown below.

600 Part IV: Securing Your Network, Host, and Application

Use the following configuration. This configuration does not impersonate.

<location path="Web Site Name/appvDir1" allowOverride="false" >
 <system.web>
 <identity impersonate="false"
 </system.web>
</location>

Note ASP.NET applications do not impersonate by default.

4. Create new application pools and configure them to run under the new accounts.
Use IIS 6 to create new application pools with default settings, and use the
accounts created in step 1 to configure the identity of each pool, so that each pool
runs using a separate identity.

5. Configure each application to run in its own application pool.
On the Directory tab of each IIS application, choose the application pool for the
application to run in.

Isolating Applications with Code Access Security
With version 1.1 of the .NET Framework, you can configure applications to run at
partial trust levels, using the <trust> element. The following configuration shows
how to configure an application’s trust level from Machine.config. In this example,
the Medium trust level is used.

<location path="Web Site Name/appvDir1" allowOverride="false">
 <system.web>
 <trust level="Medium" originUrl="" />
 </system.web>
</location>

If you configure an application to run with a trust level other than “Full,” the
application has restricted code access security permissions to access specific types of
resources. In this way, you can constrain applications to prevent them from
interacting with one another and from gaining access to system level resources such
as restricted areas of the file system, the registry, the event log, and so on.

For more information about the ASP.NET trust levels and how they can be used to
provide application isolation and about application specific design and development
considerations, see Chapter 9, “Using Code Access Security with ASP.NET.”

Note If you use code access security to provide application isolation, you should still consider the
operating system identity of the application. The recommended isolation model is to use code
access security together with process level isolation on Windows Server 2003.

 Chapter 20: Hosting Multiple Web Applications 601

Forms Authentication Issues
If you use Forms authentication with version 1.0 of the .NET Framework, you should
use separate cookie paths and names. If you do not do so, it is possible for a user
authenticated in one application to make a request to another application without
being redirected to that application’s logon page. The URL authorization rules within
the second application may deny access to the user, without providing the
opportunity to supply logon credentials using the logon form.

To avoid this issue, use unique cookie path and name attributes on the <forms>
element for each application, and also use separate machine keys for each
application.

Version 1.1 of the .NET Framework supports the IsolateApps setting shown below.

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" validation="SHA1"/>

This ensures that each application on the machine uses a separate key for encryption
and validation of Forms authentication cookies and view state.

With version 1.0 of the .NET Framework, you cannot use IsolateApps and you must
manually generate <machineKey> elements. For more information about this issue,
see the following articles in the Microsoft Knowledge Base.
● 313116, “PRB: Forms Authentication Requests Are Not Directed to loginUrl Page”
● 312906, “How To: Create Keys by Using Visual C# .NET for Use in Forms

Authentication”

UNC Share Hosting
If you run an application with its content on a Universal Naming Convention (UNC)
share, the credentials used to access the share are either the credentials of the
application or of the authenticated client. This is configured in IIS by an
administrator.

When an application is configured in this manner, ASP.NET impersonates the
security context of the token it receives from IIS. This is not configurable with the
<identity> tag unless explicit credentials are provided.

With version 1.0 of the .NET Framework, use Mscorcfg.msc to create a code group
based on the URL and to grant it full trust.

When you use a virtual directory that points to a remote share to host an ASP.NET
application, you may receive a security exception. For more information, see
Microsoft Knowledge Base article 320268, “PRB: System.Security.SecurityException:
Security error.”

602 Part IV: Securing Your Network, Host, and Application

Summary
If you host multiple ASP.NET applications on a single Web server, you need to
consider how applications are isolated from one another and from shared system
resources such as the file system, registry, and event logs. Without adequate isolation,
a rogue or badly developed application can adversely affect other applications on the
server.

On Windows Server 2003, use the multiple worker process model supported by IIS 6
to provide operating system process isolation for applications. On Windows 2000,
process isolation is not possible, although multiple applications can be configured to
use separate anonymous user accounts. This provides separate application auditing
and supports independent application authorization.

On both platforms you can use the resource constraint model provided by code
access security as an additional control to restrict which applications have access to
which resource types. The use of code access security with ASP.NET applications
requires version 1.1 of the .NET Framework.

For more information about securing ASP.NET applications, see Chapter 19,
“Securing Your ASP.NET Applications and Web Services.”

Part V
Assessing Your Security

In This Part:
● Security Code Review
● Security Deployment Review

21
Code Review

In This Chapter
● Identifying cross-site scripting (XSS), SQL injection, buffer overflow, and other

common vulnerabilities
● Identifying poor coding techniques that allow malicious users to launch attacks
● Security questions to ask so that you can locate problems quickly
● Evaluating security issues specific to individual .NET Framework technologies

Overview
Code reviews should be a regular part of your development process. Security code
reviews focus on identifying insecure coding techniques and vulnerabilities that
could lead to security issues. The review goal is to identify as many potential security
vulnerabilities as possible before the code is deployed. The cost and effort of fixing
security flaws at development time is far less than fixing them later in the product
deployment cycle.

This chapter helps you review managed ASP.NET Web application code built using
the Microsoft .NET Framework. In addition, it covers reviewing calls to unmanaged
code. The chapter is organized by functional area, and includes sections that present
general code review questions applicable to all types of managed code as well as
sections that focus on specific types of code such as Web services, serviced
components, data access components, and so on.

This chapter shows the questions to ask to expose potential security vulnerabilities.
You can find solutions to these questions in the individual building chapters in
Part III of this guide. You can also use the code review checklists in the “Checklists”
section of the guide to help you during the review process.

606 Part V: Assessing Your Security

FxCop
A good way to start the review process is to run your compiled assemblies through
the FxCop analysis tool. The tool analyzes binary assemblies (not source code) to
ensure that they conform to the .NET Framework Design Guidelines, available on
MSDN. It also checks that your assemblies have strong names, which provide
tamperproofing and other security benefits. The tool comes with a predefined set
of rules, although you can customize and extend them.

For more information, see the following resources:
● To download the FxCop tool, see http://www.gotdotnet.com/team/libraries/default.aspx.
● To get help and support for the tool, see http://www.gotdotnet.com/community

/messageboard/MessageBoard.aspx?ID=234.
● For the list of security rules that FxCop checks for, see http://www.gotdotnet.com

/team/libraries/FxCopRules/SecurityRules.aspx.
● For the .NET Framework Design Guidelines, see http://msdn.microsoft.com/library

/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp.

Performing Text Searches
To assist the review process, check that you are familiar with a text search tool that
you can use to locate strings in files. This type of tool allows you to quickly locate
vulnerable code. Many of the review questions presented later in the chapter indicate
the best strings to search for when looking for specific vulnerabilities.

You may already have a favorite search tool. If not, you can use the Find in Files
facility in Visual Studio .NET or the Findstr command line tool, which is included
with the Microsoft Windows operating system.

Note If you use the Windows XP Search tool from Windows Explorer, and use the A word or phrase
in the file option, check that you have the latest Windows XP service pack, or the search may fail.
For more information, see Microsoft Knowledge Base article 309173, “Using the ‘A Word or Phrase
in the File’ Search Criterion May Not Work.”

Search for Hard-Coded Strings
Before you perform a detailed line-by-line analysis of your source code, start with a
quick search through your entire code base to identify hard-coded passwords,
account names, and database connection strings. Scan through your code and search
for common string patterns such as the following: “key,” “secret,” “password,”
“pwd,” and “connectionstring.”

http://www.gotdotnet.com/team/libraries/default.aspx
http://www.gotdotnet.com/community/messageboard/MessageBoard.aspx?ID=234
http://www.gotdotnet.com/community/messageboard/MessageBoard.aspx?ID=234
http://www.gotdotnet.com/team/libraries/FxCopRules/SecurityRules.aspx
http://www.gotdotnet.com/team/libraries/FxCopRules/SecurityRules.aspx
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

 Chapter 21: Code Review 607

For example, to search for the string “password” in the Web directory of your
application, use the Findstr tool from a command prompt as follows:

findstr /S /M /I /d:c:\projects\yourweb "password" *.*

Findstr uses the following command-line parameters:
● /S — include subdirectories.
● /M — list only the file names.
● /I — use a case insensitive search.
● /D:dir — search a semicolon-delimited list of directories. If the file path you want

to search includes spaces, surround the path in double quotes.

Automating Findstr
You can create a text file with common search strings. Findstr can then read the
search strings from the text file, as shown below. Run the following command from a
directory that contains .aspx files.

findstr /N /G:SearchStrings.txt *.aspx

/N prints the corresponding line number when a match is found. /G indicates the file
that contains the search strings. In this example, all ASP.NET pages (*.aspx) are
searched for strings contained within SearchStrings.txt.

ILDASM
You can also use the Findstr command in conjunction with the ildasm.exe utility to
search binary assemblies for hard-coded strings. The following command uses
ildasm.exe to search for the ldstr intermediate language statement, which identifies
string constants. Notice how the output shown below reveals a hard-coded database
connection and the password of the well known sa account.

Ildasm.exe secureapp.dll /text | findstr ldstr
 IL_000c: ldstr "RegisterUser"
 IL_0027: ldstr "@userName"
 IL_0046: ldstr "@passwordHash"
 IL_0065: ldstr "@salt"
 IL_008b: ldstr "Exception adding account. "
 IL_000e: ldstr "LookupUser"
 IL_0027: ldstr "@userName"
 IL_007d: ldstr "SHA1"
 IL_0097: ldstr "Exeception verifying password. "
 IL_0009: ldstr "SHA1"
 IL_003e: ldstr "Logon successful: User is authenticated"
 IL_0050: ldstr "Invalid username or password"
 IL_0001: ldstr "Server=AppServer;database=users; username='sa'
 password=password"

608 Part V: Assessing Your Security

Note Ildasm.exe is located in the \Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1
\bin folder. For more information about the supported command-line arguments, run ildasm.exe /?.

Cross-Site Scripting (XSS)
Your code is vulnerable to cross-site scripting (XSS, also referred to as CSS) attacks
wherever it uses input parameters in the output HTML stream returned to the client.
Even before you conduct a code review, you can run a simple test to check if your
application is vulnerable to XSS. Search for pages where user input information is
sent back to the browser.

XSS bugs are an example of maintaining too much trust in data entered by a user.
For example, your application might expect the user to enter a price, but instead the
attacker includes a price and some HTML and JavaScript. Therefore, you should
always ensure that data that comes from untrusted sources is validated. When
reviewing code, always ask the question, “Is this data validated?” Keep a list of all
entry points into your ASP.NET application, such as HTTP headers, query strings,
form data, and so on, and make sure that all input is checked for validity at some
point. Do not test for incorrect input values because that approach assumes that you
are aware of all potentially risky input. The most common way to check that data is
valid in ASP.NET applications is to use regular expressions.

You can perform a simple test by typing text such as “XYZ” in form fields and testing
the output. If the browser displays “XYZ” or if you see “XYZ” when you view the
source of the HTML, then your Web application is vulnerable to XSS. If you want to
see something more dynamic, inject <script>alert(‘hello’);</script>. This technique
might not work in all cases because it depends on how the input is used to generate
the output.

The following process helps you to identify common XSS vulnerabilities:
● Identify code that outputs input.
● Identify potentially dangerous HTML tags and attributes.
● Identify code that handles URLs.
● Check that output is encoded.
● Check for correct character encoding.
● Check the validateRequest attribute.
● Check the HttpOnly cookie option.
● Check the <frame> security attribute.
● Check the use of the innerText and innerHTML properties.

 Chapter 21: Code Review 609

Identify Code That Outputs Input
View the page output source from the browser to see if your code is placed inside an
attribute. If it is, inject the following code and retest to view the output.

"onmouseover= alert('hello');"

A common technique used by developers is to filter for < and > characters. If the code
that you review filters for these characters, then test using the following code instead:

&{alert('hello');}

If the code does not filter for those characters, then you can test the code by using the
following script:

<script>alert(document.cookie);</script>;

You may have to close a tag before using this script, as shown below.

"><script>alert(document.cookie);</script>

Searching for “.Write”
Search for the “.Write” string across .aspx source code and code contained in any
additional assembly you have developed for your application. This locates
occurrences of Response.Write, and any internal routines that may generate output
through a response object variable, such as the code shown below.

public void WriteOutput(Response respObj)
{
 respObj.Write(Request.Form["someField"]);
}

You should also search for the “<%=“ string within .aspx source code, which can also
be used to write output, as shown below:

<%=myVariable %>

610 Part V: Assessing Your Security

The following table shows some common situations where Response.Write is used
with input fields.

Table 21.1 Possible Sources of Input

Input Source Examples
Form Fields

Response.Write(name.Text);

Response.Write(Request.Form["name"]);

Query Strings

Response.Write(Request.QueryString["name"]);

Cookies

Response.Write(
 Request.Cookies["name"].Values["name"]);

Session and Application
variables

Response.Write(Session["name"]);

Response.Write(Application["name"]);

Databases and data
stores

SqlDataReader reader = cmd.ExecuteReader();
Response.Write(reader.GetString(1));

Identify Potentially Dangerous HTML Tags and Attributes
While not exhaustive, the following commonly used HTML tags could allow a
malicious user to inject script code:

● <applet>
● <body>
● <embed>
● <frame>
● <script>

● <frameset>
● <html>
● <iframe>
●
● <style>

● <layer>
● <ilayer>
● <meta>
● <object>

HTML attributes such as src, lowsrc, style, and href can be used in conjunction with
the tags above to cause XSS.

For example, the src attribute of the tag can be a source of injection as shown
in the following examples.

<IMG SRC="java
script:alert('hello');">
<IMG SRC="java
script:alert('hello');">

The <style> tag also can be a source of injection by changing the MIME type as
shown below.

<style TYPE="text/javascript">
alert('hello');
</style>

 Chapter 21: Code Review 611

Check to see if your code attempts to sanitize input by filtering out certain known
risky characters. Do not rely upon this approach because malicious users can
generally find an alternative representation to bypass your validation. Instead, your
code should validate for known secure, safe input. The following table shows various
ways to represent some common characters:

Table 21.2 Character Representation

Characters Decimal Hexadecimal HTML Character Set Unicode
" (double quotes) " " " \u0022

' (single quotes) ' ' ' \u0027

& (ampersand) & & & \u0026

< (lesser than) < < < \u003c

> (greater than) > > > \u003e

Identify Code That Handles URLs
Code that handles URLs can be vulnerable. Review your code to see if it is vulnerable
to the following common attacks:
● If your Web server is not up-to-date with the latest security patches, it could be

vulnerable to directory traversal and double slash attacks, such as:

http://www.YourWebServer.com/..%255%../winnt
http://www.YourWebServer.com/..%255%..//somedirectory

● If your code filters for “/”, an attacker can easily bypass the filter by using an
alternate representation for the same character. For example, the overlong UTF-8
representation of “/” is “%c0f%af” and this could be used in the following URL:

http://www.YourWebServer.com/..%c0f%af../winnt

● If your code processes query string input, check that it constrains the input data
and performs bounds checks. Check that the code is not vulnerable if an attacker
passes an extremely large amount of data through a query string parameter.

http://www.YourWebServer.com/test.aspx?var=InjectHugeAmountOfDataHere

612 Part V: Assessing Your Security

Check That Output Is Encoded
While not a replacement for checking that input is well-formed and correct, you
should check that HtmlEncode is used to encode HTML output that includes any
type of input. Also check that UrlEncode is used to encode URL strings. Input data
can come from query strings, form fields, cookies, HTTP headers, and input read
from a database, particularly if the database is shared by other applications. By
encoding the data, you prevent the browser from treating the HTML as executable
script.

Check for Correct Character Encoding
To help prevent attackers using canonicalization and multi-byte escape sequences to
trick your input validation routines, check that the character encoding is set correctly
to limit the way in which input can be represented.

Check that the application Web.config file has set the requestEncoding and
responseEncoding attributes configured by the <globalization> element as shown
below.

<configuration>
 <system.web>
 <globalization
 requestEncoding="ISO-8859-1"
 responseEncoding="ISO-8859-1"/>
 </system.web>
</configuration>

Character encoding can also be set at the page level using a <meta> tag or
ResponseEncoding page-level attribute as shown below.
<% @ Page ResponseEncoding="ISO-8859-1" %>

For more information, see Chapter 10, “Building Secure ASP.NET Pages and
Controls.”

Check the validateRequest Attribute
Web applications that are built using the .NET Framework version 1.1 perform input
filtering to eliminate potentially malicious input, such as embedded script. Do not
rely on this, but use it for defense in depth. Check the <pages> element in your
configuration file to confirm that the validateRequest attribute is set to true. This can
also be set as a page-level attribute. Scan your .aspx source files for validateRequest,
and check that it is not set to false for any page.

 Chapter 21: Code Review 613

Check the HttpOnly Cookie Option
Internet Explorer 6 SP 1 supports a new HttpOnly cookie attribute that prevents
client-side script from accessing the cookie from the document.cookie property.
Instead, an empty string is returned. The cookie is still sent to the server whenever
the user browses to a Web site in the current domain. For more information, see the
“Cross-Site Scripting” section in Chapter 10, “Building Secure ASP.NET Pages and
Controls.”

Check the <frame> Security Attribute
Internet Explorer 6 and later supports a new security attribute on the <frame> and
<iframe> elements. You can use the security attribute to apply the user’s Restricted
Sites Internet Explorer security zone settings to an individual frame or iframe. For
more information, see the “Cross-Site Scripting” section in Chapter 10, “Building
Secure ASP.NET Pages and Controls.”

Check the Use of the innerText and innerHTML Properties
If you create a page with untrusted input, verify that you use the innerText property
instead of innerHTML. The innerText property renders content safe and ensures that
script is not executed.

More Information
For more information about XSS, see the following articles:
● “CSS Quick Start: What Customers Can Do to Protect Themselves from Cross-Site

Scripting,” at http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/security/news/crsstQS.asp

● “CSS Overview,” at http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/security/news/csoverv.asp.

● Microsoft Knowledge Base article 252985, “How To: Prevent Cross-Site Scripting
Security Issues“

● “CERT Advisory CA-2000-02, Malicious HTML Tags Embedded in Client
Web Requests,” on the CERT/CC Web site at http://www.cert.org/advisories
/CA-2000-02.html

● “Understanding Malicious Content Mitigation for Web Developers,” on the
CERT/CC Web site at http://www.cert.org/tech_tips/malicious_code_mitigation.html/

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/news/crsstQS.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/news/crsstQS.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/news/csoverv.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/news/csoverv.asp
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/tech_tips/malicious_code_mitigation.html/

614 Part V: Assessing Your Security

SQL Injection
Your code is vulnerable to SQL injection attacks wherever it uses input parameters
to construct SQL statements. As with XSS bugs, SQL injection attacks are caused by
placing too much trust in user input and not validating that the input is correct and
well-formed.

The following process helps you locate SQL injection vulnerabilities:
1. Look for code that accesses the database.

Scan for the strings “SqlCommand,” “OleDbCommand,” or “OdbcCommand.”
2. Check whether the code uses parameterized stored procedures.

Stored procedures alone cannot prevent SQL injection attacks. Check that your
code uses parameterized stored procedures. Check that your code uses typed
parameter objects such as SqlParameter, OleDbParameter, or OdbcParameter.
The following example shows the use of a SqlParameter:

SqlDataAdapter myCommand = new SqlDataAdapter("spLogin", conn);
myCommand.SelectCommand.CommandType = CommandType.StoredProcedure;
SqlParameter parm = myCommand.SelectCommand.Parameters.Add(
 "@userName", SqlDbType.VarChar,12);
parm.Value=txtUid.Text;

The typed SQL parameter checks the type and length of the input and ensures that
the userName input value is treated as a literal value and not as executable code in
the database.

3. Check that your code uses parameters in SQL statements.
If you do not use stored procedures, check that your code uses parameters in the
SQL statements it constructs, as shown in the following example:

select status from Users where UserName=@userName

Check that the following approach is not used, where the input is used directly to
construct the executable SQL statement using string concatenation:

string sql = "select status from Users where UserName='"
 + txtUserName.Text + "'";

4. Check whether or not your code attempts to filter input.
A common approach is to develop filter routines to add escape characters to
characters that have special meaning to SQL. This is an unsafe approach, and you
should not rely on it because of character representation issues.

 Chapter 21: Code Review 615

Buffer Overflows
When you review code for buffer overflows, focus your review efforts on your code
that calls unmanaged code through the P/Invoke or COM interop layers. Managed
code itself is significantly less susceptible to buffer overflows because array bounds
are automatically checked whenever an array is accessed. As soon as you call a
Win32 DLL or a COM object, you should inspect the API calls closely.

The following process helps you to locate buffer overflow vulnerabilities:
1. Locate calls to unmanaged code.

Scan your source files for “System.Runtime.InteropServices,” which is the
namespace name used when you call unmanaged code.

2. Check the string parameters passed to unmanaged APIs.
These parameters are a primary source of buffer overflows. Check that your code
checks the length of any input string to verify that it does not exceed the limit
defined by the API. If the unmanaged API accepts a character pointer, you may
not know the maximum allowable string length unless you have access to the
unmanaged source. A common vulnerability is shown in the following code
fragment:

void SomeFunction(char *pszInput)
{
 char szBuffer[10];
 // Look out, no length checks. Input is copied straight into the buffer
 // Should check length or use strncpy.
 strcpy(szBuffer, pszInput);
 . . .
}

Note Buffer overflows can still occur if you use strncpy because it does not check for sufficient
space in the destination string and it only limits the number of characters copied.

If you cannot inspect the unmanaged code because you do not own it, rigorously
test the API by passing in deliberately long input strings and invalid arguments.

3. Check file path lengths.
If the unmanaged API accepts a file name and path, check that your wrapper
method checks that the file name and path do not exceed 260 characters. This is
defined by the Win32 MAX_PATH constant. Also note that directory names and
registry keys can be 248 characters maximum.

616 Part V: Assessing Your Security

4. Check output strings.
Check if your code uses a StringBuilder to receive a string passed back from an
unmanaged API. Check that the capacity of the StringBuilder is long enough to
hold the longest string the unmanaged API can hand back, because the string
coming back from unmanaged code could be of arbitrary length.

5. Check array bounds.
If you use an array to pass input to an unmanaged API, check that the managed
wrapper verifies that the array capacity is not exceeded.

6. Check that your unmanaged code is compiled with the /GS switch.
If you own the unmanaged code, use the /GS switch to enable stack probes to
detect some kinds of buffer overflows.

Managed Code
Use the review questions in this section to analyze your entire managed source code
base. The review questions apply regardless of the type of assembly. This section
helps you identify common managed code vulnerabilities. For more information
about the issues raised in this section and for code samples that illustrate
vulnerabilities, see Chapter 7, “Building Secure Assemblies.”

If your managed code uses explicit code access security features, see “Code Access
Security” later in this chapter for additional review points. The following review
questions help you to identify managed code vulnerabilities:
● Is your class design secure?
● Do you create threads?
● Do you use serialization?
● Do you use reflection?
● Do you handle exceptions?
● Do you use cryptography?
● Do you store secrets?
● Do you use delegates?

 Chapter 21: Code Review 617

Is Your Class Design Secure?
An assembly is only as secure as the classes and other types it contains. The following
questions help you to review the security of your class designs:
● Do you limit type and member visibility?

Review any type or member marked as public and check that it is an intended
part of the public interface of your assembly.

● Are non-base classes sealed?
If you do not intend a class to be derived from, use the sealed keyword to prevent
your code from being misused by potentially malicious subclasses.
For public base classes, you can use code access security inheritance demands to
limit the code that can inherit from the class. This is a good defense in depth
measure.

● Do you use properties to expose fields?
Check that your classes do not directly expose fields. Use properties to expose
non-private fields. This allows you to validate input values and apply additional
security checks.

● Do you use read-only properties?
Verify that you have made effective use of read-only properties. If a field is not
designed to be set, implement a read-only property by providing a get accessor
only.

● Do you use virtual internal methods?
These methods can be overridden from other assemblies that have access to your
class. Use declarative checks or remove the virtual keyword if it is not a
requirement.

● Do you implement IDisposable?
If so, check that you call the Dispose method when you are finished with the
object instance to ensure that all resources are freed.

Do You Create Threads?
Multithreaded code is prone to subtle timing-related bugs or race conditions that can
result in security vulnerabilities. To locate multithreaded code, search source code for
the text “Thread” to identify where new Thread objects are created, as shown in the
following code fragment:

Thread t = new Thread(new ThreadStart(someObject.SomeThreadStartMethod));

618 Part V: Assessing Your Security

The following review questions help you to identify potential threading
vulnerabilities:
● Does your code cache the results of a security check?

Your code is particularly vulnerable to race conditions if it caches the results of a
security check, for example in a static or global variable, and then uses the flag to
make subsequent security decisions.

● Does your code impersonate?
Is the thread that creates a new thread currently impersonating? The new thread
always assumes the process-level security context and not the security context of
the existing thread.

● Does your code contain static class constructors?
Check static class constructors to check that they are not vulnerable if two or more
threads access them simultaneously. If necessary, synchronize the threads to
prevent this condition.

● Do you synchronize Dispose methods?
If an object’s Dispose method is not synchronized, it is possible for two threads to
execute Dispose on the same object. This can present security issues, particularly
if the cleanup code releases unmanaged resource handlers such as file, process, or
thread handles.

Do You Use Serialization?
Classes that support serialization are either marked with the SerializableAttribute or
derive from ISerializable. To locate classes that support serialization, perform a text
search for the “Serializable” string. Then, review your code for the following issues:
● Does the class contain sensitive data?

If so, check that the code prevents sensitive data from being serialized by marking
the sensitive data with the [NonSerialized] attribute by or implementing
ISerializable and then controlling which fields are serialized.
If your classes need to serialize sensitive data, review how that data is protected.
Consider encrypting the data first.

● Does the class implement ISerializable?
If so, does your class support only full trust callers, for example because it is
installed in a strong named assembly that does not include
AllowPartiallyTrustedCallersAttribute? If your class supports partial-trust
callers, check that the GetObjectData method implementation authorizes the
calling code by using an appropriate permission demand. A good technique is to
use a StrongNameIdentityPermission demand to restrict which assemblies can
serialize your object.

 Chapter 21: Code Review 619

● Does your class validate data streams?
If your code includes a method that receives a serialized data stream, check that
every field is validated as it is read from the data stream.

Do You Use Reflection?
To help locate code that uses reflection, search for “System.Reflection” — this is the
namespace that contains the reflection types. If you do use reflection, review the
following questions to help identify potential vulnerabilities:
● Do you dynamically load assemblies?

If your code loads assemblies to create object instances and invoke types, does it
obtain the assembly or type name from input data? If so, check that the code is
protected with a permission demand to ensure all calling code is authorized. For
example, use a StrongNameIdentity permission demand or demand full trust.

● Do you create code dynamically at runtime?
If your assemblies dynamically generate code to perform operations for a caller,
check that the caller is in no way able to influence the code that is generated. For
example, does your code generation rely on caller-supplied input parameters?
This should be avoided, or if it is absolutely necessary, make sure that the input is
validated and that it cannot be used to adversely affect code generation.

● Do you use reflection on other types?
If so, check that only trusted code can call you. Use code access security
permission demands to authorize calling code.

Do You Handle Exceptions?
Secure exception handling is required for robust code, to ensure that sufficient
exception details are logged to aid problem diagnosis and to help prevent internal
system details being revealed to the client. Review the following questions to help
identify potential exception handling vulnerabilities:
● Do you fail early?

Check that your code fails early to avoid unnecessary processing that consumes
resources. If your code does fail, check that the resulting error does not allow a
user to bypass security checks to run privileged code.

● How do you handle exceptions?
Avoid revealing system or application details to the caller. For example, do not
return a call stack to the end user. Wrap resource access or operations that could
generate exceptions with try/catch blocks. Only handle the exceptions you know
how to handle and avoid wrapping specific exceptions with generic wrappers.

620 Part V: Assessing Your Security

● Do you log exception details?
Check that exception details are logged at the source of the exception to assist
problem diagnosis.

● Do you use exception filters?
If so, be aware that the code in a filter higher in the call stack can run before code
in a finally block. Check that you do not rely on state changes in the finally block,
because the state change will not occur before the exception filter executes.
For an example of an exception filter vulnerability, see “Exception Management”
in Chapter 7, “Building Secure Assemblies.”

Do You Use Cryptography?
If so, check that your code does not implement its own cryptographic routines.
Instead, code should use the System.Security.Cryptography namespace or use Win32
encryption such as Data Protection Application Programming Interface (DPAPI).
Review the following questions to help identify potential cryptography related
vulnerabilities:
● Do you use symmetric encryption?

If so, check that you use Rijndael (now referred to as Advanced Encryption
Standard [AES]) or Triple Data Encryption Standard (3DES) when encrypted data
needs to be persisted for long periods of time. Use the weaker (but quicker) RC2
and DES algorithms only to encrypt data that has a short lifespan, such as session
data.

● Do you use the largest key sizes possible?
Use the largest key size possible for the algorithm you are using. Larger key sizes
make attacks against the key much more difficult, but can degrade performance.

● Do you use hashing?
If so, check that you use MD5 and SHA1 when you need a principal to prove it
knows a secret that it shares with you. For example, challenge-response
authentication systems use a hash to prove that the client knows a password
without having the client pass the password to the server. Use HMACSHA1 with
Message Authentication Codes (MAC), which require you and the client to share a
key. This can provide integrity checking and a degree of authentication.

● Do you generate random numbers for cryptographic purposes?
If so, check that your code uses the
System.Security.Cryptography.RNGCryptoServiceProvider class to generate
random numbers, and not the Random class. The Random class does not generate
truly random numbers that are not repeatable or predictable.

 Chapter 21: Code Review 621

Do You Store Secrets?
If your assembly stores secrets, review the design to check that it is absolutely
necessary to store the secret. If you have to store a secret, review the following
questions to do so as securely as possible:
● Do you store secrets in memory?

Do not store secrets in plaintext in memory for prolonged periods. Retrieve the
secret from a store, decrypt it, use it, and then substitute zeros in the space where
the secret is stored.

● Do you store plaintext passwords or SQL connection strings in Web.config or
Machine.config?
Do not do this. Use aspnet_setreg.exe to store encrypted credentials in the
registry on the <identity>, <processModel>, and <sessionState> elements. For
information on obtaining and using Aspnet_setreg.exe, see Microsoft Knowledge
Base article 329290, “How To: Use the ASP.NET Utility to Encrypt Credentials and
Session State.”

● How do you encrypt secrets?
Check that the code uses DPAPI to encrypt connection strings and credentials.
Do not store secrets in the Local Security Authority (LSA), as the account used to
access the LSA requires extended privileges. For information on using DPAPI, see
“How To: Create a DPAPI Library” in the “How To” section of “Microsoft patterns
& practices Volume I, Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication” at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT07.asp.

● Do you store secrets in the registry?
If so, check that they are first encrypted and then secured with a restricted ACL if
they are stored in HKEY_LOCAL_MACHINE. An ACL is not required if the code
uses HKEY_CURRENT_USER because this is automatically restricted to
processes running under the associated user account.

● Are you concerned about reverse engineering?
If so, consider an obfuscation tool. For more information, see the list of obfuscator
tools listed at http://www.gotdotnet.com/team/csharp/tools/default.aspx.

Note Do not rely on an obfuscation tool to hide secret data. Obfuscation tools make identifying
secret data more difficult but do not solve the problem.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT07.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetHT07.asp
http://www.gotdotnet.com/team/csharp/tools/default.aspx

622 Part V: Assessing Your Security

Do You Use Delegates?
Any code can associate a method with a delegate. This includes potentially malicious
code running at a lower trust level than your code.
● Do you accept delegates from untrusted sources?

If so, check that you restrict the code access permissions available to the delegate
methods by using security permissions with SecurityAction.PermitOnly.

● Do you use assert before calling a delegate?
Avoid this because you do not know what the delegate code is going to do in
advance of calling it.

Code Access Security
All managed code is subject to code access security permission demands. Many of the
issues are only apparent when your code is used in a partial trust environment, when
either your code or the calling code is not granted full trust by code access security
policy.

For more information about the issues raised in this section, see Chapter 8, “Code
Access Security in Practice.”

Use the following review points to check that you are using code access security
appropriately and safely:
● Do you support partial-trust callers?
● Do you restrict access to public types and members?
● Do you use declarative security?
● Do you call Assert?
● Do you use permission demands when you should?
● Do you use link demands?
● Do you use Deny or PermitOnly?
● Do you use particularly dangerous permissions?
● Do you compile with the /unsafe option?

Do You Support Partial-Trust Callers?
If your code supports partial-trust callers, it has even greater potential to be attacked
and as a result it is particularly important to perform extensive and thorough code
reviews. Review the <trust> level configuration setting in your Web application to
see if it runs at a partial-trust level. If it does, the assemblies you develop for the
application need to support partial-trust callers.

 Chapter 21: Code Review 623

The following questions help you to identify potentially vulnerable areas:
● Is your assembly strong named?

If it is, then default security policy ensures that it cannot be called by partially
trusted callers. The Common Language Runtime (CLR) issues an implicit link
demand for full trust. If your assembly is not strong named, it can be called by any
code unless you take explicit steps to limit the callers, for example by explicitly
demanding full trust.

Note Strong named assemblies called by ASP.NET applications must be installed in the Global
Assembly Cache.

● Do you use APTCA?
If your strong named assembly contains AllowPartiallyTrustedCallersAttribute,
partially trusted callers can call your code. In this situation, check that any
resource access or other privileged operation performed by your assembly is
authorized and protected with other code access security demands. If you use the
.NET Framework class library to access resources, full stack walking demands are
automatically issued and will authorize calling code unless your code has used an
Assert call to prevent the stack walk.

● Do you hand out object references?
Check method returns and ref parameters to see where your code returns object
references. Check that your partial-trust code does not hand out references to
objects obtained from assemblies that require full-trust callers.

Do You Restrict Access to Public Types and Members?
You can use code access security identity demands to limit access to public types and
members. This is a useful way of reducing the attack surface of your assembly.
● Do you restrict callers by using identity demands?

If you have classes or structures that you only intend to be used within a specific
application by specific assemblies, you can use an identity demand to limit the
range of callers. For example, you can use a demand with a
StrongNameIdentityPermission to restrict the caller to a specific set of assemblies
that have a have been signed with a private key that corresponds to the public key
in the demand.

● Do you use inheritance demands to restrict subclasses?
If you know that only specific code should inherit from a base class, check that the
class uses an inheritance demand with a StrongNameIdentityPermission.

624 Part V: Assessing Your Security

Do You Use Declarative Security Attributes?
Declarative security attributes can be displayed with tools such as Permview.exe.
This greatly helps the consumers and administrators of your assemblies to
understand the security requirements of your code.
● Do you request minimum permissions?

Search for “.RequestMinimum” strings to see if your code uses permission
requests to specify its minimum permission requirements. You should do this to
clearly document the permission requirements of your assembly.

● Do you request optional or refuse permissions?
Search for “.RequestOptional” and “.RequestRefuse” strings. If you use either of
these two actions to develop least privileged code, be aware that your code can no
longer call strong named assemblies unless they are marked with the
AllowPartiallyTrustedCallersAttribute.

● Do you use imperative security instead of declarative security?
Sometime imperative checks in code are necessary because you need to apply
logic to determine which permission to demand or because you need a runtime
variable in the demand. If you do not need specific logic, consider using
declarative security to document the permission requirements of your assembly.

● Do you mix class and member level attributes?
Do not do this. Member attributes, for example on methods or properties, replace
class-level attributes with the same security action and do not combine with them.

Do You Call Assert?
Scan your code for Assert calls. This may turn up instances of Debug.Assert. Look
for where your code calls Assert on a CodeAccessPermission object. When you
assert a code access permission, you short-circuit the code access security permission
demand stack walk, which is a risky practice. What steps does your code take to
ensure that malicious callers do not take advantage of the assertion to access a
secured resource or privileged operation? Review the following questions:
● Do you use the demand, assert pattern?

Check that your code issues a Demand prior to the Assert. Code should demand
a more granular permission to authorize callers prior to asserting a broader
permission such as the unmanaged code permission.

● Do you match Assert calls with RevertAssert?
Check that each call to Assert is matched with a call to RevertAssert. The Assert
is implicitly removed when the method that calls Assert returns, but it is good
practice to explicitly call RevertAssert, as soon as possible after the Assert call.

 Chapter 21: Code Review 625

● Do you reduce the assert duration?
Check that you only assert a permission for the minimum required length of time.
For example, if you need to use an Assert call just while you call another method,
check that you make a call to RevertAssert immediately after the method call.

Do You Use Permission Demands When You Should?
Your code is always subject to permission demand checks from the .NET Framework
class library, but if your code uses explicit permission demands, check that this is
done appropriately. Search your code for the “.Demand” string to identity declarative
and imperative permission demands, and then review the following questions:
● Do you cache data?

If so, check whether or not the code issues an appropriate permission demand
prior to accessing the cached data. For example, if the data is obtained from a file,
and you want to ensure that the calling code is authorized to access the file from
where you populated the cache, demand a FileIOPermission prior to accessing
the cached data.

● Do you expose custom resources or privileged operations?
If your code exposes a custom resource or privileged operation through
unmanaged code, check that it issues an appropriate permission demand, which
might be a built-in permission type or a custom permission type depending on
the nature of the resource.

● Do you demand soon enough?
Check that you issue a permission demand prior to accessing the resource or
performing the privileged operation. Do not access the resource and then
authorize the caller.

● Do you issue redundant demands?
Code that uses the .NET Framework class libraries is subject to permission
demands. Your code does not need to issue the same demand. This results in
a duplicated and wasteful stack walk.

Do You Use Link Demands?
Link demands, unlike regular demands, only check the immediate caller. They do not
perform a full stack walk, and as a result, code that uses link demands is subject to
luring attacks. For information on Luring Attacks, see “Link Demands” in Chapter 8,
“Code Access Security in Practice.”

626 Part V: Assessing Your Security

Search your code for the “.LinkDemand” string to identify where link demands are
used. They can only be used declaratively. An example is shown in the following
code fragment:

[StrongNameIdentityPermission(SecurityAction.LinkDemand,
 PublicKey="00240000048...97e85d098615")]
public static void SomeOperation() {}

For more information about the issues raised in this section, see “Link Demands” in
Chapter 8, “Code Access Security in Practice.” The following questions help you to
review the use of link demands in your code:
● Why are you using a link demand?

A defensive approach is to avoid link demands as far as possible. Do not use them
just to improve performance and to eliminate full stack walks. Compared to the
costs of other Web application performance issues such as network latency and
database access, the cost of the stack walk is small. Link demands are only safe
if you know and can limit which code can call your code.

● Do you trust your callers?
When you use a link demand, you rely on the caller to prevent a luring attack.
Link demands are safe only if you know and can limit the exact set of direct callers
into your code, and you can trust those callers to authorize their callers.

● Do you call code that is protected with link demands?
If so, does your code provide authorization by demanding a security permission
from the callers of your code? Can the arguments passed to your methods pass
through to the code that you call? If so, can they maliciously influence the code
you call?

● Have you used link demands at the method and class level?
When you add link demands to a method, it overrides the link demand on the
class. Check that the method also includes class-level link demands.

● Do you use link demands on classes that are not sealed?
Link demands are not inherited by derived types and are not used when an
overridden method is called on the derived type. If you override a method that
needs to be protected with a link demand, apply the link demand to the
overridden method.

● Do you use a link demand to protect a structure?
Link demands do not prevent the construction of a structure by an untrusted
caller. This is because default constructors are not automatically generated for
structures, and therefore the structure level link demand only applies if you use
an explicit constructor.

 Chapter 21: Code Review 627

● Do you use explicit interfaces?
Search for the Interface keyword to find out. If so, check if the method
implementations are marked with link demands. If they are, check that the
interface definitions contain the same link demands. Otherwise, it is possible for a
caller to bypass the link demand.

Do You Use Potentially Dangerous Permissions?
Check that the following permission types are only granted to highly trusted code.
Most of them do not have their own dedicated permission type, but use the generic
SecurityPermission type. You should closely scrutinize code that uses these types to
ensure that the risk is minimized. Also, you must have a very good reason to use
these permissions.

Table 21.3 Dangerous Permissions

Permission Description
SecurityPermission.UnmanagedCode Code can call unmanaged code.

SecurityPermission.SkipVerification The code in the assembly no longer has to be verified
as type safe.

SecurityPermission.ControlEvidence The code can provide its own evidence for use by
security policy evaluation.

SecurityPermission.ControlPolicy Code can view and alter policy.

SecurityPermission.SerializationFormatter Code can use serialization.

SecurityPermission.ControlPrincipal Code can manipulate the principal object used for
authorization.

ReflectionPermission.MemberAccess Code can invoke private members of a type through
reflection.

SecurityPermission.ControlAppDomain Code can create new application domains.

SecurityPermission.ControlDomainPolicy Code can change domain policy.

Do You Compile With the /unsafe Option?
Use Visual Studio .NET to check the project properties to see whether Allow Unsafe
Code Blocks is set to true. This sets the /unsafe compiler flag, which tells the
compiler that the code contains unsafe blocks and requests that a minimum
SkipVerification permission is placed in the assembly.

If you compiled with /unsafe, review why you need to do so. If the reason is
legitimate, take extra care to review the source code for potential vulnerabilities.

628 Part V: Assessing Your Security

Unmanaged Code
Give special attention to code that calls unmanaged code, including Win32 DLLs and
COM objects, due to the increased security risk. Unmanaged code is not verifiably
type safe and introduces the potential for buffer overflows. Resource access from
unmanaged code is not subject to code access security checks. This is the
responsibility of the managed wrapper class.

Generally, you should not directly expose unmanaged code to partially trusted
callers. For more information about the issues raised in this section, see the
“Unmanaged Code” sections in Chapter 7, “Building Secure Assemblies,” and
Chapter 8, “Code Access Security in Practice.”

Use the following review questions to validate your use of unmanaged code:
● Do you assert the unmanaged code permission?

If so, check that your code demands an appropriate permission prior to calling
the Assert method to ensure that all callers are authorized to access the resource
or operation exposed by the unmanaged code. For example, the following code
fragment shows how to demand a custom Encryption permission and then assert
the unmanaged code permission:

// Demand custom EncryptionPermission.
(new EncryptionPermission(
 EncryptionPermissionFlag.Encrypt, storeFlag)).Demand();
// Assert the unmanaged code permission.
(new SecurityPermission(SecurityPermissionFlag.UnmanagedCode)).Assert();
// Now use P/Invoke to call the unmanaged DPAPI functions.

For more information see “Assert and RevertAssert” in Chapter 8, “Code Access
Security in Practice.”

● Do you use SuppressUnmanagedCodeAttribute?
This attribute suppresses the demand for the unmanaged code permission issued
automatically when managed code calls unmanaged code. If P/Invoke methods or
COM interop interfaces are annotated with this attribute, ensure that all code
paths leading to the unmanaged code calls are protected with security permission
demands to authorize callers. Also check that this attribute is used at the method
level and not at the class level.

Note Adding a SupressUnmanagedCodeSecurityAttribute turns the implicit demand for the
UnmanagedCode permission issued by the interop layer into a LinkDemand. Your code is
vulnerable to luring attacks.

 Chapter 21: Code Review 629

● Is the unmanaged entry point publicly visible?
Check that your unmanaged code entry point is marked as private or internal.
Callers should be forced to call the managed wrapper method that encapsulates
the unmanaged code.

● Do you guard against buffer overflows?
Unmanaged code is susceptible to input attacks such as buffer overflows.
Unmanaged code APIs should check the type and length of supplied parameters.
However, you cannot rely on this because you might not own the unmanaged
source. Therefore, the managed wrapper code must rigorously inspect input and
output parameters. For more information, see “Buffer Overflows” in this chapter.

Note All code review rules and disciplines that apply to C and C++ apply to unmanaged code.

● Do you range check enumerated types?
Verify that all enumerated values are in range before you pass them to a native
method.

● Do you use naming conventions for unmanaged code methods?
All unmanaged code should be inside wrapper classes that have the following
names: NativeMethods, UnsafeNativeMethods, and SafeNativeMethods. You
must thoroughly review all code inside UnsafeNativeMethods and parameters
that are passed to native APIs for security vulnerabilities.

● Do you call potentially dangerous APIs?
You should be able to justify the use of all Win32 API calls. Dangerous APIs
include:
● Threading functions that switch security context
● Access token functions, which can make changes to or disclose information

about a security token
● Credential management functions, including functions that creates tokens
● Crypto API functions that can decrypt and access private keys
● Memory Management functions that can read and write memory
● LSA functions that can access system secrets

630 Part V: Assessing Your Security

ASP.NET Pages and Controls
Use the review questions in this section to review your ASP.NET pages and controls.
For more information about the issues raised in this section, see Chapter 10,
“Building Secure ASP.NET Pages and Controls.”
● Do you disable detailed error messages?
● Do you disable tracing?
● Do you validate form field input?
● Are you vulnerable to XSS attacks?
● Do you validate query string and cookie input?
● Do you rely on HTTP headers for security?
● Do you secure view state?
● Do you prevent XSS?
● Are your global.asax event handlers secure?
● Do you provide adequate authorization?

Do You Disable Detailed Error Messages?
If you let an exception propagate beyond the application boundary, ASP.NET can
return detailed information to the caller. This includes full stack traces and other
information that is useful to an attacker. Check the <customErrors> element and
ensure that the mode attribute is set to “On” or “RemoteOnly”.

<customErrors mode="On" defaultRedirect="YourErrorPage.htm" />

Do You Disable Tracing?
Trace information is also extremely useful to attackers. Check the <trace> element to
ensure that tracing is disabled.

<trace enabled="false" localOnly="true" pageOutput="false"
 requestLimit="10" traceMode="SortByTime"/>

 Chapter 21: Code Review 631

Do You Validate Form Field Input?
Attackers can pass malicious input to your Web pages and controls through posted
form fields. Check that you validate all form field input including hidden form fields.
Validate them for type, range, format, and length. Use the following questions to
review your ASP.NET input processing:
● Does your input include a file name or file path?

You should generally avoid this because it is a high risk operation. Why do you
need the user to specify a file name or path, rather than the application choosing
the location based on the user identity?
If you accept file names and paths as input, your code is vulnerable to
canonicalization bugs. If you must accept path input from the user, then check that
it is validated as a safe path and canonicalized. Check that the code uses
System.IO.Path.GetFullPath.

● Do you call MapPath?
If you call MapPath with a user supplied file name, check that your code uses the
override of HttpRequest.MapPath that accepts a bool parameter, which prevents
cross-application mapping.

try
{
 string mappedPath = Request.MapPath(inputPath.Text,
 Request.ApplicationPath, false);
}
catch (HttpException)
{
 // Cross application mapping attempted.
}

For more information see, section “Using MapPath” in Chapter 10, “Building
Secure ASP.NET Pages and Controls.”

● How do you validate data types?
Check that your code validates the data type of the data received from posted
form fields and other forms of Web input such as query strings. For non-string
data, check that your code uses the .NET Framework type system to perform the
type checks. You can convert the string input to a strongly typed object, and
capture any type conversion exceptions. For example, if a field contains a date, use
it to construct a System.DateTime object. If it contains an age in years, convert it
to a System.Int32 object by using Int32.Parse and capture format exceptions.

632 Part V: Assessing Your Security

● How do you validate string types?
Check that input strings are validated for length and an acceptable set of
characters and patterns by using regular expressions. You can use a
RegularExpressionValidator validation control or use the RegEx class directly.
Do not search for invalid data; only search for the information format you know
is correct.

● Do you use validation controls?
If you use a validation control such as RegularExpressionValidator,
RequiredFieldValidator, CompareValidator, RangeValidator, or
CustomValidator, check that you have not disabled the server side validation and
are not relying purely on client-side validation.

● Do you rely on client side validation?
Do not do this. Use client-side validation only to improve the user experience.
Check that all input is validated at the server.

Are You Vulnerable to XSS Attacks?
Be sure to review your Web pages for XSS vulnerabilities. For more information, see
“Cross-Site Scripting (XSS)” earlier in this chapter.

Do You Validate Query String and Cookie Input?
Check that your code validates input fields passed by URL query strings and input
fields extracted from cookies. To locate vulnerable code search for the following text
strings:
● “Request.QueryString”
● “Request.Cookies”

Check that input is validated for type, range, format, and length using typed objects,
and regular expressions as you would for form fields (see the previous section, “Do
You Validate Form Field Input?”). Also consider HTML or URL encoding any output
derived from user input, as this will negate any invalid constructs that could lead to
XSS bugs.

 Chapter 21: Code Review 633

Do You Secure View State?
If your application uses view state, is it tamperproof? Review the following
questions:
● Is view state protection enabled at the application level?

Check the enableViewState attribute of the <pages> element in the application
Machine.config or Web.config file to see if view state is enabled at the application
level. Then check that enableViewStateMac is set to “true” to ensure it is
tamperproof.

<pages enableViewState="true" enableViewStateMac="true" />

● Do you override view state protection on a per page basis?
Check the page-level directive at the top of your Web pages to verify that view
state is enabled for the page. Look for the enableViewStateMac setting and if
present check that it is set to “true”. If enableViewStateMac is not present and set
to true, the page assumes the application-level default setting specified in the
Web.config file. If you have disabled view state for the page by setting
enableViewState to “false” the protection setting is irrelevant.

● Do you override view state protection in code?
Check that your code does not disable view state protection by setting
Page.EnableViewStateMac property to false. This is a safe setting only if the page
does not use view state.

Are Your Global.asax Event Handlers Secure?
The global.asax file contains event handling code for application-level events
generated by ASP.NET and by HTTP modules. Review the following event handlers
to ensure that the code does not contain vulnerabilities:
● Application_Start. Code placed here runs under the security context of the

ASP.NET process account, not the impersonated user.
● Application_BeginRequest. Code placed here runs under the security context of

the ASP.NET process account, or the impersonated user.
● Application_EndRequest. If you need to modify the properties of outgoing

cookies, for example to set the “Secure” bit or the domain,
Application_EndRequest is the right place to do it.

● Application_AuthenticateRequest. This performs user authentication.
● Application_Error. The security context when this event handler is called can

have an impact on writing the Windows event log. The security context might be
the process account or the impersonated account.

● protected void Session_End. This event is fired non-deterministically and only for
in-process session state modes.

634 Part V: Assessing Your Security

Do You Provide Adequate Authorization?
Review the following questions to verify your authorization approach:
● Do you partition your Web site between restricted and public access areas?

If your Web application requires users to complete authentication before they can
access specific pages, check that the restricted pages are placed in a separate
directory from publicly accessible pages. This allows you to configure the
restricted directory to require SSL. It also helps you to ensure that authentication
cookies are not passed over unencrypted sessions using HTTP.

● How do you protect access to restricted pages?
If you use Windows authentication, have you configured NTFS permissions on the
page (or the folder that contains the restricted pages) to allow access only to
authorized users?
Have you configured the <authorization> element to specify which users and
groups of users can access specific pages?

● How do you protect access to page classes?
Have you use added principal permission demands to your classes to determine
which users and groups of users can access the classes?

● Do you use Server.Transfer?
If you use Server.Transfer to transfer a user to another page, ensure that the
currently authenticated user is authorized to access the target page. If you use
Server.Transfer to a page that the user is not authorized to view, the page is still
processed.
Server.Transfer uses a different module to process the page rather than making
another request from the server, which would force authorization. Do not use
Server.Transfer if security is a concern on the target Web page. Use
HttpResponse.Redirect instead.

Web Services
ASP.NET Web services share many of the same features as ASP.NET Web
applications. Review your Web service against the questions in the “ASP.NET Pages
and Controls” section before you address the following questions that are specific to
Web services. For more information about the issues raised in this section, see
Chapter 12, “Building Secure Web Services.”
● Do you expose restricted operations or data?
● How do you authorize callers?
● Do you constrain privileged operations?
● Do you use custom authentication?
● Do you validate all input?
● Do you validate SOAP Headers?

 Chapter 21: Code Review 635

Do You Expose Restricted Operations or Data?
If your Web service exposes restricted operations or data, check that the service
authenticates callers. You can use platform authentication mechanisms such as
NTLM, Kerberos, Basic authentication or Client X.509 Certificates, or you can pass
authentication tokens in SOAP headers.

If you pass authentication tokens, you can use the Web Services Enhancements (WSE)
to use SOAP headers in a way that conforms to the emerging WS-Security standard.

How Do You Authorize Callers?
Choose appropriate authorization schemes provided by either .NET Framework
(such as URL authorization, File authorization, .NET Roles) or platform options such
as File ACLs.

Do You Constrain Privileged Operations?
The trust level of the code access security policy determines the type of resource the
Web service can access. Check the <trust> element configuration in Machine.config or
Web.config.

Do You Use Custom Authentication?
Use features provided by Web Service Enhancements (WSE) instead of creating your
own authentication schemes.

Do You Validate All Input?
Check that all publicly exposed Web methods validate their input parameters if the
input is received from sources outside the current trust boundary, before using them
or passing them to a downstream component or database.

Do You Validate SOAP Headers?
If you use custom SOAP headers in your application, check that the information is
not tampered or replayed. Digitally sign the header information to ensure that it has
not been tampered. You can use the WSE to help sign Web service messages in a
standard manner.

Check that SoapException and SoapHeaderException objects are used to handle
errors gracefully and to provide minimal required information to the client. Verify
that exceptions are logged appropriately for troubleshooting purposes.

636 Part V: Assessing Your Security

Serviced Components
This section identifies the key review points that you should consider when you
review the serviced components used inside Enterprise Services applications. For
more information about the issues raised in this section, see Chapter 11, “Building
Secure Serviced Components.”
● Do you use assembly level metadata?
● Do you prevent anonymous access?
● Do you use a restricted impersonation level?
● Do you use role-based security?
● Do you use method level authorization?
● Do you use object constructor strings?
● Do you audit in the middle tier?

Do You Use Assembly Level Metadata?
Check that you use assembly level metadata to define Enterprise Services security
settings. Use the assemblyinfo.cs file and use attributes to define authentication and
authorization configuration. This helps to ensure that the settings are established
correctly at administration time. Although the administrator can override these
settings, it provides the administrator with a clear definition of how you expect the
settings to be configured.

Do You Prevent Anonymous Access?
Check that your code specifies an authentication level using the
ApplicationAccessControl attribute. Search for the “AuthenticationOption” string to
locate the relevant attribute. Check that you use at least call-level authentication to
ensure that each call to your component is authenticated.

[assembly: ApplicationAccessControl(
 Authentication = AuthenticationOption.Call)]

Do You Use a Restricted Impersonation Level?
The impersonation level you define for your serviced components determines the
impersonation capabilities of any remote server that you communicate with. Search
for the “ImpersonationLevel” string to check that your code sets the level.

[assembly: ApplicationAccessControl(
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

 Chapter 21: Code Review 637

Check that you set the most restricted level necessary for the remote server. For
example, if the server needs to identify you for authentication purposes, but does not
need to impersonate you, use the identify level as shown above. Use delegation-level
impersonation with caution on Windows 2000 because there is no limit to the number
of times that your security context can be passed from computer to computer.
Windows Server 2003 introduces constrained delegation.

Note In Windows Server 2003 and Windows 2000 Service Pack 4 and later, the impersonation
privilege is not granted to all users.

If your components are in a server application, the assembly level attribute shown
above controls the initial configuration for the component when it is registered with
Enterprise Services.

If your components are in a library application, the client process determines the
impersonation level. If the client is an ASP.NET Web application, check the
comImpersonationLevel setting on the <processModel> element in the
Machine.config file.

Do You Use Role-Based Security?
Check that your code uses role-based security correctly to prevent unauthorized
access by reviewing the following questions:
● Is role-based security enabled?

Check that role-based security is enabled. It is disabled by default on
Windows 2000. Check that your code includes the following attribute:

[assembly: ApplicationAccessControl(true)]

● Do you use component level access checks?
COM+ roles are most effective if they are used at the interface, component, or
method levels and are not just used to restrict access to the application. Check that
your code includes the following attribute:

[assembly: ApplicationAccessControl(AccessChecksLevel=
 AccessChecksLevelOption.ApplicationComponent)]

Also check that each class is annotated with ComponentAccessControl attribute
as follows:

[ComponentAccessControl(true)]
public class YourServicedComponent : ServicedComponent
{
}

638 Part V: Assessing Your Security

● Do you perform role checks in code?
If your method code calls ContextUtil.IsCallerInRole, check that these calls are
preceded with calls to ContextUtil.IsSecurityEnabled. If security is not enabled,
IsCallerInRole always returns true. Check that your code returns a security
exception if security is not enabled.

Do You Use Object Constructor Strings?
Search your code for “ConstructionEnabled” to locate classes that use object
construction strings.

[ConstructionEnabled(Default="")]
public class YourServicedComponent : ServicedComponent, ISomeInterface

If you use object constructor strings, review the following questions:
● Do you store sensitive data in constructor strings?

If you store data such as connection strings, check that the data is encrypted prior
to storage in the COM+ catalog. Your code should then decrypt the data when it is
passed to your component through the Construct method.

● Do you provide default construction strings?
Do not do this if the data is in any way sensitive.

Do You Audit in the Middle Tier
You should audit across the tiers of your distributed application. Check that your
service components log operations and transactions. The original caller identity is
available through the SecurityCallContext object. This is only available if the security
level for your application is configured for process and component-level checks by
using the following attribute:

[assembly: ApplicationAccessControl(AccessChecksLevel=
 AccessChecksLevelOption.ApplicationComponent)]

Remoting
This section identifies the key review points that you should consider when you
review code that uses .NET Remoting. For more information about the issues raised
in this section, see Chapter 13, “Building Secure Remoted Components.”
● Do you pass objects as parameters?
● Do you use custom authentication and principal objects?
● How do you configure proxy credentials?

 Chapter 21: Code Review 639

Do You Pass Objects as Parameters?
If you use the TcpChannel and your component API accepts custom object
parameters, or if custom objects are passed through the call context, your code has
two security vulnerabilities.
● If the object passed as a parameter derives from System.MarshalByRefObject, it

is passed by reference. In this case, the object requires a URL to support call backs
to the client. It is possible for the client URL to be spoofed, which can result in a
call back to an alternate computer.

● If the object passed as a parameter supports serialization, the object is passed by
value. In this instance, check that your code validates each field item as it is
deserialized on the server to prevent the injection of malicious data.

To prevent custom objects being passed to your remote component either by
reference or by value, set the TypeFilterLevel property on your server-side formatter
channel sink to TypeFilterLevel.Low.

To locate objects that are passed in the call context, search for the
“ILogicalThreadAffinative” string. Only objects that implement this interface can be
passed in the call context.

Do You Use Custom Authentication and Principal Objects?
If you use custom authentication, do you rely on principal objects passed from the
client? This is potentially dangerous because malicious code could create a principal
object that contains extended roles to elevate privileges. If you use this approach,
check that you only use it with out-of-band mechanisms such as IPSec policies that
restrict the client computers that can connect to your component.

How Do You Configure Proxy Credentials?
Review how your client code configures credentials on the remoting proxy. If explicit
credentials are used, where are those credentials maintained? They should be
encrypted and stored in a secure location such as a restricted registry key. They
should not be hard-coded in plain text. Ideally, your client code should use the client
process token and use default credentials.

640 Part V: Assessing Your Security

Data Access Code
This section identifies the key review points that you should consider when you
review your data access code. For more information about the issues raised in this
section, see Chapter 14, “Building Secure Data Access.”
● Do you prevent SQL injection?
● Do you use Windows authentication?
● Do you secure database connection strings?
● How do you restrict unauthorized code?
● How do you secure sensitive data in the database?
● Do you handle ADO .NET exceptions?
● Do you close database connections?

Do You Prevent SQL Injection?
Check that your code prevents SQL injection attacks by validating input, using least
privileged accounts to connect to the database, and using parameterized stored
procedures or parameterized SQL commands. For more information, see “SQL
Injection” earlier in this chapter.

Do You Use Windows Authentication?
By using Windows authentication, you do not pass credentials across the network
to the database server, and your connection strings do not contain user names and
passwords. Windows authentication connection strings either use
Trusted_Connection=‘Yes’ or Integrated Security=‘SSPI’ as shown in the following
examples.

"server='YourServer'; database='YourDatabase' Trusted_Connection='Yes'"
"server='YourServer'; database='YourDatabase' Integrated Security='SSPI'"

Do You Secure Database Connection Strings?
Review your code for the correct and secure use of database connection strings.
These strings should not be hard coded or stored in plaintext in configuration files,
particularly if the connection strings include user names and passwords.

 Chapter 21: Code Review 641

Search for the “Connection” string to locate instances of ADO .NET connection
objects and review how the ConnectionString property is set.
● Do you encrypt the connection string?

Check that the code retrieves and then decrypts an encrypted connection string.
The code should use DPAPI for encryption to avoid key management issues.

● Do you use a blank password?
Do not. Check that all SQL accounts have strong passwords.

● Do you use the sa account or other highly privileged accounts?
Do not use the sa account or any highly privileged account, such as members of
sysadmin or db_owner roles. This is a common mistake. Check that you use a
least privileged account with restricted permissions in the database.

● Do you use Persist Security Info?
Check that the Persist Security Info attribute is not set to true or yes because
this allows sensitive information, including the user name and password, to be
obtained from the connection after the connection has been opened.

How Do You Restrict Unauthorized Code?
If you have written a data access class library, how do you prevent unauthorized
code from accessing your library to access the database? One approach is to use
StrongNameIdentityPermission demands to restrict the calling code to only that
code that has been signed with specific strong name private keys.

How Do You Secure Sensitive Data in the Database?
If you store sensitive data, such as credit card numbers, in the database, how do you
secure the data? You should check that it is encrypted by using a strong symmetric
encryption algorithm such as 3DES.

If you use this approach, how do you secure the 3DES encryption key? Your code
should use DPAPI to encrypt the 3DES encryption key and store the encrypted key in
a restricted location such as the registry.

Do You Handle ADO .NET Exceptions?
Check that all data access code is placed inside try/catch blocks and that the code
handles the SqlExceptions, OleDbExceptions or OdbcExceptions, depending on the
ADO .NET data provider that you use.

642 Part V: Assessing Your Security

Do You Close Database Connections?
Check that your code is not vulnerable to leaving open database connections if, for
example, exceptions occur. Check that the code closes connections inside a finally
block or that the connection object is constructed inside a C# using statement as
shown below. This automatically ensures that it is closed.

using ((SqlConnection conn = new SqlConnection(connString)))
{
 conn.Open();
 // Connection will be closed if an exception is generated or if control flow
 // leaves the scope of the using statement normally.
}

Summary
Security code reviews are similar to regular code reviews or inspections except that
the focus is on the identification of coding flaws that can lead to security
vulnerabilities. The added benefit is that the elimination of security flaws often
makes your code more robust.

This chapter has shown you how to review managed code for top security issues
including XSS, SQL injection, and buffer overflows. It has also shown you how to
identify other more subtle flaws that can lead to security vulnerabilities and
successful attacks.

Security code reviews are not a panacea. However, they can be very effective and
should feature as a regular milestone in the development life cycle.

Additional Resource
For more information, see MSDN article, “Securing Coding Guidelines for the .NET
Framework,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec
/html/seccodeguide.asp.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/seccodeguide.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/seccodeguide.asp

22
Deployment Review

In This Chapter
● Reviewing network and host configuration
● Reviewing base Windows 2000 configuration
● Reviewing IIS and .NET Framework configuration
● Reviewing Web application and Web service configuration
● Reviewing Enterprise Services configuration
● Reviewing Remoting configuration
● Reviewing SQL Server configuration

Overview
Web application security is dependent upon the security of the underlying
infrastructure on which the application is deployed. Weak network or host
configuration settings result in vulnerabilities that can and will be exploited. The
deployment review covered in this chapter inspects the configuration of the network
and host. The host includes Windows 2000 Server and, depending on the server role,
it can also include IIS, the Microsoft .NET Framework, Enterprise Services, and SQL
Server.

The main configuration elements that are subject to the deployment review process
are shown in Figure 22.1.

644 Part V: Assessing Your Security

P
a

tc
he

s
a

nd
 U

pd
at

es

Web Server

Shares Auditing and Logging Registry Ports

Routers Firewalls Switches

IIS

.NET
Framework Enterprise

Services

Web
Services

Remoting

SQL
Server

Application Server Database Server

Windows
2000

Network

ProtocolsFiles and Directories Accounts Services

Figure 22.1
Core elements of a deployment review

Web Server Configuration
The goal for this phase of the review is to identify vulnerabilities in the
configuration of the base operating system on your Web server. This does not include
IIS configuration, which is dealt with separately. For further background information
about the issues raised by the review questions in this section, see Chapter 16,
“Securing Your Web Server.”

To help focus and structure the review process, the review questions have been
divided into the following configuration categories:
● Patches and updates
● Services
● Protocols
● Accounts
● Files and directories
● Shares
● Ports
● Registry
● Auditing and logging

 Chapter 22: Deployment Review 645

Patches and Updates
Verify that your server is updated with the latest service packs and software patches.
You need to separately check operating system components and the .NET
Framework. Review the following questions:
● Have you run MBSA?

Make sure you have run the MBSA tool to identify common Windows and IIS
vulnerabilities, and to identify missing service packs and patches.
Respond to the MBSA output by fixing identified vulnerabilities and by installing
the latest patches and updates. For more information, see “Step 1. Patches and
Updates” in Chapter 16, “Securing Your Web Server.”

● Have you installed .NET Framework updates?
To determine the current version of the .NET Framework, see Microsoft
Knowledge Base article 318785, “INFO: Determining Whether Service Packs
Are Installed on .NET Framework.” Then compare the installed version of
the .NET Framework against the current service pack. To do this, use the
.NET Framework versions listed in article 318836, “INFO: How to Obtain
the Latest .NET Framework Service Pack.”

Services
Make sure that only the services that you require are enabled. Check that all others
are disabled to reduce your server’s attack profile. To see which services are running
and enabled, use the Services and Applications Microsoft Management Console
(MMC) snap-in available from Computer Management. To disable a service, make
sure it is stopped and set its startup type to manual.

Review the following questions to verify your services configuration:
● Do you run unnecessary services?

Review each service that is running by using the Services snap-in and confirm that
each service is required. Identify why it is required and which solutions rely on it.
Make sure all unnecessary services are disabled.

● Have you disabled the Telnet service?
Telnet is often used for remote IIS administration. However, it is an insecure
protocol susceptible to many attacks. Check that the Telnet service is disabled.
For a more secure administration solution, use Terminal Services.

646 Part V: Assessing Your Security

● Have you disabled FTP, SMTP, and NNTP services?
These services are not secure protocols and have known vulnerabilities. If you do
not need them, disable them. If you use them, find secure alternatives. These
services are listed in the Services MMC snap-in as FTP Publishing Service, Simple
Mail Transport Protocol (SMTP) and Network News Transport Protocol (NNTP).

Note IISLockdown disables these services.

● Do you use the ASP.NET session state service?
To see whether your applications use this service, review the <sessionState>
element in your application’s Web.config file. If Web.config does not contain
this element, check its setting in Machine.config. You use the session state
service on your Web server if the mode attribute is set to “StateServer” and the
stateConnectionString points to the local machine, for example with a localhost
address as shown below:

<sessionState mode="StateServer"
 stateConnectionString="tcpip=127.0.0.1:42424" />

If you do not use the service on the Web server, disable it. It is listed as “ASP.NET
State Service” in the Services MMC snap-in.
For more information on how to secure ASP.NET session state, refer to “Session
State” in Chapter 19, “Securing Your ASP.NET Application and Web Services.”

Protocols
Review which protocols are enabled on your server and make sure that no
unnecessary protocol is enabled. Use the following questions to help review protocols
on your server:
● Do you use WebDAV?

If you use the Web Distributed Authoring and Versioning protocol (WebDAV)
to publish content then make sure it is secure. If you do not use it, disable the
protocol.
For information on how to secure WebDAV, see Microsoft Knowledge Base article
323470, “How To: Create a Secure WebDAV Publishing Directory.” For information
about disabling WebDAV, see article 241520, “How To Disable WebDAV for
IIS 5.0.”

 Chapter 22: Deployment Review 647

● Have you hardened the TCP/IP stack?
Make sure the TCP/IP stack is hardened to prevent network level denial of service
attacks including SYN flood attacks. To check whether the stack is hardened on
your server, use Regedt32.exe and examine the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The presence of the following child keys indicates a hardened TCP/IP stack:
SynAttackProtect, EnableICMPRedirect, and EnableDeadGWDetect.
For a full list of the required keys and the appropriate key values for a fully
hardened stack, see “How To: Harden the TCP/IP Stack” in the “How To”
section of this guide.

● Have you disabled NetBIOS and SMB for internet facing network cards?
Check that NetBIOS over TCP/IP is disabled and that SMB is disabled to prevent
host enumeration attacks. For more information, see “Protocols” in Chapter 16,
“Securing Your Web Server.”

Accounts
Review the use of all the Windows accounts on the server to make sure that no
unnecessary accounts exist, and that all of the necessary accounts are configured with
the minimum privileges and the required access rights. The following questions help
you identify account vulnerabilities:
● Have you deleted or disabled all unused accounts?

Perform an audit to verify that all your accounts are used and required. Delete or
disable any unnecessary accounts. The local administrator account and Guest
account cannot be deleted. You should disable the Guest account and rename the
Administrator account, making sure it has a strong password.

● Have you disabled the Guest account?
To check if the Guest account is disabled, display the Users folder in the
Computer Management tool and check that the Guest account appears with a
cross icon next to it. If it is not disabled, display its Properties dialog box and
select Account is disabled.

● Have you renamed the default administrator account?
The default local administrator account is a prime target for attack. Verify that you
have renamed the administrator account and given it a strong password.

● Have you created a custom anonymous Web account?
Check that the default IUSR_MACHINE account is disabled and that you have
configured an alternate anonymous user account for use by your Web
applications.

648 Part V: Assessing Your Security

● Do you use strong password policies?
Use the Local Security Policy tool to review password policy. For information
about the recommended password policy, see “Step 5. Accounts” in Chapter 16,
“Securing Your Web Server.”

● Do you restrict remote logons?
Check the user rights assignments within the Local Security Policy tool to ensure
that the Everyone group is not granted the “Access this computer from the
network” user right.

● Have you disabled null sessions?
Check that null sessions are disabled to prevent anonymous (unauthenticated)
sessions from being created with your server. To check this, run Regedt32.exe and
confirm that the RestrictAnonymous key is set to 1 as shown below.

HKLM\System\CurrentControlSet\Control\LSA\RestrictAnonymous=1

Files and Directories
The following review questions enable you to verify that you have used NTFS
permissions appropriately to lock down accounts such as the anonymous Web user
account.
● Is IIS installed on an NTFS volume?

This allows you to use NTFS to configure ACLs on resources to restrict access.
Do not build a server that uses FAT partitions.

● Have you restricted the Everyone group?
Use Windows Explorer to ensure that the Everyone group does not have access
to the following directories:
● Root (:\)
● System directory (\WINNT\system32)
● Framework tools directory (\WINNT\Microsoft.NET\Framework\{version})
● Web site root directory and all content directories (default is \inetpub*)

● Have you restricted the anonymous Web user account?
Make sure that the anonymous Internet user account does not have the ability to
write to Web content directories. Use Windows Explorer to view the ACL on each
content directory. Also check the ACL on the %windir%\system32 directory to
make sure that it cannot access system tools and utilities.

Note If you ran IISLockdown, the Web Anonymous Users group and the Web Applications group
can be used to restrict access. By default, the Web Anonymous Users group contains the IUSR
account and the Web Applications group contains Internet Web Application Manager (IWAM). From
an administrative perspective, restricting access to a group is preferred to individual account
restriction.

 Chapter 22: Deployment Review 649

● Have you secured or removed utilities and SDKs?
Verify that you have no utilities or software development kits (SDKs) on your
server. Make sure that neither Visual Studio.NET nor any .NET Framework SDKs
are installed. Also make sure that you have restricted access with NTFS
permissions to powerful system tools such as At.exe, Cmd.exe, Net.exe,
Pathping.exe, Regedit.exe, Regedt32.exe, Runonce.exe, Runas.exe, Telnet.exe, and
Tracert.exe. Finally, make sure that no debugging tools are installed on the server.
IISLockdown automatically restricts access to system tools by the Web
Anonymous Users group and the Web Applications group.

● Have you removed unused DSNs?
Verify that all unused data source names (DSNs) have been removed from the
server because they can contain clear text database connection details.

Shares
Review the following questions to ensure that your server is not unnecessarily
exposed by the presence of file shares:
● What shares are available on your server?

To review shares and associated permissions, run the Computer Management
MMC snap-in and select Shares beneath Shared Folders. Check that all the shares
are required. Remove any unnecessary shares.

● Can the Everyone group access shares?
Verify that the Everyone group is not granted access to your shares unless
intended, and that specific permissions are configured instead.

● Have you removed the administration shares?
If you do not allow remote administration of your server, then check that the
administration shares, for example, C$ and IPC$ have been removed.

Ports
Review the ports that are active on your server to make sure that no unnecessary
ports are available. To verify which ports are listening, run the following netstat
command.

netstat -n -a

650 Part V: Assessing Your Security

This command generates the following output:

Figure 22.2
Netstat output

This output lists all the ports together with their addresses and current state. Make
sure you know which services are exposed by each listening port and verify that each
service is required. Disable any unused service.

To filter out specific string patterns from netstat output, use it in conjunction with the
operating system findstr tool. The following example filters the output for ports in
the “LISTENING” state.

netstat -n -a | findstr LISTENING

You can also use the Portqry.exe command line utility to verify the status of TCP/IP
ports. For more information about the tool and how to download it, see Microsoft
Knowledge Base article 310099, “Description of the Portqry.exe Command Line
Utility.”

Also review the following:
● Internet-facing ports are restricted to TCP 80 and 443.
● Intranet traffic is restricted or encrypted.

 Chapter 22: Deployment Review 651

Registry
Review the security of your registry configuration with the following questions:
● Have you restricted remote registry administration?

Use Regedt32.exe to review the ACL on the WinReg registry key, which controls
whether or not the registry can be remotely accessed.

HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\SecurePipeServers\winreg

By default in Windows 2000, remote registry access is restricted to members of
the Administrators and Backup operators group. For maximum security, restrict
all remote access to the registry by using an empty Discretionary Access Control
List (DACL).

Note Some services require remote access to the registry. See Microsoft Knowledge Base
article 153183, “How to Restrict Access to the Registry from a Remote Computer,” to see if your
scenario demands limited remote registry access.

● Have you secured the SAM?
This only applies to stand-alone servers. Check that you have restricted LMHash
storage in the Security Account Manager (SAM) database by creating the key
(not value) NoLMHash in the registry as follows:

HKLM\System\CurrentControlSet\Control\LSA\NoLMHash

Auditing and Logging
Review your use of Windows auditing with the following questions.
● Do you log all failed logon attempts?

Use the Local Security Policy tool to check that you have enabled the auditing of
failed logon attempts.

● Do you log all failed actions across the file system?
Use the Local Security Policy tool to check that you have enabled object access
auditing. Then check that auditing has been enabled across the file system.

652 Part V: Assessing Your Security

IIS Configuration
By reviewing and improving the security of IIS configuration settings, you are in
effect reducing the attack surface of your Web server. For more information about the
review points covered in this section, see Chapter 16, “Securing Your Web Server.”

The review questions in this section have been organized by the following
configuration categories.
● IISLockdown
● URLScan
● Sites and virtual directories
● ISAPI filters
● IIS Metabase
● Server certificates

IISLockdown
The IISLockdown tool identifies and turns off features to reduce the IIS attack surface
area. To see if it has been run on your server, check for the following report generated
by IISLockdown:

\WINNT\system32\inetsrv\oblt-rep.log

For more information about IISLockdown, see “How To: Use IISLockdown” in the
“How To” section of this guide.

URLScan
URLScan is an ISAPI filter that is installed with IISLockdown. It helps prevent
potentially harmful requests from reaching the server and causing damage. Check
that it is installed and that it is configured appropriately.

� To see if URLScan is installed

1. Start Internet Information Services.
2. Right-click your server (not Web site) and then click Properties.
3. Click the Edit button next to Master Properties.
4. Click the ISAPI Filters tab and see if URLScan is listed.

To check the URLScan configuration, use Notepad to edit the following URLScan
configuration file.

%WINDIR%\System32\Inetsrv\URLscan\Urlscan.ini

 Chapter 22: Deployment Review 653

For more information about URLScan, see “How To: Use URLScan” in the “How To”
section of this guide.

Sites and Virtual Directories
The review questions in this section relate to the specific configuration of your Web
sites and the virtual directories of your applications. In this section, you review the
following categories:
● Web site location
● Script mappings
● Anonymous Internet user accounts
● Auditing and logging
● Web permissions
● IP address and domain name restrictions
● Authentication
● Parent path setting
● Microsoft FrontPage Server extensions

Web Site Location
Check that your Web site root directory is installed on a non-system volume. By
relocating your Web site root to a non-system volume, you prevent attackers who
use directory traversal attacks from accessing the system tools and executables such
as Cmd.exe.

Script Mappings
Check that you have mapped all unnecessary file extensions to the 404.dll, which is
installed when you run IISLockdown.

� To review script mappings

1. Start Internet Information Manager.
2. Right-click your Web site and click Properties.
3. Click the Home Directory tab and then click the Configuration button within the

Application Settings group.

Anonymous Internet User Accounts
Verify that your application is configured to use a non-default anonymous Internet
user account. If you have multiple Web applications on your server, check that each
application is configured to use a separate anonymous account. This allows you to
configure permissions and to track activity on a per Web application basis.

654 Part V: Assessing Your Security

Auditing and Logging
Check that you have configured IIS auditing to help detect attacks in progress and to
diagnose attack footprints. The following review questions help identify
vulnerabilities in IIS auditing:
● Are log files located on a separate non-system volume?

Right click your Web site in IIS and click the Web Site tab. Click the Properties
button to check the log file location. Check that the log files are located in a non-
default location using a non-default name, preferably on a non-system volume.

● Do you restrict access to the log files?
Use Windows Explorer to view the ACL on the log files directory. Check that
the ACL grants Administrators and System full control but grants access to no
other user.

Web Permissions
Review the default Web permissions configured for your Web site and for each
virtual directory. Check that the following conditions are met:
● Include directories restrict Read permissions.
● Virtual directories for which anonymous access is allowed are configured to

restrict Write and Execute permissions.
● Write permissions and script source access permissions are only granted to content

folders that allow content authoring. Also check that folders that allow content
authoring require authentication and Secure Sockets Layer (SSL) encryption.

IP Address and Domain Name Restrictions
Do you use IP and domain name restrictions to restrict access to your Web server?
If so, have you considered the risks of IP spoofing?

Authentication
Check the authentication settings for your Web sites and virtual directories. Ensure
that anonymous access is only supported for publicly accessible areas of your site.
If you are selecting multiple authentication options, thoroughly test the effects and
authentication-precedence on your application.

If Basic authentication is selected, check that SSL is used across the site to protect
credentials.

 Chapter 22: Deployment Review 655

Parent Path Setting
Check that you have disabled the parent path setting to prevent the use of “..”
in script and application calls to functions such as MapPath. This helps prevent
directory traversal attacks.

� To review the parent paths setting

1. Start Internet Services Manager.
2. Right-click your Web site, and click Properties.
3. Click the Home Directory tab.
4. Click Configuration.
5. Click the App Options tab.
6. Check that the Enable parent paths check box is clear.

FrontPage Server Extensions (FPSE)
FrontPage Server Extensions are used for accessing, authoring, and administering
the FrontPage-based Web site. Use the latest versions of these extensions to avoid
security vulnerabilities. If you do not use FPSE, disable them to reduce the attack
surface.

For more information, see “Step 11. Sites and Virtual Directories” in Chapter 16,
“Securing Your Web Server.”

ISAPI Filters
Make sure that no unused ISAPI filters are installed to prevent any potential
vulnerabilities in these filters from being exploited.

� To review ISAPI filters

1. Start Internet Information Manager.
2. Right click your server (not Web site) and then click Properties.
3. Click the Edit button next to Master Properties.
4. Click the ISAPI Filters tab to view the installed filters.

656 Part V: Assessing Your Security

IIS Metabase
The IIS Metabase contains IIS configuration settings, many but not all of which are
configured through the IIS administration tool. The file itself must be protected and
specific settings that cannot be maintained using the IIS configuration tool should be
checked. Review the following questions to ensure appropriate metabase
configuration:
● Have you restricted access to the metabase?

Check that the ACL on the metabase file allows full control access to the system
account and administrators. No other account should have access. The metabase
file and location is:

%windir%\system32\inetsrv\metabase.bin

● Do you reveal internal IP addresses?
By default, IIS returns the internal IP address of your server in the Content-
Location section of the HTTP response header. You should prevent this by setting
the UseHostName metabase property to true. To check if it has been set, run the
following command from the \inetpub\adminscripts directory:

adsutil GET w3svc/UseHostName

Confirm that the property value has been set to true. If the property is not set, this
command returns the message “The parameter ‘UseHostName’ is not set at this
node.” For more information, see “Step 14. IIS Metabase” in Chapter 16, “Securing
Your Web Server.”

Server Certificates
If your applications use SSL, make sure that you have a valid certificate installed
on your Web server. To view the properties of your server’s certificate, click View
Certificate on the Directory Security page of the Properties dialog of your Web
site in IIS. Review the following questions:
● Has your server certificate expired?
● Are all public keys in the certificate chain valid up to the trusted root?
● Has your certificate been revoked?

Check that it is not on a Certificate Revocation List (CRL) from the server that
issued the certificate.

 Chapter 22: Deployment Review 657

Machine.Config
The .NET Framework configuration for all applications on your server is maintained
in Machine.config. For the purposes of the security review, this section examines the
settings in Machine.config from top to bottom and considers only those settings that
relate to security.

The majority of security settings are contained beneath the <system.web> element,
with the notable exception of Web service configuration and .NET Remoting
configuration. The review process for Web services and .NET Remoting configuration
is presented later in this chapter.

For more information and background about the issues raised by the following
review questions, see Chapter 19, “Securing Your ASP.NET Application and Web
Services.” The following elements are reviewed in this section:

● <trace>
● <httpRunTime>
● <compilation>
● <pages>
● <customErrors>

● <authentication>
● <identity>
● <authorization>
● <machineKey>
● <trust>

● <sessionState>
● <httpHandlers>
● <processModel>

<trace>
Make sure tracing is disabled with the following setting.

<trace enabled="false" ... />

<httpRunTime>
Verify the value of the maxRequestLength attribute on the <httpRunTime> element.
You can use this value to prevent users from uploading very large files. The
maximum allowed value is 4 MB.

<compilation>
Check that you do not compile debug binaries. Make sure the debug attribute is set
to false.

<compilation debug="false" ... />

658 Part V: Assessing Your Security

<pages>
The <pages> element controls default page level configuration settings. From a
security perspective, review the view state and session state settings.
● Do you use view state?

If enableViewState is set to true, make sure that enableViewStateMac is also set
to true to protect the view state over the network. Also make sure that you review
the <machineKey> configuration because this specifies the encryption and
hashing algorithms to use together with the associated keys.

● Do you use session state?
If enableSessionState is set to true, make sure you review the <sessionState>
element configuration.

<customErrors>
Make sure that the mode attribute is set to On to ensure that detailed exception
information is not disclosed to the client. Also check that a default error page is
specified via the defaultRedirect attribute.

<customErrors mode="On" defaultRedirect="/apperrorpage.htm" />

<authentication>
This element governs your application’s authentication mechanism. Check the mode
attribute to see which authentication mechanism is configured and then use the
specific review questions for your configured authentication mode.

<authentication mode="[Windows|Forms|Passport|None"] />

Forms Authentication
Review the following questions to verify your Forms authentication configuration.
● Do you encrypt the authentication cookie?

Cookies should be encrypted and checked for integrity to detect tampering even
over an SSL channel because cookies can be stolen through cross-site scripting
(XSS) attacks. Check that the protection attribute of the <forms> element is set
to All.

<forms protection="All" .../> All indicates encryption and verification

 Chapter 22: Deployment Review 659

● Do you use SSL with Forms authentication?
SSL prevents session hijacking and cookie replay attacks. Check the requireSSL
attribute of the <forms> element.

<forms requireSSL="true" ... />

● Do you limit authentication cookie lifetime?
Minimize the cookie timeout to limit the amount of time an attacker can use the
cookie to access your application. Check the timeout attribute on the <forms>
element.

<forms timeout="10" ... />

● Do you use sliding expiration?
Check the slidingExpiration attribute. slidingExpiration=“true” means that the
cookie expires at a fixed duration after its initial duration. The timeout clock is not
reset after each request. Use of a sliding expiration is particularly recommended
for applications that do not use SSL on all pages to protect the cookie.

● Do you use unique cookie paths and names?
Check that you use a separate cookie name and path for each Web application.
This ensures that users who are authenticated against one application are not
treated as authenticated when using a second application hosted by the same Web
server. Check the path and name attributes on the <forms> element.

<forms name=".ASPXAUTH" path="/" ... />

● Do you use the <credentials> element?
You should not use the <credentials> element on production servers. This element
is intended for development and testing purposes only. Credentials should instead
be stored in Microsoft Active Directory® directory service or SQL Server.

● How do you store credentials?
If your application uses Windows authentication, credentials are stored in Active
Directory, which passes the credential management issue to the operating
environment. If your application uses Forms authentication, make sure you use a
SQL Server or Active Directory credential store.

● Do you store password hashes?
Make sure passwords are not stored in the database. Instead, store password
hashes with added salt to foil dictionary attacks.

● Do you use strong passwords?
Your application should enforce the use of strong passwords. A good way to do
this is to use a regular expression in the Forms logon page.

660 Part V: Assessing Your Security

<identity>
The following questions help verify your impersonation configuration specified on
the <identity> element:
● Do you impersonate the original caller?

If the impersonate attribute is set to true and you do not specify userName or
password attributes, you impersonate the IIS authenticated identity, which may
be the anonymous Internet user account.
Make sure that ACLs are configured to allow the impersonated identity access
only to those resources that it needs to gain access to.

● Do you impersonate a fixed identity?
If you impersonate and set the userName and password attributes, you
impersonate a fixed identity and this identity is used for resource access.
Make sure you do not specify plaintext credentials on the <identity> element.
Instead, use Aspnet_setreg.exe to store encrypted credentials in the registry.
On Windows 2000 this approach forces you to grant the “Act as part of the
operating system” user right to the ASP.NET process account, which is not
recommended. For alternative approaches, see Chapter 19, “Securing Your
ASP.NET Application and Web Services.”

<authorization>
This element controls ASP.NET URL authorization and specifically the ability of
Web clients to gain access to specific folders, pages, and resources.
● Have you used the correct format for user and role names?

When you have <authentication mode=“Windows” />, you are authorizing access
to Windows user and group accounts.
User names take the form “DomainName\WindowsUserName”. Role names take
the form “DomainName\WindowsGroupName”.

Note The local administrators group is referred to as “BUILTIN\Administrators”. The local users
group is referred to as “BUILTIN\Users”.

When you have <authentication mode=“Forms” />, you are authorizing against
the identity that is authenticated by the application. Normally, you authorize
against the roles that are retrieved from the database. Role names are application
specific.

 Chapter 22: Deployment Review 661

<machineKey>
This element is used to specify encryption and validation keys, and the algorithms
used to protect Forms authentication cookies and page level view state.
● Do you run multiple applications on the same server?

If so, use the IsolateApps setting to ensure a separate key is generated for each
Web application.

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" validation="SHA1"/>

● Do you run in a Web farm?
If so, make sure that you use specific machine keys and copy them across all
servers in the farm.

● Do you protect view state?
If you protect view state, for example, by setting enableViewSetMac=“true” on
the <pages> element, set validation=“SHA1” (Secure Hash Algorithm) or “3DES”
on the <machineKey> element. The Triple Data Encryption Standard (3DES)
setting is required if you also encrypt the Forms authentication cookie by setting
protection=“All” on the <forms> element.

<trust>
The <trust> element determines the code access security trust level used to run
ASP.NET Web applications and Web services.
● What version of the .NET Framework do you run?

If you run .NET Framework 1.0 then the trust level must be set to Full. For
versions equal to or greater than 1.1, you can change it to one of the following:

<!-- level="[Full|High|Medium|Low|Minimal]" -->
<trust level="Full" originUrl=""/>

● What trust level do you use?
Based on security policy and the agreement with the development team; set an
appropriate trust level for the application either in Web.config or in
Machine.config.

662 Part V: Assessing Your Security

<sessionState>
The sessionState element configures user session state management for your
application. Review the following questions:
● Do you use a remote state store?

Check the state store by examining the mode attribute.

<sessionState mode="Off|Inproc|stateServer|SQLServer" ... />

If you use a remote state store and the mode attribute is set to stateServer or
SQLServer, check the stateConnectionString and sqlConnectionString attributes
respectively. So that credentials are not included in the database connection string,
make sure the connection strings are secured in encrypted format in the registry
using the Aspnet_setreg.exe tool, or that Windows authentication is used to
connect to the SQL Server state store.
The following configuration shows what the stateConnectionString looks like
when Aspnet_setreg.exe has been used to encrypt the string in the registry.

<!-- aspnet_setreg.exe has been used to store encrypted details -->
<!-- in the registry. -->
<sessionState mode="StateServer"
 stateConnectionString="registry:HKLM\SOFTWARE\YourSecureApp\
 identity\ASPNET_SETREG,stateConnectionString" />

● Do you use Windows authentication to the state database?
If you use the SQL Server state store, check to see if you use Windows
authentication to connect to the state database. This means that credentials are not
stored in the connection string and that credentials are not transmitted over the
wire.
If you must use SQL authentication, make sure the connection string is encrypted
in the registry and that a server certificate is installed on the database server to
ensure that credentials are encrypted over the wire.

<httpHandlers>
This element lists the HTTP handlers that process requests for specific file types.
Check to ensure that you have disabled all unused file types.

Map unused file types to System.Web.HttpForbiddenHandler to prevent their HTTP
retrieval. For example, if your application does not use Web services, map the .asmx
extension as follows:

<httpHandlers>
 <add verb="*" path="*.asmx" type="System.Web.HttpForbiddenHandler"/>
</httpHandlers>

 Chapter 22: Deployment Review 663

<processModel>
The identity under which the ASP.NET worker process runs is controlled by settings
on the <processModel> element in Machine.config. The following review questions
help verify your process identity settings:
● What identity do you use to run ASP.NET?

Check the userName and password attributes. Ideally, you use the following
configuration that results in the ASP.NET process running under the least
privileged ASPNET account.

<processModel userName="Machine" password="AutoGenerate" . . ./>

● Do you encrypt the <processModel> credentials?
If you use a custom account, make sure that the account credentials are not
specified in plaintext in Machine.config. Make sure the Aspnet_setreg.exe utility
has been used to store encrypted credentials in the registry. If this has been used,
the userName and password attributes look similar to the settings shown below:

<processModel
 userName="registry:HKLM\SOFTWARE\YourSecureApp\processModel\
 ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourSecureApp\processModel\
 ASPNET_SETREG,password" . . ./>

● Do you use a least privileged account?
The default ASPNET account is a least privileged local account designed to run
ASP.NET. To use it for remote resource access, you need to create a duplicate
account on the remote server. Alternatively, you can create a least privileged
domain account.
Check that the account is not a member of the Users group, and view the user
rights assignment in the Local Security Policy tool to confirm it is not granted any
extended or unnecessary user rights. Make sure it is not granted the “Act as part
of the operating system” user right.

Web Services
The goal for this phase of the review is to identify vulnerabilities in the configuration
of your Web services. For further background information about the issues raised by
the review questions in this section, see Chapter 17, “Securing Your Application
Server,” and Chapter 19, “Securing Your ASP.NET Applications and Web Services.”

664 Part V: Assessing Your Security

Use the following questions to help review the security configuration of your
Web service:
● Have you disabled the Documentation protocol?

If you do not want to expose your Web services endpoints, then you can remove
the Documentation protocol from the <protocols> element in Machine.config and
manually distribute the .Web Services Description Language (WSDL) file to
specific Web service consumers.

● Have you disabled the HTTP Get and Post protocols?
By disabling (commenting) HttpGet and HttpPost protocols from <protocols>
element in Machine.config file, you help to reduce the attack profile for your Web
services.

● Do you restrict access to WSDL?
If you store the generated .WSDL files on the Web server to distribute them to the
consumers, make sure that the files are protected by an appropriate ACL. This
prevents a malicious user from updating or replacing the WSDL so that it points
to endpoints that differ from the intended URL.

● Do you pass sensitive data in SOAP requests or responses?
If your Web service handles sensitive data, how do you protect the data over the
network and address the network eavesdropping threat? Do you use SSL or IPSec
encrypted channels, or do you encrypt parts of the message by using XML
encryption?

● How do you authenticate callers?
If your Web service exposes restricted operations or data, it needs to authenticate
callers to support authorization. Review how the Web service authenticates its
clients.

● Do you pass credentials in SOAP headers?
If you pass credentials in SOAP headers, are they passed in plaintext? If they are,
make sure an encrypted channel is used.

Enterprise Services
This section identifies the key review points that should be considered when you
review your Enterprise Services applications and components. For more information
about the issues raised in this section, see Chapter 17, “Securing Your Application
Server.”

When you review Enterprise Services applications consider the following issues:
● Accounts
● Files and directories
● Authentication
● Authorization
● Remote serviced component

 Chapter 22: Deployment Review 665

Accounts
If you use an Enterprise Services server application, check which account you use
to run the application. This is displayed on the Identity page of the application’s
Properties dialog box in Component Services. Review the following questions:
● Do you use a least privileged account?

Check the account that you use to run your Enterprise Services server applications
to ensure they are configured as least privileged accounts with restricted user
rights and access rights. If you use the process account to access a downstream
database, make sure that the database login is restricted in the database.

● Do you use the Interactive account?
Do not use the Interactive account on production servers. This is only intended
to be used during development and testing.

Files and Directories
Review the following questions to ensure that you are using NTFS permissions
appropriately to secure the various files associated with an Enterprise Services
application:
● Is the COM+ catalog secured?

The COM+ catalog maintains configuration data for COM+ applications. Make
sure that the following folder that maintains the catalog files is configured with
a restricted ACL.

%windir%\registration

Configure the following ACL:

Administrators: Read, Write
System: Read, Write
Enterprise Services Run-As Account(s): Read

● Are the CRM log files secured?
If your application uses the Compensating Resource Manager, the CRM log files
(.crmlog) should be secured with NTFS permissions because the log files may
contain sensitive application data.

● Are your application DLLs secured?
Make sure that the folder used to hold the DLLs of your application is configured
with the following restricted ACL.

Users: Execute
Application Run as account: Execute
Administrators: Read, Write and Execute

For more information, see Chapter 17, “Securing Your Application Server.”

666 Part V: Assessing Your Security

Authentication
Serviced components can be hosted in a library application that runs in the client’s
process address space or in a server application that runs in a separate instance of
Dllhost.exe. This is determined by the activation type specified on the Activation
page of the application’s Properties dialog box in Component Services. The client
process for an Enterprise Services library application is usually the ASP.NET Web
application process.

The settings discussed below are specified on the Security page of the application’s
Properties dialog box in Component Services.

Server Applications
If the Activation type is set to Server application, review the following questions:
● Do you prevent anonymous access?

Check that your application uses at least call level authentication to ensure that
clients are authenticated each time they make a method call. This prevents
anonymous access.

● What impersonation level do you use?
Check to make sure that you use at least identify level impersonation to allow
downstream systems to identify your serviced component. By default, this is
the process identity determined by the run-as account of the application. If
your serviced components use programmatic impersonation, this may be an
impersonated identity. Use delegate level only if you want the downstream system
to be able to access remote resources using your serviced component’s identity.

Library Applications
If the activation type is set to Library application, the authentication and
impersonation settings are inherited from the host process. The review questions
in this section assume the ASP.NET process is the host process.
● Have you disabled authentication?

To check, view the Enable authentication check box setting on the Security page
of the application’s Properties dialog box. You should not disable authentication
unless you have a specific requirement such as handling unauthenticated
callbacks from a remote serviced component.

 Chapter 22: Deployment Review 667

● What authentication level do you use?
The authentication level specified on the <processModel> element in
Machine.config governs the authentication level used for outgoing calls to remote
serviced components or DCOM components. The higher of this value and the
value configured at the remote server is used. Check the comAuthenticationLevel
setting on the <processModel> element:

● What impersonation level do you use?
This affects outgoing calls from the library component to other remote
components. Check the comImpersonationLevel attribute on the
<processModel> element in Machine.config.

<processModel comImpersonationLevel=
 "Default|Anonymous|Identify|Impersonate|Delegate" .../>

Authorization
Serviced components in Enterprise Services applications use COM+ role based
security to authorize callers. Review the following issues to ensure appropriate
authorization:
● Are access checks enabled?

This controls whether or not COM+ authorization is enabled or not. Check that
Enforce access checks for this application is selected on the Security page of the
application’s Properties dialog box in Component Services.

● What security level do you use?
Check the Security level specified on the Security page of the application’s
Properties dialog box in Component Services. Applications should use process
and component level access checks to support granular authorization. This allows
the application to use roles to control access to specific classes, interfaces, and
methods.

Note Process and component level access checks must be enabled for library applications or
you will not be able to use role-based authorization.

● Do you enforce component level access checks?
To support authorization checks at the component, interface, and method levels,
each component must be appropriately configured in the COM+ catalog. Check
each component in your application to ensure that Enforce component level
access checks is selected on the Security page of the component’s Properties
dialog box.

668 Part V: Assessing Your Security

Remote Serviced Components
The following issues apply if you use remote serviced components, and
communication is across a network. A typical scenario is an ASP.NET client
communicating with an Enterprise Services application on a remote application
server.
● Do you pass sensitive data?

If so, what mechanism is in place to address the network eavesdropping threat?
Make sure the link between client and server is encrypted at the transport level,
for example, by IPSec. Alternatively, make sure your Enterprise Services
application is configured for Packet Privacy level authentication, which forces the
use of RPC encryption for all data packets sent to and from the application.

● Do you communicate through a firewall?
Enterprise Services uses DCOM, which in turn uses RPC communication. RPC
communication requires port 135 to be open on the firewall. Review your firewall
and Enterprise Services configuration to ensure that only the minimal additional
ports is open.
The range of ports dynamically allocated by DCOM can be restricted or static
endpoint mapping can be used to specify individual ports. For more information,
see Chapter 17, “Securing Your Application Server.”

Remoting
This section identifies the key review points that should be considered when you
review your application’s use of .NET Remoting. For more information about the
issues raised in this section see Chapter 17, “Securing Your Application Server.”

When you review your .NET Remoting solution, start by identifying which host
is used to run your remote components. If you use the ASP.NET host with the
HttpChannel, you need to check that IIS and ASP.NET security is appropriately
configured to provide authentication, authorization, and secure communication
services to your remote components. If you use a custom host and the TcpChannel,
you need to review how your components are secured, because this host and channel
combination requires custom authentication and authorization solutions.

Port Considerations
Remoting is not designed to be used with Internet clients. Check that the ports that
your components listen on are not directly accessible by Internet clients. The port
or ports are usually specified on the <channel> element in the server side
configuration file.

 Chapter 22: Deployment Review 669

Hosting in ASP.NET with the HttpChannel
If you use the ASP.NET host, review the following items:
● How do you protect sensitive data over the network?

Do you use SSL or IPSec? Without SSL or IPSec, data passed to and from the
remote component is subject to information disclosure and tampering. Review
what measures are in place to address the network eavesdropping threat.

● How do you authenticate callers?
Make sure that anonymous access is disabled in IIS for your application’s virtual
directory. Also check that you use Windows authentication. The Web.config of
your application should contain the following configuration.

<authentication mode="Windows" />

● Do you use ASP.NET file authorization?
If not, why? You can use ASP.NET file authorization to control access to
the endpoints of your remoting application by creating a .rem or .soap
file and configuring the NTFS permissions on the file. The ASP.NET
FileAuthorizationModule will then authorize access to the component.
For more information, see “Authorization” in Chapter 13, “Building Secure
Remoted Components.”

● Do you use URL authorization?
Check your application’s use of the <authorization> element. Use the ASP.NET
UrlAuthorizationModule by applying <allow> and <deny> tags.

● Do you prevent detailed errors from being returned to the client?
Check the configuration of your application to make sure that you have correctly
configured the <customErrors> element to prevent detailed errors from being
returned to the client. Make sure the mode attribute is set to On as shown below.

<customErrors mode="On" />

● What identity do you use to run ASP.NET?
Check that you use a least privileged account to run ASP.NET, such as the default
ASPNET account, or Network Service account on Windows Server 2003.

670 Part V: Assessing Your Security

Hosting in a Custom Process with the TcpChannel
If you use a custom host process such as a Windows service, review the following
items.
● How do you protect sensitive data over the network?

Have you secured the channel from client to server? You may use transport level
IPSec encryption or your application may use a custom encryption sink to encrypt
request and response data.

● How do you authenticate callers?
The TcpChannel provides no authentication mechanism, so you must develop
your own. Review how your application authenticates its callers.

● Do you restrict your clients?
Remoting with the TcpChannel is designed to be used in trusted server scenarios,
where the remote components trust their clients. Do you restrict the range of
clients that can connect to your remote components, for example, by using IPSec
policies?

● Do you use a least privileged process identity?
Review which account you use to run your custom host process and ensure it is
configured as a least privileged account.

Database Server Configuration
The goal for this phase of the review is to identify vulnerabilities in the configuration
of your SQL Server database server. For further background information about the
issues raised by the review questions in this section, see Chapter 18, “Securing Your
Database Server.”

To help focus and structure the review process, the review questions have been
divided into the following configuration categories:
● Patches and updates
● Services
● Protocols
● Accounts
● Files and directories
● Shares
● Ports
● Registry
● Auditing and logging
● SQL Server security
● SQL Server logins, users, and roles

 Chapter 22: Deployment Review 671

Patches and Updates
Check that your server is updated with the latest service packs and software patches.
This includes service packs and patches for the operating system and SQL Server.

Make sure you have run the Microsoft Baseline Security Analyzer (MBSA) tool to
identify common Windows and SQL Server vulnerabilities, and to identify missing
service packs and patches.

Respond to the MBSA output by fixing identified vulnerabilities and by installing the
latest patches and updates. For more information, see “Step 1. Patches and Updates”
in Chapter 18, “Securing Your Database Server.”

Services
Make sure that only those services that you require are enabled. Check that all others
are disabled to reduce the attack surface of your server.
● Which SQL Server services do you run?

SQL Server installs four services. If you require just the base functionality, then
disable Microsoft Search Service, MSSQLServerADHelper, and SQLServerAgent
to reduce the attack surface of your server.

● Do you use distributed transactions?
If your applications use the transactional services of COM+ to manage
transactions with SQL Server, then the Microsoft Distributed Transaction
Coordinator (DTC) service is required on the database server.
If you do not use distributed transactions, ensure that the DTC service is disabled.

Protocols
By preventing the use of unnecessary protocols, you reduce the attack surface area.
Review the following questions:
● For which protocols is SQL Server configured?

SQL Server supports multiple protocols. Use the Server Network Utility to check
that only TCP/IP protocol support is enabled.

● Have you hardened the TCP/IP stack?
To check whether the stack is hardened on your server, use Regedt32.exe and
examine the following registry key:

HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

The presence of the following child keys indicates a hardened TCP/IP stack:
SynAttackProtect, EnableICMPRedirect, and EnableReadGWDetect.
For a full list of the required keys and appropriate key values for a fully hardened
stack, see “How To: Harden the TCP/IP Stack” in the How To section of this
guide.

672 Part V: Assessing Your Security

Accounts
Review the accounts used on your database server by answering the following
questions:
● Do you use a least privileged account to run SQL Server?

Review which account you use to run SQL Server and make sure it is a least
privileged account. It should not be an administrative account or the powerful
local system account. Also make sure that the account is not a member of the
Users group on the local computer.

● Have you deleted or disabled unused accounts?
Audit local accounts on the server and check that all unused accounts are
disabled.

● Have you disabled the Guest account?
Check that the Windows Guest account is disabled to restrict anonymous
connections to your database server.

● Have you created a new administrator account?
The default local administrator account is a prime target for attack. To improve
security, check that you have created a new custom account for administration and
that the default Administrator account has been disabled.

● Do you use strong password policies?
Use the Local Security Policy tool to review password policy. For information
about the recommended password policy, see “Step 4. Accounts” in Chapter 18,
“Securing Your Database Server.”

● Do you restrict remote logons?
Check the user rights assignments within the Local Security Policy tool to ensure
that the Everyone group is not granted the “Access this computer from the
network” user right.

● Have you disabled null sessions?
Check that null sessions are disabled to prevent anonymous (unauthenticated)
sessions from being created with your server. To check this, run Regedt32.exe and
confirm that the RestrictAnonymous key is set to 1, as shown below.

HKLM\System\CurrentControlSet\Control\LSA\RestrictAnonymous=1

● Do clients connect by using Windows authentication?
If so, check that the strongest version of NTLM authentication (NTLMv2) is
enabled and enforced. To check that NTLMv2 authentication is enforced, use the
Local Security Policy Tool. Expand Local Policies and select Security Options and
then double-click LAN Manager Authentication Level. Verify that Send NTLMv2
response only\refuse LM & NTLM is selected.

 Chapter 22: Deployment Review 673

Files and Directories
The following review questions enable you to verify that you have used NTFS
permissions appropriately on your database server.
● Have you configured permissions on the SQL Server install directories?

Review the permissions on the SQL Server installation directories and make sure
that the permissions grant limited access. For detailed permissions, see “Step 5.
Files and Directories” in Chapter 18, “Securing Your Database Server.”

● Have you removed Everyone permissions for SQL Server files?
Review the permissions on the SQL Server file location (by default, \Program
Files\Microsoft SQL Server\MSSQL) and check that the Everyone group has been
removed from the directory ACL. At the same time, make sure that full control has
been granted to only the SQL Service account, the Administrators group, and the
local system account.

● Have you secured setup log files?
If you have installed SQL Server 2000 Service Pack 1 or 2, the system administrator
or service account password may be left in the SQL installation directory. Make
sure that you have used the Killpwd.exe utility to remove instances of passwords
from the log files.
For information about obtaining and using this utility, see Microsoft Knowledge
Base article 263968, “FIX: Service Pack Installation May Save Standard Security
Password in File.”

Shares
Review the following questions to ensure that your server is not unnecessarily
exposed by the presence of file shares:
● What shares are available on your server?

To review shares and associated permissions, run the Computer Management
MMC snap-in and select Shares beneath Shared Folders. Check that all the shares
are required. Remove any unnecessary shares.

● Can the Everyone group access shares?
Check that the Everyone group is not granted access to your shares unless
intended, and that specific permissions are configured instead.

● Have you removed the administration shares?
If you do not allow remote administration of your server, then check that the
administration shares, for example, C$ and IPC$, have been removed.

Note Some applications may require administrative shares. Examples include Microsoft
Systems Management Server (SMS) and Microsoft Operations Manager (MOM). For more
information, see Microsoft Knowledge Base article 318751, “How To: Remove Administrative
Shares in Windows 2000 or Windows NT4.”

674 Part V: Assessing Your Security

Ports
Review the ports that are active on your server to make sure that no unnecessary
ports are available. For more information about using the netstat command to do this,
see the “Ports” subsection in “Web Server Configuration,” earlier in this chapter.
Then review the following questions:
● Have you restricted access to the SQL Server port?

Review how you restrict access to the SQL Server port. Check that your perimeter
firewall prevents direct access from the Internet. To protect against internal
attacks, review your IPSec policies to ensure they limit access to the SQL Server
ports.

● Have you configured named instances to listen on the same port?
If you use named instances, check with the Network Server Utility to verify that
you have configured the instance to listen on a specific port. This avoids UDP
negotiation between the client and server, and means you do not need to open
additional ports.

Registry
Review the security of your registry configuration with the following questions:
● Have you secured the SQL Server registry keys?

Use Regedt32.exe to check that the Everyone group has been removed from the
ACL attached to the following registry key.

Administrators: Full Control
SQL Server service account: Full Control

● Have you secured the SAM?
Check that you have restricted LMHash storage in the Security Account Manager
(SAM) by creating the key (not value) NoLMHash in the registry as shown below.

HKLM\System\CurrentControlSet\Control\LSA\NoLMHash

For more information, see Microsoft Knowledge Base article 299656, “New
Registry Key to Remove LM Hashes from Active Directory and Security Account
Manager”.

 Chapter 22: Deployment Review 675

Auditing and Logging
Review the following questions to check whether or not you have used appropriate
auditing and logging on your database server.
● Have you enabled SQL Server auditing?

Check that SQL Server auditing is enabled. Make sure that the Audit level setting
on the Security page of the SQL Server Properties dialog box in Enterprise
Manager is set to either All or Failure.

● Do you log all failed logon attempts?
Use the Local Security Policy tool to check that you have enabled the auditing
of failed logon attempts.

● Do you log all failed actions across the file system?
Use the Local Security Policy tool to check that you have enabled object access
auditing. Then check that auditing has been enabled across the file system.

SQL Server Security
Review which authentication mode your SQL Server is configured to use. You can see
this by viewing the Security page of your server’s Properties dialog box in Enterprise
Manager. If your server is configured to support SQL Server and Windows
authentication, check that your applications do require SQL authentication. If
possible, use Windows only authentication.

If your applications do require SQL authentication, review how they manage
database connection strings. This is important if they use SQL authentication because
they contain user name and passwords. Also ensure that a server certificate is
installed on the database server to ensure that credentials are encrypted when they
are passed over the network to the database server, or that transport level encryption
is used.

676 Part V: Assessing Your Security

SQL Server Logins, Users, and Roles
Authorization in SQL Server is managed through SQL Server logins, database users,
and a variety of different types of roles. Review the following questions to ensure
these roles are configured appropriately:
● Do you have a strong sa (system administrator) password?

Make sure the sa account has a strong password.

Important The sa account is still active even when you change from SQL authentication to
Windows authentication.

Also make sure you have applied strong passwords to all database accounts,
particularly privileged accounts, for example, members of sysadmin and
db_owner. If you use replication, check that the distributer_admin account has
a strong password.

● Have you removed the SQL Server guest account?
If when you installed SQL Server the Windows Guest account was enabled, a SQL
Server guest account is created. Check each database and ensure that the SQL
Server guest account is not present. If it is, remove it.

Note You cannot remove guest from the master, tempdb, and replication and distribution
databases.

● Have you removed the BUILTIN\Administrators server login?
If your company differentiates the role of domain administrator and database
administrator, remove the BUILTIN\Administrators SQL Server login. It is a good
idea to create a specific Windows group containing specific database
administrations in its place.

● Have you removed permissions for the public role?
Review the permissions granted to the public role in each database. Make sure it
has no permissions to access any database objects.

● How many members are there that belong to the sysadmin role?
Check how many logins belong to the sysadmin role. Ideally, no more than two
users should be system administrators.

● Do you grant restricted database permissions to logins?
Review the permissions granted to each database user account and make sure that
each account (including application accounts) only has the minimum required
permissions.

 Chapter 22: Deployment Review 677

SQL Server Database Objects
Review the following questions to ensure that you have removed unnecessary
database objects, including the sample databases, and that stored procedures are
appropriately secured.
● Have you removed sample databases?

Use SQL Server Enterprise Manager to check that all sample databases, including
Pubs and Northwind, have been removed.

● Have you secured stored procedures?
Check to make sure that neither the public role nor the guest user has access to
any of your stored procedures. To authorize access to stored procedures, you
should map the SQL Server login of your server to a database user, place the
database user in a user-defined database role, and then apply permissions to this
role to provide execute access to the stored procedures of your application.

● Have you restricted access to cmdExec?
The cmdExec function is used by the SQL Server Agent to execute Windows
command-line applications and scripts that are scheduled by the SQL Server
Agent. Check that access to cmdExec is restricted to members of the sysadmin
role.
To check this, use SQL Server Enterprise Manager to expand the Management
node. Right-click SQL Server Agent and display the SQL Server Agent Properties
dialog box. Click the Job System tab and check that Only users with SysAdmin
privileges can execute CmdExec and ActiveScripting job steps is selected.

Network Configuration
The goal for this phase of the review is to identify vulnerabilities in the configuration
of your network. For further background information about the issues raised by the
review questions in this section, see Chapter 15, “Securing Your Network.”

To help focus and structure the review process, the review questions have been
divided into the following configuration categories:
● Router
● Firewall
● Switch

678 Part V: Assessing Your Security

Router
Use the following questions to review your router configuration:
● Have you applied the latest patches and updates?

Check with the networking hardware manufacturer to ensure you have the latest
patches.

● Do you use Ingress and Egress filtering?
For more information, see “Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing,” at http://www.rfc-editor.org
/rfc/rfc2267.txt.

● Do you block ICMP traffic?
Make sure you block Internet Control Message Protocol (ICMP) traffic at the outer
perimeter router to prevent attacks such as cascading ping floods and other
potential ICMP vulnerabilities.

● Do you prevent time-to-live (TTL) expired messages with values of 0 or 1?
This prevents information disclosure caused by route tracing.

● Do you receive or forward broadcast traffic?
Source addresses that should be filtered are shown in Table 22.1.

Table 22.1 Source Addresses that Should Be Filtered
Source Address Description
0.0.0.0/8 Historical broadcast

10.0.0.0/8 RFC 1918 private network

127.0.0.0/8 Loopback

169.254.0.0/16 Link local networks

172.16.0.0/12 RFC 1918 private network

192.0.2.0/24 TEST-NET

192.168.0.0/16 RFC 1918 private network

224.0.0.0/4 Class D multicast

240.0.0.0/5 Class E reserved

248.0.0.0/5 Unallocated

255.255.255.255/32 Broadcast

● Have you disabled unused interfaces?
Make sure that only the required interfaces are enabled on the router.

http://www.rfc-editor.org/rfc/rfc2267.txt
http://www.rfc-editor.org/rfc/rfc2267.txt

 Chapter 22: Deployment Review 679

● Do you use strong password policies?
You should use strong password policies to mitigate the risks posed by brute force
and dictionary attacks.

● Do you use static routing?
By using static routes, an administrative interface must first be compromised
to make routing changes.

● Do you audit Web facing administrative interfaces?
When possible, shut down the external administration interface and use internal
access methods with ACLs.

● Do you use the logging features of your router?
Check that your routers log all deny actions.

● Do you use an Intrusion Detection System?
Intrusion Detection Systems (IDSs) can show where the perpetrator is attempting
attacks.

Firewall
Use the following questions to review your router configuration:
● Have you applied the latest patches and updates?

Check with the networking hardware manufacturer to ensure you have the latest
patches.

● Do you log all traffic that flows though the firewall?
● How often do you cycle logs?

Ensure that you maintain healthy log cycling that allows quick data analysis.
● Is the firewall clock synchronized with the other network hardware?

Switch
Use the following questions to review your router configuration:
● Have you applied the latest patches and updates?

Check with the networking hardware manufacturer to ensure that you have the
latest patches.

● Have you disabled factory default settings?
To make sure that insecure defaults are secured, check that you have changed all
factory default passwords and Simple Network Management Protocol (SNMP)
community strings to prevent network enumeration or total control of the switch.

● Have you disabled unused services?
Make sure that all unused services are disabled. Also, make sure that Trivial File
Transfer Protocol (TFTP) is disabled, Internet-facing administration points are
removed, and ACLs are configured to limit administrative access.

680 Part V: Assessing Your Security

Summary
When you perform a deployment review, make sure that you review the
configuration of the underlying infrastructure on which the application is deployed
and the configuration of the application itself. Review the network, host, and
application configuration and, where possible, involve members of the various teams
including infrastructure specialists, administrators and developers.

Use the configuration categories identified in this chapter to help focus the review.
These categories include patches and updates, services, protocols, accounts, files and
directories, shares, ports, registry, and auditing and logging.

Related Security Resources

Related Microsoft patterns & practices Guidance
● Building Secure ASP.NET Applications: Authentication, Authorization, and Secure

Communication on the MSDN® Web site at http://msdn.microsoft.com/library
/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp.
This guide focuses on the key elements of authentication, authorization, and
secure communication within and across the tiers of distributed .NET Web
applications. It is written for architects and developers.

● Designing Application-Managed Authorization on the MSDN Web site at
http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/damaz.asp.
This guide focuses on common authorization tasks and scenarios, and it provides
information that helps you choose the best approaches and techniques. It is
written for architects and developers.

● Microsoft Solution for Securing Windows 2000 Server on the Microsoft Technet Web
site at http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/prodtech/windows/secwin2k/default.asp.
This guide delivers procedures and best practices for system administrators to
lock down their Windows 2000-based servers and maintain secure operations once
they’re up and running. It is written for IT Pros.

More Information
For more information on patterns and practices, refer to the Microsoft patterns &
practices home page at http://msdn.microsoft.com/practices/.

Security-Related Web Sites

Microsoft Security-Related Web Sites
● Microsoft Security & Privacy home page at http://www.microsoft.com/security/.
● Microsoft Security Update subscription at http://register.microsoft.com/subscription

/subscribeme.asp?id=166.
● Technet Security home page at http://www.microsoft.com/technet/security/.
● MSDN Security home page at http://msdn.microsoft.com/security/.
● .NET Framework Security home page at http://msdn.microsoft.com/net/security/.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/secnetlpMSDN.asp
http://msdn.microsoft.com/library/?url=/library/en-us/dnbda/html/damaz.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/windows/secwin2k/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/prodtech/windows/secwin2k/default.asp
http://msdn.microsoft.com/practices/
http://www.microsoft.com/security/
http://register.microsoft.com/subscription/subscribeme.asp?id=166
http://register.microsoft.com/subscription/subscribeme.asp?id=166
http://www.microsoft.com/technet/security/
http://msdn.microsoft.com/security/
http://msdn.microsoft.com/net/security/

682 Improving Web Application Security: Threats and Countermeasures

● Security and Trustworthy Computing at http://www.microsoft.com/enterprise
/security/.

● Microsoft Training & Certification Security Product and Technology Resources
at http://www.microsoft.com/traincert/centers/security.asp.

Third-Party, Security-Related Web Sites
● CERT (Computer Emergency Response Team) at http://www.cert.org/.
● SANS Institute Web site at http://www.sans.org/.
● Computer Security Resource Center at http://csrc.nist.gov/.

Microsoft Security Services
● Awareness and educational services

● Enterprise Security Strategy Seminar
● Securing the Enterprise Platforms Workshop

● Security assessment services
● Vulnerability assessment

● Security solutions services
● Security design reviews
● Incident response service

For information on these services, contact Microsoft Consulting Services:
● Microsoft Consulting Services (MCS) home page at http://www.microsoft.com

/business/services/mcs.asp.
● U.S. sales offices at http://www.microsoft.com/usa/.
● Worldwide at http://www.microsoft.com/worldwide/.

For free support on virus issues:
● The Microsoft 1-866-PCSAFETY line (U.S. and Canada)
● Microsoft local support resources (all other locations) at http://support.microsoft.com

/common/international.aspx.

Partners and Service Providers
● Microsoft USA Partner site at http://www.microsoft.com/usa/partner/default.asp.
● Microsoft Service Providers at http://www.microsoft.com/serviceproviders/default.asp.

http://www.microsoft.com/enterprise/security/
http://www.microsoft.com/enterprise/security/
http://www.microsoft.com/traincert/centers/security.asp
http://www.cert.org/
http://www.sans.org/
http://csrc.nist.gov/
http://www.microsoft.com/business/services/mcs.asp
http://www.microsoft.com/business/services/mcs.asp
http://www.microsoft.com/usa/
http://www.microsoft.com/worldwide/
http://support.microsoft.com/common/international.aspx
http://support.microsoft.com/common/international.aspx
http://www.microsoft.com/usa/partner/default.asp
http://www.microsoft.com/serviceproviders/default.asp

 Related Security Resources 683

Communities and Newsgroups

Newsgroup Home Pages
● Microsoft Product Support Newsgroups at http://support.microsoft.com/newsgroups

/default.aspx.
● MSDN Newsgroups at http://msdn.microsoft.com/newsgroups/.
● Technet Newsgroups at http://www.microsoft.com/technet/newsgroups/.

For security issues within specific .NET Framework technologies, refer to the
appropriate newsgroup:
● Microsoft Security Newsgroups at http://www.microsoft.com/technet/newsgroups

/default.asp?url=/technet/newsgroups/NodePages/security.asp.
● Virus Newsgroup at http://www.microsoft.com/technet/newsgroups/default.asp?url=

/technet/newsgroups/NodePages/security.asp.
● .NET Framework Security Newsgroup at http://msdn.microsoft.com/newsgroups

/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.security.
● ASP.NET Security Newsgroup at http://msdn.microsoft.com/newsgroups

/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.framework
.aspnet.security.

Patches and Updates
● Hotfix and Security Bulletin Service at http://www.microsoft.com/technet/treeview

/default.asp?url=/technet/security/current.asp.
View the security bulletins that are available for your system.

Service Packs
● Microsoft Service Packs at http://support.microsoft.com

/default.aspx?scid=FH;[LN];sp&.
● .NET Framework Service Packs:

● Article 318836, “INFO: How to Obtain the Latest .NET Framework Service
Pack” in the Microsoft Knowledge Base at http://support.microsoft.com
/default.aspx?scid=kb;en-us;318836.

● Article 318785, “INFO: Determining Whether Service Packs Are
Installed on .NET Framework” in the Microsoft Knowledge Base at
http://support.microsoft.com/default.aspx?scid=kb;en-us;318785.

http://support.microsoft.com/newsgroups/default.aspx
http://support.microsoft.com/newsgroups/default.aspx
http://msdn.microsoft.com/newsgroups/
http://www.microsoft.com/technet/newsgroups/
http://www.microsoft.com/technet/newsgroups/default.asp?url=/technet/newsgroups/NodePages/security.asp
http://www.microsoft.com/technet/newsgroups/default.asp?url=/technet/newsgroups/NodePages/security.asp
http://www.microsoft.com/technet/newsgroups/default.asp?url=/technet/newsgroups/NodePages/security.asp
http://www.microsoft.com/technet/newsgroups/default.asp?url=/technet/newsgroups/NodePages/security.asp
http://msdn.microsoft.com/newsgroups/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.security
http://msdn.microsoft.com/newsgroups/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.security
http://msdn.microsoft.com/newsgroups/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.framework.aspnet.security
http://msdn.microsoft.com/newsgroups/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.framework.aspnet.security
http://msdn.microsoft.com/newsgroups/loadframes.asp?icp=msdn&slcid=us&newsgroup=microsoft.public.dotnet.framework.aspnet.security
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://support.microsoft.com/default.aspx?scid=FH;[LN];sp&
http://support.microsoft.com/default.aspx?scid=FH;[LN];sp&
http://support.microsoft.com/default.aspx?scid=kb;en-us;318836
http://support.microsoft.com/default.aspx?scid=kb;en-us;318836
http://support.microsoft.com/default.aspx?scid=kb;en-us;318785

684 Improving Web Application Security: Threats and Countermeasures

Alerts and Notification

Microsoft Security Notification Services
● Virus alerts for Microsoft products at http://www.microsoft.com/technet/treeview/?url=

/technet/security/virus/alerts/.
● Security Notification Service at http://register.microsoft.com/subscription

/subscribeme.asp?ID=135.
Use this service to register for regular e-mail bulletins that notify you of the
availability of new fixes and updates.

Third Party Security Notification Services
● CERT Advisory Mailing List at http://www.cert.org/contact_cert/certmaillist.html.

Informative advisories are sent when vulnerabilities are reported.
● Windows and .NET Magazine Security UPDATE at http://email.winnetmag.com

/winnetmag/winnetmag_prefctr.asp#Security.
This announces the latest security breaches and corresponding fixes. It also gives
advice on reacting to vulnerabilities.

● NTBugtraq at http://www.ntbugtraq.com/default.asp?pid=31&sid=1#020.
This is an open discussion of Windows security bugs and exploits. Vulnerablities
that do not have patches are discussed.

● Internet Storm Center at http://isc.incidents.org.
This site tracks the frequency of worms, denial of service attacks, as well as other
kinds of attacks.

● Security Focus Web site at www.securityfocus.com.

Additional Resources

Checklists and Assessment Guidelines
● IIS 5.0 Security Checklist at http://www.microsoft.com/technet/treeview

/default.asp?url=/technet/security/tools/chklist/iis5chk.asp.
● Security Tools and Checklists at http://www.microsoft.com/technet/treeview

/default.asp?url=/technet/security/tools/tools.asp.

http://www.microsoft.com/technet/treeview/?url=/technet/security/virus/alerts/
http://www.microsoft.com/technet/treeview/?url=/technet/security/virus/alerts/
http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://www.cert.org/contact_cert/certmaillist.html
http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp#Security
http://email.winnetmag.com/winnetmag/winnetmag_prefctr.asp#Security
http://www.ntbugtraq.com/default.asp?pid=31&sid=1#020
http://isc.incidents.org/
http://www.securityfocus.com/
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/chklist/iis5chk.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/chklist/iis5chk.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools.asp

 Related Security Resources 685

Common Criteria
● Windows 2000 Common Criteria Guide (see Chapter 4) at http://www.microsoft.com

/technet/treeview/default.asp?url=/technet/security/issues/W2kCCSCG/default.asp.
The Windows 2000 Common Criteria Security Target (ST) provides a set of
security requirements taken from the Common Criteria (CC) for Information
Technology Security Evaluation. The Windows 2000 product was evaluated
against the Windows 2000 ST and satisfies the ST requirements.
This document is written for those who are responsible for ensuring that
the installation and configuration process results in a secure configuration.
A secure configuration is one that enforces the requirements presented in
the Windows 2000 ST, referred to as the Evaluated Configuration.

Reference Hub
● Reference hub from Building Secure ASP.NET Applications at

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html
/SecNetAP03.asp?frame=true.

Security Knowledge in Practice
● CERT Security Improvement Modules at http://www.cert.org/security-improvement

/skip.html.

Vulnerabilities
● SANs TOP 20 List at http://www.sans.org/top20/.
● CERT (Computer Emergency Response Team) at http://www.cert.org.

World Wide Web Security FAQ
● http://www.w3.org/Security/faq/www-security-faq.html.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/issues/W2kCCSCG/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/issues/W2kCCSCG/default.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetAP03.asp?frame=true
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/SecNetAP03.asp?frame=true
http://www.cert.org/security-improvement/skip.html
http://www.cert.org/security-improvement/skip.html
http://www.sans.org/top20/
http://www.cert.org/
http://www.w3.org/Security/faq/www-security-faq.html

Index of Checklists

Overview
Improving Web Application Security: Threats and Countermeasures provides a series of
checklists that help you turn the information and details that you learned in the
individual chapters into action. The following checklists are included:
● Checklist: Architecture and Design Review
● Checklist: Securing ASP.NET
● Checklist: Securing Web Services
● Checklist: Securing Enterprise Services
● Checklist: Securing Remoting
● Checklist: Securing Data Access
● Checklist: Securing Your Network
● Checklist: Securing Your Web Server
● Checklist: Securing Your Database Server
● Checklist: Security Review for Managed Code

Designing Checklist
Checklist: Architecture and Design Review covers aspects of the architecture and
design stages of the project life cycle, including: input validation, authentication,
authorization, configuration management, sensitive data, session management,
cryptography, parameter manipulation, exception management, and auditing and
logging.

Building Checklists
Each checklist in the building series covers the following application categories: input
validation, authentication, authorization, configuration management, sensitive data,
session management, cryptography, parameter manipulation, exception
management, and auditing and logging. These checklists are:
● Checklist: Securing ASP.NET
● Checklist: Securing Web Services
● Checklist: Securing Enterprise Services
● Checklist: Securing Remoting
● Checklist: Securing Data Access

688 Improving Web Application Security: Threats and Countermeasures

Securing Checklists
Each checklist in the securing series covers aspects of securing the servers based on
roles. The checklists cover the following: patches and updates, services, protocols,
accounts, files and directories, shares, ports, registry, and auditing and logging. These
checklists are:
● Checklist: Securing Web Server. In addition to the common checklist information

cited previously, this checklist covers the following points that are specific to a
Web server: sites and virtual directories, script mappings, ISAPI filters, metabase,
Machine.config, and code access security.

● Checklist: Securing Database Server. In addition to the common checklist
information cited previously, this checklist covers following points that are specific
to a database server: SQL Server security; and SQL Server logins, users, and roles.

Assessing Checklist
Checklist: Security Review for Managed Code helps you to uncover security
vulnerabilities in your managed code. This checklist covers the following:
assembly-level checks, class-level checks, cryptography, secrets, exception
management, delegates, serialization, threading, reflection, unmanaged code
access, file I/O, event log, registry, environment variables and code access security
considerations.

Checklist:
Architecture and Design Review

How to Use This Checklist
This checklist is a companion to Chapter 4, “Design Guidelines for Secure Web
Applications,” and Chapter 5, “Architecture and Design Review for Security.” Use it
to help you perform architecture and design reviews to evaluate the security of your
Web applications and to implement the design guidelines in Chapter 4.

This checklist should evolve based on the experience you gain from performing
reviews. You might also want to perform custom checks that are based on a specific
aspect of your architecture or design to ensure that your deployment environment
the design.

Deployment and Infrastructure Considerations

Check Description
 The design identifies, understands, and accommodates the company security policy.

 Restrictions imposed by infrastructure security (including available services, protocols, and
firewall restrictions) are identified.

 The design recognizes and accomodates restrictions imposed by hosting environments
(including application isolation requirements).

 The target environment code-access-security trust level is known.

 The design identifies the deployment infrastructure requirements and the deployment
configuration of the application.

 Domain structures, remote application servers, and database servers are identified.

 The design identifies clustering requirements.

 The design identifies the application configuration maintenance points (such as what needs
to be configured and what tools are available for an IDC admin).

 Secure communication features provided by the platform and the application are known.

 The design addresses Web farm considerations (including session state management,
machine specific encryption keys, Secure Sockets Layer (SSL), certificate deployment
issues, and roaming profiles).

 The design identifies the certificate authority (CA) to be used by the site to support SSL.

 The design addresses the required scalability and performance criteria.

690 Improving Web Application Security: Threats and Countermeasures

Application Architecture and Design Considerations

Input Validation

Check Description
 All entry points and trust boundaries are identified by the design.

 Input validation is applied whenever input is received from outside the current trust
boundary.

 The design assumes that user input is malicious.

 Centralized input validation is used where appropriate.

 The input validation strategy that the application adopted is modular and consistent.

 The validation approach is to constrain, reject, and then sanitize input.
(Looking for known, valid, and safe input is much easier than looking for known malicious or
dangerous input.)

 Data is validated for type, length, format, and range.

 The design addresses potential canonicalization issues.

 Input file names and file paths are avoided where possible.

 The design addresses potential SQL injection issues.

 The design addresses potential cross-site scripting issues.

 The design does not rely on client-side validation.

 The design applies defense in depth to the input validation strategy by providing input
validation across tiers.

 Output that contains input is encoded using HtmlEncode and UrltEncode.

Authentication

Check Description
 Application trust boundaries are identified by the design.

 The design identifies the identities that are used to access resources across the trust
boundaries.

 The design partitions the Web site into public and restricted areas using separate folders.

 The design identifies service account requirements.

 The design identifies secure storage of credentials that are accepted from users.

 Checklist: Architecture and Design Review 691

Authentication (continued)
Check Description

 The design identifies the mechanisms to protect the credentials over the wire (SSL, IPSec,
encryption and so on).

 Account management policies are taken into consideration by the design.

 The design ensure that minimum error information is returned in the event of authentication
failure.

 The identity that is used to authenticate with the database is identified by the design.

 If SQL authentication is used, credentials are adequately secured over the wire (SSL or
IPSec) and in storage (DPAPI).

 The design adopts a policy of using least-privileged accounts.

 Password digests (with salt) are stored in the user store for verification.

 Strong passwords are used.

 Authentication tickets (cookies) are not transmitted over non-encrypted connections.

Authorization

Check Description
 The role design offers sufficient separation of privileges (the design considers authorization

granularity).

 Multiple gatekeepers are used for defense in depth.

 The application’s login is restricted in the database to access-specific stored procedures.

 The application’s login does not have permissions to access tables directly.

 Access to system level resources is restricted.

 The design identifies code access security requirements. Privileged resources and privileged
operations are identified.

 All identities that are used by the application are identified and the resources accessed by
each identity are known.

692 Improving Web Application Security: Threats and Countermeasures

Configuration Management

Check Description
 Administration interfaces are secured (strong authentication and authorization is used).

 Remote administration channels are secured.

 Configuration stores are secured.

 Configuration secrets are not held in plain text in configuration files.

 Administrator privileges are separated based on roles (for example, site content developer or
system administrator).

 Least-privileged process accounts and service accounts are used.

Sensitive Data

Check Description
 Secrets are not stored unless necessary. (Alternate methods have been explored at

design time.)

 Secrets are not stored in code.

 Database connections, passwords, keys, or other secrets are not stored in plain text.

 The design identifies the methodology to store secrets securely. (Appropriate algorithms and
key sizes are used for encryption. It is preferable that DPAPI is used to store configuration
data to avoid key management.)

 Sensitive data is not logged in clear text by the application.

 The design identifies protection mechanisms for sensitive data that is sent over the network.

 Sensitive data is not stored in persistent cookies.

 Sensitive data is not transmitted with the GET protocol.

Session Management

Check Description
 SSL is used to protect authentication cookies.

 The contents of authentication cookies are encrypted.

 Session lifetime is limited.

 Session state is protected from unauthorized access.

 Session identifiers are not passed in query strings.

 Checklist: Architecture and Design Review 693

Cryptography

Check Description
 Platform-level cryptography is used and it has no custom implementations.

 The design identifies the correct cryptographic algorithm (and key size) for the application’s
data encryption requirements.

 The methodology to secure the encryption keys is identified.

 The design identifies the key recycle policy for the application.

 Encryption keys are secured.

 DPAPI is used where possible to avoid key management issues.

 Keys are periodically recycled.

Parameter Manipulation

Check Description
 All input parameters are validated (including form fields, query strings, cookies, and HTTP

headers).

 Cookies with sensitive data are encrypted.

 Sensitive data is not passed in query strings or form fields.

 HTTP header information is not relied on to make security decisions.

 View state is protected using MACs.

Exception Management

Check Description
 The design outlines a standardized approach to structured exception handling across the

application.

 Application exception handling minimizes the information disclosure in case of an exception.

 The design identifies generic error messages that are returned to the client.

 Application errors are logged to the error log.

 Private data (for example, passwords) is not logged.

694 Improving Web Application Security: Threats and Countermeasures

Auditing and Logging

Check Description
 The design identifies the level of auditing and logging necessary for the application and

identifies the key parameters to be logged and audited.

 The design considers how to flow caller identity across multiple tiers (at the operating
system or application level) for auditing.

 The design identifies the storage, security, and analysis of the application log files.

Checklist:
Securing ASP.NET

How to Use This Checklist
This checklist is a companion to Chapter 10, “Building Secure ASP.NET Pages and
Controls,” Chapter 19, “Securing Your ASP.NET Application and Web Services,”
and Chapter 20, “Hosting Multiple Web Applications.” Use it to help you secure
an ASP.NET application and also as a snapshot of the corresponding chapters.

Design Considerations

Check Description
 Security decisions should not rely on client-side validations; they are made on the

server side.

 The Web site is partitioned into public access areas and restricted areas that require
authentication access. Navigation between these areas should not flow sensitive credentials
information.

 The identities used to access remote resources from ASP.NET Web applications are clearly
identified.

 Mechanisms have been identified to secure credentials, authentication tickets, and other
sensitive information over network and in persistent stores.

 A secure approach to exception management is identified. The application fails securely in
the event of exceptions.

 The site has granular authorization checks for pages and directories.

 Web controls, user controls, and resource access code are all partitioned in their own
assemblies for granular security.

696 Improving Web Application Security: Threats and Countermeasures

Application Categories Considerations

Input Validation

Check Description
 User input is validated for type, length, format, and range. Input is checked for known valid

and safe data and then for malicious, dangerous data.

 String form field input is validated using regular expressions (for example, by the
RegularExpressionValidator control.)

 Regular HTML controls, query strings, cookies, and other forms of input are validated using
the Regex class and/or your custom validation code.

 The RequiredFieldValidator control is used where data must be entered.

 Range checks in server controls are checked by RangeValidator controls.

 Free form input is sanitized to clean malicious data.

 Input file names are well formed and are verifiably valid within the application context.

 Output that includes input is encoded with HtmlEncode and UrlEncode.

 MapPath restricts cross-application mapping where appropriate.

 Character encoding is set by the server (ISO-8859-1 is recommended).

 The ASP.NET version 1.1 validateRequest option is enabled.

 URLScan is installed on the Web server.

 The HttpOnly cookie option is used for defense in depth to help prevent cross-site scripting.
(This applies to Internet Explorer 6.1 or later.)

 SQL parameters are used in data access code to validate length and type of data and to
help prevent SQL injection.

Authentication

Check Description
 Site is partitioned to restricted areas and public areas.

 Absolute URLs are used for navigation where the site is partitioned with secure and non-
secure folders.

 Secure Sockets Layer (SSL) is used to protect credentials and authentication cookies.

 The slidingExpiration attribute is set to “false” and limited authentication cookie time-outs
are used where the cookie is not protected by using SSL.

 Checklist: Securing ASP.NET 697

Authentication (continued)
Check Description

 The forms authentication cookie is restricted to HTTPS connections by using the requireSSL
attribute or the Secure cookie property.

 The authentication cookie is encrypted and integrity checked (protection=“All”).

 Authentication cookies are not persisted.

 Application cookies have unique path/name combinations.

 Personalization cookies are separate from authentication cookies.

 Passwords are not stored directly in the user store; password digests with salt are stored
instead.

 The impersonation credentials (if using a fixed identity) are encrypted in the configuration file
by using Aspnet_setreg.exe.

 Strong password policies are implemented for authentication.

 The <credentials> element is not used inside <forms> element for Forms authentication
(use it for testing only).

Authorization

Check Description
 URL authorization is used for page and directory access control.

 File authorization is used with Windows authentication.

 Principal permission demands are used to secure access to classes and members.

 Explicit role checks are used if fine-grained authorization is required.

Configuration Management

Check Description
 Configuration file retrieval is blocked by using HttpForbiddenHandler.

 A least-privileged account is used to run ASP.NET.

 Custom account credentials (if used) are encrypted on the <processModel> element by
using Aspnet_setreg.exe.

 To enforce machine-wide policy, Web.config settings are locked by using
allowOveride=“false” in Machine.config.

698 Improving Web Application Security: Threats and Countermeasures

Sensitive Data

Check Description
 SSL is used to protect sensitive data on the wire.

 Sensitive data is not passed across pages; it is maintained using server-side state
management.

 Sensitive data is not stored in cookies, hidden form fields, or query strings.

 Do not cache sensitive data. Output caching is off by default.

 Plain text passwords are avoided in Web.config and Machine.config files. (Aspnet_setreg.exe
is used to encrypt credentials.)

Session Management

Check Description
 The session cookie is protected using SSL on all pages that require authenticated access.

 The session state service is disabled if not used.

 The session state service (if used) runs using a least-privileged account.

 Windows authentication is used to connect to Microsoft® SQL Server™ state database.

 Access to state data in the SQL Server is restricted.

 Connection strings are encrypted by using Aspnet_setreg.exe.

 The communication channel to state store is encrypted (IPSec or SSL).

Parameter Manipulation

Check Description
 View state is protected using message authentication codes (MACs).

 Query strings with server secrets are hashed.

 All input parameters are validated.

 Page.ViewStateUserKey is used to counter one-click attacks.

 Checklist: Securing ASP.NET 699

Exception Management

Check Description
 Structured exception handling is used.

 Exception details are logged on the server.

 Generic error pages with harmless messages are returned to the client.

 Page-level or application-level error handlers are implemented.

 The application distinguishes between errors and exception conditions.

Auditing and Logging

Check Description
 The ASP.NET process is configured to allow new event sources to be created at runtime, or

application event sources to be created at installation time.

Configuration File Settings

Check Description
 <trace/>

Tracing is not enabled on the production servers.

<trace enabled="false">

 <globalization>

Request and response encoding is appropriately configured.

 <httpRuntime>

maxRequestLength is configured to prevent users from uploading very large files (optional).

 <compilation>

Debug compiles are not enabled on the production servers by setting debug=“false”

<compilation debug="false" . . ./>

 <pages>

If the application does not use view state, enableViewState is set to “false”.

<pages enableViewState="false" . . ./>

If the application uses view state, enableViewState is set to “true” and
enableViewStateMac is set to “true” to detect view state tampering.

<pages enableViewState="true" enableViewStateMac="true" />

(continued)

700 Improving Web Application Security: Threats and Countermeasures

Configuration File Settings (continued)
Check Description

 <customErrors>

Custom error pages are returned to the client and detailed exception details are prevented
from being returned by setting mode=“On”.

<customErrors mode=”On” />

A generic error page is specified by the defaultRedirect attribute.

<customErrors mode=”On” defaultRedirect=”/apperrorpage.htm” />

 <authentication>

The authentication mode is appropriately configured to support application requirements. To
enforce the use of a specific authentication type, a <location> element with
allowOverride=“false” is used.

<location path=”” allowOverride=”false”>
 <system.web>
 <authentication mode=”Windows” />
 </system.web>
</location>

 <forms>

The Web site is partitioned for public and restricted access.

The Forms authentication configuration is secure:

<forms loginUrl=”Restricted\login.aspx”
 protection=”All”
 requireSSL=”true”
 timeout=”10”
 name=”AppNameCookie”
 path=”/FormsAuth”
 slidingExpiration=”true” />

The authentication cookie is encrypted and integrity checked (protection).

SSL is required for authentication cookie (requireSSL).

Sliding expiration is set to false if SSL is not used (slidingExpiration).

The session lifetime is restricted (timeout).

Cookie names and paths are unique (name and path).

The <credentials> element is not used.

 Checklist: Securing ASP.NET 701

Configuration File Settings (continued)
Check Description

 <identity>

Impersonation identities (if used) are encrypted in the registry by using Aspnet_setreg.exe:

<identity impersonate="true"
 userName="registry:HKLM\SOFTWARE\YourApp\
identity\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\YourApp\
identity\ASPNET_SETREG,password"/>

 <authorization>

Correct format of role names is verified.

 <machineKey>

If multiple ASP.NET Web applications are deployed on the same Web server, the
“IsolateApps” setting is used to ensure that a separate key is generated for each Web
application.

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps"
 validation="SHA1" />

If the ASP. NET Web application is running in a Web farm, specific machine keys are used,
and these keys are copied across all servers in the farm.

If the view state is enabled, the validation attribute is set to “SHA1”.

The validation attribute is set to “3DES” if the Forms authentication cookie is to be
encrypted for the application.

 <sessionState>

If mode=“StateServer”, then credentials are stored in an encrypted form in the registry by
using Aspnet_setreg.exe.

If mode=“SQLServer”, then Windows authentication is used to connect to the state store
database and credentials are stored in an encrypted form in the registry by using
Aspnet_setreg.exe.

 <httpHandlers>

Unused file types are mapped to HttpForbiddenHandler to prevent files from being retrieved
over HTTP. For example:

<add verb="*" path="*.rem"
 type="System.Web.HttpForbiddenHandler"/>

(continued)

702 Improving Web Application Security: Threats and Countermeasures

Configuration File Settings (continued)
Check Description

 <processModel>

A least-privileged account like ASPNET is used to run the ASP.NET process.

<processModel userName="Machine" password="AutoGenerate"

The system account is not used to run the ASP.NET process.

The Act as part of the operating system privilege is not granted to the process account.

Credentials for custom accounts are encrypted by using Aspnet_setreg.exe.

<processModel
 userName="registry:HKLM\SOFTWARE\MY_SECURE_APP\
 processmodel\ASPNET_SETREG,userName"
 password="registry:HKLM\SOFTWARE\MY_SECURE_APP\
 processmodel\ASPNET_SETREG,password" . . ./>

If the application uses Enterprise Services, comAuthenticationLevel and
comImpersonationLevel are configured appropriately.

Call level authentication is set at minimum to ensure that all method calls can be
authenticated by the remote application.

PktPrivacy is used to encrypt and tamper proof the data across the wire in the absence of
infrastructure channel security (IPSec).

PktIntegrity is used for tamper proofing with no encryption (Eavesdroppers with network
monitors can see your data.)

 <webServices>

Unused protocols are disabled.

Automatic generation of Web Services Description Language (WSDL) is disabled (optional).

Web Farm Considerations

Check Description
 Session state. To avoid server affinity, the ASP.NET session state is maintained out of

process in the ASP.NET SQL Server state database or in the out-of-process state service
that runs on a remote machine.

 Encryption and verification. The keys used to encrypt and verify Forms authentication
cookies and view state are the same across all servers in a Web farm.

 DPAPI. DPAPI cannot be used with the machine key to encrypt common data that needs to
be accessed by all servers in the farm. To encrypt shared data on a remote server, use an
alternate implementation, such as 3DES.

 Checklist: Securing ASP.NET 703

Hosting Multiple Applications

Check Description
 Applications have distinct machine keys.

Use IsolateApps on <machineKey> or use per application <machineKey> elements.

<machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" . . . />

 Unique path/name combinations for Forms authentication cookies are enabled for each
application.

 Multiple processes (IIS 6.0 application pools) are used for application isolation on Microsoft
Windows® Server 2003.

 Multiple anonymous user accounts (and impersonation) are used for application isolation on
Windows 2000.

 Common machine keys are enabled on all servers in a Web farm.

 Separate machine keys for each application are used when hosting multiple applications on
a single server.

 Code access security trust levels are used for process isolation and to restrict access to
system resources (requires .NET Framework version 1.1).

ACLs and Permissions

Check Description
 Temporary ASP.NET files

%windir%\Microsoft.NET\Framework\{version}Temporary ASP.NET Files

ASP.NET process account and impersonated identities: Full Control

 Temporary directory

(%temp%)

ASP.NET process account: Full Control

 .NET Framework directory

%windir%\Microsoft.NET\Framework\{version}

ASP.NET process account and impersonated identities:

Read and Execute

List Folder Contents

(continued)

704 Improving Web Application Security: Threats and Countermeasures

ACLs and Permissions (continued)
Check Description

 .NET Framework configuration directory

%windir%\Microsoft.NET\Framework\{version}\CONFIG

ASP.NET process account and impersonated Identities:

Read and Execute
List Folder Contents

Read

 Web site root

C:\inetpub\wwwroot

or the path that the default Web site points to

ASP.NET process account: Full Control

 System root directory

%windir%\system32

ASP.NET process account: Read

 Global assembly cache

%windir%\assembly

Process account and impersonated identities: Read

 Content directory

C:\inetpub\wwwroot\YourWebApp
Process account:
Read and Execute
List Folder Contents
Read

Note With .NET Framework version 1.0, all parent directories from the content directory to
the file system root directory also require the above permissions. Parent directories include:

C:\
C:\inetpub\
C:\inetpub\wwwroot\

Application Bin Directory

Check Description
 IIS Web permissions are configured.

Bin directory does not have Read, Write, or Directory browsing permissions. Execute
permissions are set to None.

 Authentication settings are removed (so that all access is denied).

Checklist:
Securing Web Services

How to Use This Checklist
This checklist is a companion to Chapter 12, “Building Secure Web Services.” Use it to
help you build and secure your Web services and also as a snapshot of the
corresponding chapter.

Design Considerations

Check Description
 The authentication strategy has been identified.

 Privacy and integrity requirements of SOAP messages have been considered.

 Identities that are used for resource access have been identified.

 Implications of code access security trust levels have been considered.

Development Considerations

Input Validation

Check Description
 Input to Web methods is constrained and validated for type, length, format, and range.

 Input data sanitization is only performed in addition to constraining input data.

 XML input data is validated based on an agreed schema.

706 Improving Web Application Security: Threats and Countermeasures

Authentication

Check Description
 Web services that support restricted operations or provide sensitive data support

authentication.

 If plain text credentials are passed in SOAP headers, SOAP messages are only passed over
encrypted communication channels, for example, using SSL.

 Basic authentication is only used over an encrypted communication channel.

 Authentication mechanisms that use SOAP headers are based on Web Services Security (WS
Security) using the Web Services Enhancements WSE).

Authorization

Check Description
 Web services that support restricted operations or provide sensitive data support

authorization.

 Where appropriate, access to Web service is restricted using URL authorization or file
authorization if Windows authentication is used.

 Where appropriate, access to publicly accessible Web methods is restricted using
declarative principle permission demands.

Sensitive Data

Check Description
 Sensitive data in Web service SOAP messages is encrypted using XML encryption

OR messages are only passed over encrypted communication channels (for example,
using SSL.)

Parameter Manipulation

Check Description
 If parameter manipulation is a concern (particularly where messages are routed through

multiple intermediary nodes across multiple network links). Messages are digitally signed to
ensure that they cannot be tampered with.

 Checklist: Securing Web Services 707

Exception Management

Check Description
 Structured exception handling is used when implementing Web services.

 Exception details are logged (except for private data, such as passwords).

 SoapExceptions are thrown and returned to the client using the standard <Fault> SOAP
element.

 If application-level exception handling is required a custom SOAP extension is used.

Auditing and Logging

Check Description
 The Web service logs transactions and key operations.

Proxy Considerations

Check Description
 The endpoint address in Web Services Description Language (WSDL) is checked for validity.

 The URL Behavior property of the Web reference is set to dynamic for added flexibility.

Administration Considerations

Check Description
 Unnecessary Web service protocols, including HTTP GET and HTTP POST, are disabled.

 The documentation protocol is disabled if you do not want to support the dynamic generation
of WSDL.

 The Web service runs using a least-privileged process account (configured through the
<processModel> element in Machine.config.)

Custom accounts are encrypted by using Aspnet_setref.exe.

 Tracing is disabled with:

<trace enabled="false" />

 Debug compilations are disabled with:

<compilation debug="false" explicit="true" defaultLanguage="vb">

Checklist:
Securing Enterprise Services

How to Use This Checklist
This checklist is a companion to Chapter 11, “Building Secure Serviced Components”
and Chapter 17, “Securing Your Application Server.” Use it to help you secure
Enterprise Services and the server it runs on, or as a quick evaluation snapshot of the
corresponding chapters.

This checklist should evolve with steps that you discover to secure Enterprise
Services.

Developer Checks
Use the following checks if you build serviced components.

Authentication

Check Description
 Call-level authentication is used at minimum to prevent anonymous access. Serviced

component assemblies include:

[assembly: ApplicationAccessControl(
 Authentication = AuthenticationOption.Call)]

Authorization

Check Description
 Role-based security is enabled. Serviced component assemblies include: [assembly:

ApplicationAccessControl(true)]

 Component-level access checks are enabled to support component-level, interface-level, and
method-level role checks. Serviced component assemblies include:

[assembly: ApplicationAccessControl(AccessChecksLevel=
 AccessChecksLevelOption.ApplicationComponent)]

(continued)

710 Improving Web Application Security: Threats and Countermeasures

Authorization (continued)
Check Description

 Component-level access checks are enforced for all serviced components. Classes are
annotated with:

[ComponentAccessControl(true)]

 To support method-level security, the [SecurityMethod] attribute is used on classes or
method implementations, or the [SecurityRole] attribute is used on method
implementations.

Configuration Management

Check Description
 Server applications are configured to run with least-privileged accounts.

 Server applications only run using the interactive user account during development.

 Object constructor strings do not contain plain text secrets.

Sensitive Data

Check Description
 In the absence of IPSec encryption, RPC encryption is used to secure sensitive data over the

network in the absence of an IPSec infrastructure. Serviced component assemblies that use
RPC encryption include:

[assembly: ApplicationAccessControl(
 Authentication = AuthenticationOption.Privacy)]

Auditing and Logging

Check Description
 User transactions are logged to an event log. The audit record includes original caller identity

from SecurityCallContext.OriginalCaller.

Deployment Considerations

Check Description
 Port ranges are defined if you use dynamic port range allocation OR static endpoint mapping

is configured.

 Secrets are not stored in object constructor strings. Secrets such as database connection
strings are encrypted prior to storage.

 The server application run-as account is configured as a least-privileged account.

 Checklist: Securing Enterprise Services 711

Impersonation

Check Description
 The impersonation level is configured correctly. For ASP.NET clients, the impersonation level

is configured in Machine.config on the <processModel> element.

For Enterprise Services client applications, the level is configured in the COM+ catalog.

 Serviced component assemblies define the required impersonation level by using the
ApplicationAccessControl attribute as shown below:

[assembly: ApplicationAccessControl(
 ImpersonationLevel=ImpersonationLevelOption.Identify)]

Administrator Checklist

Check Description
 Latest COM+ updates and patches are installed.

 Object constructor strings do not contain plain text secrets.

 COM+ administration components are restricted.

 Impersonation level that is set for the application is correct.

 Server applications are configured to run with a least-privileged account.

Server applications do not run using the identity of the interactively logged on user.

 DTC service is disabled if it is not required.

Checklist:
Securing Remoting

How to Use This Checklist
This checklist is a companion to Chapter 13, “Building Secure Remoted
Components.” Use it to help you build secure components that use the Microsoft ®
.NET remoting technology and as a snapshot of the corresponding chapter.

Design Considerations

Check Description
 Remote components are not exposed to the Internet.

 The ASP.NET host and HttpChannel are used to take advantage of Internet Information
Services (IIS) and ASP.NET security features.

 TcpChannel (if used) is only used in trusted server scenarios.

 TcpChannel (if used) is used in conjunction with custom authentication and authorization
solutions.

Input Validation

Check Description
 MarshalByRefObj objects from clients are not accepted without validating the source of the

object.

 The risk of serialization attacks are mitigated by setting the typeFilterLevel attribute
programmatically or in the application’s Web.config file.

 All field items that are retrieved from serialized data streams are validated as they are
created on the server side.

714 Improving Web Application Security: Threats and Countermeasures

Authentication

Check Description
 Anonymous authentication is disabled in IIS.

 ASP.NET is configured for Windows authentication.

 Client credentials are configured at the client through the proxy object.

 Authentication connection sharing is used to improve performance.

 Clients are forced to authenticate on each call (unsafeAuthenticatedConnectionSharing is
set to “false”).

 connectionGroupName is specified to prevent unwanted reuse of authentication
connections.

 Plain text credentials are not passed over the network.

 IPrincipal objects passed from the client are not trusted.

Authorization

Check Description
 IPSec is used for machine-level access control.

 File authorization is enabled for user access control.

 Users are authorized with principal-based role checks.

 Where appropriate, access to remote resources is restricted by setting
rejectRemoteRequest attribute to “true”.

Configuration Management

Check Description
 Configuration files are locked down and secured for both the client and the server.

 Generic error messages are sent to the client by setting the mode attribute of the
<customErrors> element to “On”.

 Checklist: Securing Remoting 715

Sensitive Data

Check Description
 Exchange of sensitive application data is secured by using SSL, IPSec, or a custom

encryption sink.

Exception Management

Check Description
 Structured exception handling is used.

 Exception details are logged (not including private data, such as passwords).

 Generic error pages with standard, user friendly messages are returned to the client.

Auditing and Logging

Check Description
 If ASP.NET is used as the host, IIS auditing features are enabled.

 If required, a custom channel sink is used to perform logging on the client and the server.

Checklist:
Securing Data Access

How to Use This Checklist
This checklist is a companion to Chapter 14, “Building Secure Data Access” and
Chapter 16, “Securing Your Database Server.” Use it to help you build secure data
access, or as a quick evaluation snapshot of the corresponding chapters.

This checklist should evolve with secure data access practices that you discover
during software development.

SQL Injection Checks

Check Description
 Input passed to data access methods that originates outside the current trust boundary is

constrained.

Sanitization of input is only used as a defense in depth measure.

 Stored procedures that accept parameters are used by data access code. If stored
procedures are not used, type safe SQL parameters are used to construct SQL commands.

 Least-privileged accounts are used to connect to the database.

Authentication

Check Description
 Windows authentication is used to connect to the database.

 Strong passwords are used and enforced.

 If SQL Server authentication is used, the credentials are secured over the network by using
IPSec or SSL, or by installing a database server certificate.

 If SQL Server authentication is used, connection strings are encrypted by using DPAPI and
are stored in a secure location.

 Application connects using a least-privileged account. The sa account or other privileged
accounts that are members of the sysadmin or db_owner roles are not used for application
logins.

718 Improving Web Application Security: Threats and Countermeasures

Authorization

Check Description
 Calling users are restricted using declarative or imperative principal permission checks

(normally performed by business logic).

 Calling code is restricted using identity permission demands in scenarios where you know
and want to limit the calling code.

 Application login is restricted in the database and can only execute selected stored
procedures. Application’s login has no direct table access.

Configuration Management

Check Description
 Windows authentication is used to avoid credential management.

 Connection strings are encrypted and encrypted data is stored securely, for example, in a
restricted registry key.

 OLE DB connection strings do not contain Persist Security Info=“true” or “yes”.

 UDL files are secured with restricted ACLs.

Sensitive Data

Check Description
 Sensitive data is encrypted in the database using strong symmetric encryption (for

example, 3DES).

 Symmetric encryption keys are backed up and encrypted with DPAPI and stored in a
restricted registry key.

 Sensitive data is secured over the network by using SSL or IPSec.

 Passwords are not stored in custom user store databases. Password hashes are stored
with salt values instead.

 Checklist: Securing Data Access 719

Exception Management

Check Description
 ADO.NET exceptions are trapped and logged.

 Database connections and other limited resources are released in case of exception or
completion of operation.

 ASP.NET is configured with a generic error page using the <customErrors> element.

Deployment Considerations

Check Description
 Firewall restrictions ensure that only the SQL Server listening port is available on the

database server.

 A method for maintaining encrypted database connection strings is defined.

 The application is configured to use a least-privileged database login.

 SQL server auditing is configured. Failed login attempts are logged at minimum.

 Data privacy and integrity over the network is provided with IPSec or SSL.

Checklist:
Securing Your Network

How to Use This Checklist
This checklist is a companion to Chapter 15, “Securing Your Network.” Use it to help
secure your network, or as a quick evaluation snapshot of the corresponding
chapters.

This checklist should evolve as you discover steps that help implement your secure
network.

Router Considerations

Check Description
 Latest patches and updates are installed.

 You subscribed to router vendor’s security notification service.

 Known vulnerable ports are blocked.

 Ingress and egress filtering is enabled. Incoming and outgoing packets are confirmed as
coming from public or internal networks.

 ICMP traffic is screened from the internal network.

 Administration interfaces to the router are enumerated and secured.

 Web-facing administration is disabled.

 Directed broadcast traffic is not received or forwarded.

 Unused services are disabled (for example, TFTP).

 Strong passwords are used.

 Logging is enabled and audited for unusual traffic or patterns.

 Large ping packets are screened.

 Routing Information Protocol (RIP) packets, if used, are blocked at the outermost router.

722 Improving Web Application Security: Threats and Countermeasures

Firewall Considerations

Check Description
 Latest patches and updates are installed.

 Effective filters are in place to prevent malicious traffic from entering the perimeter

 Unused ports are blocked by default.

 Unused protocols are blocked by default.

 IPsec is configured for encrypted communication within the perimeter network.

 Intrusion detection is enabled at the firewall.

Switch Considerations

Check Description
 Latest patches and updates are installed.

 Administrative interfaces are enumerated and secured.

 Unused administrative interfaces are disabled.

 Unused services are disabled.

 Available services are secured.

Checklist:
Securing Your Web Server

How to Use This Checklist
This checklist is a companion to Chapter 16, “Securing Your Web Server.” Use it to
help implement a secure Web server, or as a quick evaluation snapshot of the
corresponding chapter.

This checklist should evolve with steps that you discover to secure your Web server.

Patches and Updates

Check Description
 MBSA is run on a regular interval to check for latest operating system and components

updates. For more information, see http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/tools/Tools/mbsahome.asp.

 The latest updates and patches are applied for Windows, IIS server, and the .NET
Framework. (These are tested on development servers prior to deployment on the production
servers.)

 Subscribe to the Microsoft Security Notification Service at http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp.

IISLockdown

Check Description
 IISLockdown has been run on the server.

 URLScan is installed and configured.

Services

Check Description
 Unnecessary Windows services are disabled.

 Services are running with least-privileged accounts.

 FTP, SMTP, and NNTP services are disabled if they are not required.

 Telnet service is disabled.

 ASP .NET state service is disabled and is not used by your applications.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp

724 Improving Web Application Security: Threats and Countermeasures

Protocols

Check Description
 WebDAV is disabled if not used by the application OR it is secured if it is required. For more

information, see Microsoft Knowledge Base article 323470, “How To: Create a Secure
WebDAV Publishing Directory.”

 TCP/IP stack is hardened.

 NetBIOS and SMB are disabled (closes ports 137, 138, 139, and 445).

Accounts

Check Description
 Unused accounts are removed from the server.

 Windows Guest account is disabled.

 Administrator account is renamed and has a strong password..

 IUSR_MACHINE account is disabled if it is not used by the application.

 If your applications require anonymous access, a custom least-privileged anonymous account
is created.

 The anonymous account does not have write access to Web content directories and cannot
execute command-line tools.

 ASP.NET process account is configured for least privilege. (This only applies if you are not
using the default ASPNET account, which is a least-privileged account.)

 Strong account and password policies are enforced for the server.

 Remote logons are restricted. (The “Access this computer from the network” user-right is
removed from the Everyone group.)

 Accounts are not shared among administrators.

 Null sessions (anonymous logons) are disabled.

 Approval is required for account delegation.

 Users and administrators do not share accounts.

 No more than two accounts exist in the Administrators group.

 Administrators are required to log on locally OR the remote administration solution is secure.

 Checklist: Securing Your Web Server 725

Files and Directories

Check Description
 Files and directories are contained on NTFS volumes.

 Web site content is located on a non-system NTFS volume.

 Log files are located on a non-system NTFS volume and not on the same volume where the
Web site content resides.

 The Everyone group is restricted (no access to \WINNT\system32 or Web directories).

 Web site root directory has deny write ACE for anonymous Internet accounts.

 Content directories have deny write ACE for anonymous Internet accounts.

 Remote IIS administration application is removed (\WINNT\System32\Inetsrv\IISAdmin).

 Resource kit tools, utilities, and SDKs are removed.

 Sample applications are removed (\WINNT\Help\IISHelp, \Inetpub\IISSamples).

Shares

Check Description
 All unnecessary shares are removed (including default administration shares).

 Access to required shares is restricted (the Everyone group does not have access).

 Administrative shares (C$ and Admin$) are removed if they are not required (Microsoft
Management Server (SMS) and Microsoft Operations Manager (MOM) require these shares).

Ports

Check Description
 Internet-facing interfaces are restricted to port 80 (and 443 if SSL is used).

 Intranet traffic is encrypted (for example, with SSL) or restricted if you do not have a secure
data center infrastructure.

Registry

Check Description
 Remote registry access is restricted.

 SAM is secured (HKLM\System\CurrentControlSet\Control\LSA\NoLMHash).

This applies only to standalone servers.

726 Improving Web Application Security: Threats and Countermeasures

Auditing and Logging

Check Description
 Failed logon attempts are audited.

 IIS log files are relocated and secured.

 Log files are configured with an appropriate size depending on the application security
requirement.

 Log files are regularly archived and analyzed.

 Access to the Metabase.bin file is audited.

 IIS is configured for W3C Extended log file format auditing.

Sites and Virtual Directories

Check Description
 Web sites are located on a non-system partition.

 “Parent paths” setting is disabled.

 Potentially dangerous virtual directories, including IISSamples, IISAdmin, IISHelp, and Scripts
virtual directories, are removed.

 MSADC virtual directory (RDS) is removed or secured.

 Include directories do not have Read Web permission.

 Virtual directories that allow anonymous access restrict Write and Execute Web permissions
for the anonymous account.

 There is script source access only on folders that support content authoring.

 There is write access only on folders that support content authoring and these folder are
configured for authentication (and SSL encryption, if required).

 FrontPage Server Extensions (FPSE) are removed if not used. If they are used, they are
updated and access to FPSE is restricted.

Script Mappings

Check Description
 Extensions not used by the application are mapped to 404.dll (.idq, .htw, .ida, .shtml, .shtm,

.stm, idc, .htr, .printer).

 Unnecessary ASP.NET file type extensions are mapped to “HttpForbiddenHandler” in
Machine.config.

 Checklist: Securing Your Web Server 727

ISAPI Filters

Check Description
 Unnecessary or unused ISAPI filters are removed from the server.

IIS Metabase

Check Description
 Access to the metabase is restricted by using NTFS permissions

(%systemroot%\system32\inetsrv\metabase.bin).

 IIS banner information is restricted (IP address in content location disabled).

Server Certificates

Check Description
 Certificate date ranges are valid.

 Certificates are used for their intended purpose (for example, the server certificate is not
used for e-mail).

 The certificate’s public key is valid, all the way to a trusted root authority.

 The certificate has not been revoked.

Machine.config

Check Description
 Protected resources are mapped to HttpForbiddenHandler.

 Unused HttpModules are removed.

 Tracing is disabled <trace enable=“false”/>

 Debug compiles are turned off.

<compilation debug="false" explicit="true" defaultLanguage="vb">

Code Access Security

Check Description
 Code access security is enabled on the server.

 All permissions have been removed from the local intranet zone.

 All permissions have been removed from the Internet zone.

728 Improving Web Application Security: Threats and Countermeasures

Other Check Points

Check Description
 IISLockdown tool has been run on the server.

 HTTP requests are filtered. URLScan is installed and configured.

 Remote administration of the server is secured and configured for encryption, low session
time-outs, and account lockouts.

Dos and Don’ts
● Do use a dedicated machine as a Web server.
● Do physically protect the Web server machine in a secure machine room.
● Do configure a separate anonymous user account for each application, if you host

multiple Web applications,
● Do not install the IIS server on a domain controller.
● Do not connect an IIS Server to the Internet until it is fully hardened.
● Do not allow anyone to locally log on to the machine except for the administrator.

Checklist:
Securing Your Database Server

How to Use This Checklist
This checklist is a companion to Chapter 18, “Securing Your Database Server.” Use it
to help you secure a database server and also as a snapshot of the corresponding
chapter.

Installation Considerations for Production Servers

Check Description
 Upgrade tools, debug symbols, replication support, books online, and development tools are

not installed on the production server.

 Microsoft ® SQL Server™ is not installed on a domain controller.

 SQL Server Agent is not installed if it is not being used by any application.

 SQL Server is installed on a dedicated database server.

 SQL Server is installed on an NTFS partition.

 Windows Authentication mode is selected unless SQL Server Authentication is specifically
required, in which case Mixed Mode is selected.

 A strong password is applied for the sa account or any other member of the sysadmin role.
(Use strong passwords for all accounts.)

 The database server is physically secured.

Patches and Updates

Check Description
 The latest service packs and patches have been applied for SQL Server.

(See http://support.microsoft.com/default.aspx?scid=kb;EN-US;290211.)

 Post service-pack patches have been applied for SQL server.
(See http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/current.asp?productid=30&servicepackid=0.)

http://support.microsoft.com/default.aspx?scid=kb;EN-US;290211
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=30&servicepackid=0
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp?productid=30&servicepackid=0

730 Improving Web Application Security: Threats and Countermeasures

Services

Check Description
 Unnecessary Microsoft Windows® services are disabled on the database server.

 All optional services, including Microsoft Search Service, MSSQLServerADHelper, and
SQLServerAgent, are disabled if not used by any applications.

 The Microsoft Distributed Transaction Coordinator (MS DTC) is disabled if it is not being
used by any applications.

 A least-privileged local/domain account is used to run the various SQL Server services,
for example, back up and replication.

Protocols

Check Description
 All protocols except TCP/IP are disabled within SQL Server. Check this using the Server

Network Utility.

 The TCP/IP stack is hardened on the database server.

Accounts

Check Description
 SQL Server is running using a least-privileged local account (or optionally, a least-privileged

domain account if network services are required).

 Unused accounts are removed from Windows and SQL Server.

 The Windows guest account is disabled.

 The administrator account is renamed and has a strong password.

 Strong password policy is enforced.

 Remote logons are restricted.

 Null sessions (anonymous logons) are restricted.

 Approval is required for account delegation.

 Shared accounts are not used.

 Membership of the local administrators group is restricted (ideally, no more than two
administration accounts).

 Checklist: Securing Your Database Server 731

Files and Directories

Check Description
 Restrictive permissions are configured on SQL Server installation directories (per the guide).

 The Everyone group does not have permission to access SQL Server installation directories.

 Setup log files are secured.

 Tools, utilities, and SDKs are removed or secured.

 Sensitive data files are encrypted using EFS (This is an optional step. If implemented, use
EFS only to encrypt MDF files, not LDF log files).

Shares

Check Description
 All unnecessary shares are removed from the server.

 Access to required shares is restricted (the Everyone group doesn’t have access).

 Administrative shares (C$ and Admin$) are removed if they are not required (Microsoft
Management Server (SMS) and Microsoft Operations Manager (MOM) require these shares).

Ports

Check Description
 Restrict access to all ports on the server except the ports configured for SQL Server and

database instances (TCP 1433 and UDP 1434 by default).

 Named instances are configured to listen on the same port.

 Port 3389 is secured using IPSec if it is left open for remote Terminal Services
administration

 The firewall is configured to support DTC traffic (if required by the application).

 The Hide server option is selected in the Server Network Utility (optional).

Registry

Check Description
 SQL Server registry keys are secured with restricted permissions.

 The SAM is secured (standalone servers only).

732 Improving Web Application Security: Threats and Countermeasures

Auditing and Logging

Check Description
 All failed Windows login attempts are logged.

 All failed actions are logged across the file system.

 SQL Server login auditing is enabled.

 Log files are relocated from the default location and secured with access control lists.

 Log files are configured with an appropriate size depending on the application security
requirement.

 Where the database contents are highly sensitive or vital, Windows is set to Shut Down
mode on overflow of the security logs.

SQL Server Security

Check Description
 SQL Server authentication is set to Windows only (if supported by the application).

 The SQL Server audit level is set to Failure or All.

 SQL Server runs using a least-privileged account.

SQL Server Logins, Users, and Roles

Check Description
 A strong sa password is used (for all accounts).

 SQL Server guest user accounts are removed.

 BUILTIN\Administrators server login is removed.

 Permissions are not granted for the public role.

 Members of sysadmin fixed server role are limited (ideally, no more than two users).

 Restricted database permissions are granted. Use of built-in roles, such as db_datareader
and db_datawriter, are avoided because they provide limited authorization granularity.

 Default permissions that are applied to SQL Server objects are not altered.

 Checklist: Securing Your Database Server 733

SQL Server Database Objects

Check Description
 Sample databases (including Pubs and Northwind) are removed.

 Stored procedures and extended stored procedures are secured.

 Access to cmdExec is restricted to members of the sysadmin role.

Additional Considerations

Check Description
 A certificate is installed on the database server to support SSL communication and the

automatic encryption of SQL account credentials (optional).

 NTLM version 2 is enabled by setting LMCompatibilityLevel to 5.

Staying Secure

Check Description
 Regular backups are performed.

 Group membership is audited.

 Audit logs are regularly monitored.

 Security assessments are regularly performed.

 You subscribe to SQL security bulletins at http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/current.asp?productid=30&servicepackid=0.

 You subscribe to the Microsoft Security Notification Service at http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bulletin/notify.asp

Checklist:
Security Review for Managed Code

How to Use This Checklist
This checklist is a companion to Chapter 7, “Building Secure Assemblies”, and
Chapter 8, “Code Access Security in Practice.” Use it to help you implement a
security review for managed code in your Web application, or as a quick evaluation
snapshot of the corresponding chapters.

This checklist should evolve so that you can repeat a successful security review of
managed code.

General Code Review Guidelines

Check Description
 Potential threats are clearly documented. (Threats are dependent upon the specific scenario

and assembly type.)

 Code is developed based on .NET framework coding guidelines and secure coding guidelines
at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html
/cpconnetframeworkdesignguidelines.asp.

 The FXCop analysis tool is run on assemblies and security warnings are addressed.

Managed Code Review Guidelines
Assembly-Level Checks

Check Description
 Assemblies have a strong name. (Dynamically generated ASP.NET Web page assemblies

cannot currently have a strong name.)

 You have considered delay signing as a way to protect and restrict the private key that is
used in the strong name and signing process.

 Assemblies include declarative security attributes (with SecurityAction.RequestMinimum) to
specify minimum permission requirements.

 Highly privileged assemblies are separated from lower privileged assemblies.

If the assembly is to be used in a partial-trust environment (for example, it is called from a
partial-trust Web application), then privileged code is sandboxed in a separate assembly.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpgenref/html/cpconnetframeworkdesignguidelines.asp

736 Improving Web Application Security: Threats and Countermeasures

Class-Level Checks

Check Description
 Class and member visibility is restricted. The most restrictive access modifier is used

(private where possible).

 Non-base classes are sealed.

 Input from outside the current trust boundary is validated. Input data is constrained and
validated for type, length, format, and range.

 Code implements declarative checks where virtual internal methods are used.

 Access to public classes and methods are restricted with principal permission demands
(where appropriate).

 Fields are private. When necessary, field values are exposed by using read/write or read-only
public properties.

 Read-only properties are used where possible.

 Types returned from methods that are not designed to be created independently contain
private default constructors.

 Unsealed public types do not have internal virtual members.

 Use of event handlers is thoroughly reviewed.

 Static constructors are private.

Cryptography

Check Description
 Code uses platform-provided cryptography and does not use custom implementations.

 Random keys are generated by using RNGCryptoServiceProvider (and not the Random class).

 PasswordDeriveBytes is used for password-based encryption.

 DPAPI is used to encrypt configuration secrets to avoid the key management issue.

 The appropriate key sizes are used for the chosen algorithm, or if they are not, the reasons
are identified and understood.

 Keys are not held in code.

 Access to persisted keys is restricted.

 Keys are cycled periodically.

 Exported private keys are protected.

 Checklist: Security Review for Managed Code 737

Secrets

Check Description
 Secrets are not hard coded.

 Plain text secrets are not stored in configuration files.

 Plain text secrets are not stored in memory for extended periods of time.

Exception Management

Check Description
 Code uses exception handling. You catch only the exceptions that you know about.

 Exception details are logged on the server to assist in diagnosing problems.

 The information that is returned to the end user is limited and safe.

 Code that uses exception filters is not sensitive to filter execution sequence (filter runs
before finally block).

 Code fails early to avoid unnecessary processing that consumes resources.

 Exception conditions do not allow a user to bypass security checks to run privileged code.

Delegates

Check Description
 Delegates are not accepted from untrusted sources.

 If code does accept a delegate from untrusted code, it constrains the delegate before calling
it by using security permissions with SecurityAction.PermitOnly.

 Permissions are not asserted before calling a delegate.

Serialization

Check Description
 Serialization is restricted to privileged code.

 Sensitive data is not serialized.

 Field data from serialized data streams is validated.

 ISerializable.GetObjectData implementation is protected with an identity permission demand
in scenarios where you want to restrict which code can serialize the object.

738 Improving Web Application Security: Threats and Countermeasures

Threading

Check Description
 Results of security checks are not cached.

 Impersonation tokens are considered when new threads are created (any existing thread
token is not passed to the new thread).

 Threads are synchronized in static class constructors for multithreaded application code.

 Object implementation code is designed and built to be thread safe.

 Threads are synchronized in static class constructors.

Reflection

Check Description
 Caller cannot influence dynamically generated code (for example, by passing assembly and

type names as input arguments).

 Code demands permission for user authorization where assemblies are loaded dynamically.

Unmanaged Code Access

Check Description
 Input and output strings that are passed between managed and unmanaged code are

constrained and validated.

 Array bounds are checked.

 File path lengths are checked and do not exceed MAX_PATH.

 Unmanaged code is compiled with the /GS switch.

 Use of “dangerous” APIs by unmanaged code is closely inspected. These include
LogonUser, RevertToSelf, CreateThread, Network APIs, and Sockets APIs.

 Naming conventions (safe, native, unsafe) are applied to unmanaged APIs.

 Assemblies that call unmanaged code specify unmanaged permission requirements using
declarative security (SecurityAction.RequestMinimum).

 Unmanaged API calls are sandboxed and isolated in a wrapper assembly.

 Use of SuppressUnmanagedCodeSecurityAttribute is thoroughly reviewed and additional
security checks are implemented.

 Types are not annotated with SuppressUnmanagedCodeSecurityAttribute. (This attribute is
used on specific P/Invoke method declarations instead.)

 Calling code is appropriately authorized using a full stack walk Demand (using either a
.NET Framework permission or custom permission).

 Checklist: Security Review for Managed Code 739

Unmanaged Code Access (continued)
Check Description

 Unmanaged types or handles are never exposed to partially trusted code.

 Pointers are private fields.

 Methods that use IntPtr fields in a type that has a finalizer call GC.KeepAlive(object).

Resource Access Considerations

File I/O

Check Description
 No security decisions are made based on filenames.

 Input file paths and file names are well formed.

 Environment variables are not used to construct file paths.

 File access is constrained to the context of the application (by using a restricted
FileIOPermission).

 Assembly file I/O requirements are specified using declarative security attributes (with
SecurityAction.RequestMinimum).

Event Log

Check Description
 Event log access code is constrained using EventLogPermission.

This particularly applies if your event logging code could be called by untrusted callers.

 Event sources are created at installation time (or the account used to run the code that
writes to the event log must be allowed to create event sources by configuring an
appropriate ACL in the registry).

 Security-sensitive data, such as passwords, is not written to the event log.

Registry

Check Description
 Sensitive data, such as database connection strings or credentials, is encrypted prior to

storage in the registry.

 Keys are restricted. If a key beneath HKEY_CURRENT_MACHINE is used, the key is
configured with a restricted ACL. Alternatively, HKEY_CURRENT_USER is used.

 Registry access is constrained by using RegistryPermission. This applies especially if your
registry access code could be called by untrusted callers.

740 Improving Web Application Security: Threats and Countermeasures

Environment Variables

Check Description
 Code that accesses environment variables is restricted with EnvironmentPermission. This

applies especially if your code can be called by untrusted code.

 Environment permission requirements are declared by using declarative security attributes
with SecurityAction.RequestMinimum.

Code Access Security Considerations
If an entry is preceded by a star (*), it indicates that the checks are performed by
the FXCop analysis tool. For more information about FXCop security checks, see
http://www.gotdotnet.com/team/libraries/FxCopRules/SecurityRules.aspx.

Check Description
 Assemblies marked with AllowPartiallyTrustedCallersAttribute (APTCA) do not expose objects

from non-APTCA assemblies.

 Code that only supports full-trust callers is strong named or explicitly demands the full-trust
permission set.

 All uses of Assert are thoroughly reviewed.

 All calls to Assert are matched with a corresponding call to RevertAssert.

 *The Assert window is as small as possible.

 *Asserts are proceeded with a full permission demand.

 *Use of Deny or PermitOnly is thoroughly reviewed.

 All uses of LinkDemand are thoroughly reviewed. (Why is a LinkDemand and not a full
Demand used?)

 LinkDemands within Interface declarations are matched by LinkDemands on the method
implementation.

 *Unsecured members do not call members protected by a LinkDemand.

 Permissions are not demanded for resources accessed through the .NET Framework
classes.

 Access to custom resources (through unmanaged code) is protected with custom code
access permissions.

 Access to cached data is protected with appropriate permission demands.

 If LinkDemands are used on structures, the structures contain explicitly defined
constructors.

http://www.gotdotnet.com/team/libraries/FxCopRules/SecurityRules.aspx

 Checklist: Security Review for Managed Code 741

Code Access Security Considerations (continued)
Check Description

 *Methods that override other methods that are protected with LinkDemands also issue the
same LinkDemand.

 *LinkDemands on types are not used to protect access to fields inside those types.

 *Partially trusted methods call only other partially trusted methods.

 *Partially trusted types extend only other partially trusted types.

 *Members that call late bound members have declarative security checks.

 *Method-level declarative security does not mistakenly override class-level security checks.

 Use of the following “potentially dangerous” permissions is thoroughly reviewed:

SecurityPermission
Unmanaged Code
SkipVerification
ControlEvidence
ControlPolicy
SerializationFormatter
ControlPrincipal
ControlThread
ReflectionPermission
MemberAccess

 Code identity permission demands are used to authorize calling code in scenarios where you
know in advance the range of possible callers (for example, you want to limit calling code to
a specific application).

 Permission demands of the .NET Framework are not duplicated.

 Inheritance is restricted with SecurityAction.InheritanceDemand in scenarios where you want
to limit which code can derive from your code.

How To:
Index

Improving Web Application Security: Threats and Countermeasures includes the following
How Tos, each of which shows you the steps to complete a specific security task:
● How To: Implement Patch Management
● How To: Harden the TCP Stack
● How To: Secure Your Developer Workstation
● How To: Use IPSec for Filtering Ports and Authentication
● How To: Use the Microsoft Baseline Security Analyzer
● How To: Use IISLockdown.exe
● How To: Use URLScan
● How To: Create a Custom Encryption Permission
● How To: Use Code Access Security Policy to Constrain an Assembly

How To:
Implement Patch Management

Applies To
This information applies to server or workstation computers that run the following:
● Microsoft® Windows® 2000

Summary
This How To explains patch management, including how to keep single or multiple
servers up to date. Additional software is not required, except for the tools available
for download from Microsoft.

Operations and security policy should adopt a patch management process. This How
To defines the processes required to create a sound patch management system. The
patch management process can be automated using the guidance in this How To.

What You Must Know
Before using this How To, you should be aware of the following issues and
considerations.

The Patch Management Process
Patch management is a circular process and must be ongoing. The unfortunate reality
about software vulnerabilities is that, after you apply a patch today, a new
vulnerability must be addressed tomorrow.

Develop and automate a patch management process that includes each of the
following:
● Detect. Use tools to scan your systems for missing security patches. The detection

should be automated and will trigger the patch management process.
● Assess. If necessary updates are not installed, determine the severity of the

issue(s) addressed by the patch and the mitigating factors that may influence your
decision. By balancing the severity of the issue and mitigating factors, you can
determine if the vulnerabilities are a threat to your current environment.

746 Improving Web Application Security: Threats and Countermeasures

● Acquire. If the vulnerability is not addressed by the security measures already in
place, download the patch for testing.

● Test. Install the patch on a test system to verify the ramifications of the update
against your production configuration.

● Deploy. Deploy the patch to production computers. Make sure your applications
are not affected. Employ your rollback or backup restore plan if needed.

● Maintain. Subscribe to notifications that alert you to vulnerabilities as they are
reported. Begin the patch management process again.

The Role of MBSA in Patch Management
The Microsoft Baseline Security Analyzer (MBSA) is a tool that is designed for two
purposes: first, to scan a computer against vulnerable configurations; and second,
to detect the availability of security updates that are released by Microsoft.

In this How To, you use MBSA without scanning for vulnerable configurations. When
using the graphical user interface (GUI), specify this by unchecking the options in
Figure 1 and only choosing Check for security updates.

Figure 1
MBSA scan options

When using the command line interface (Mbsacli.exe), you can use the following
command to scan only missing security updates.

Mbsacli.exe /n OS+IIS+SQL+PASSWORD

The option /n specifies the checks to skip. The selection (OS+IIS+SQL+PASSWORD)
skips the checks for vulnerabilities and weak passwords.

For more details about using MBSA, including the security configuration scan,
see “How To: Use MBSA” in the How To section of this guide.

Backups and Patch Management
You should perform backups prior to deploying an update on production servers.
Regularly test backups as well as your backup process. Discovering that your backup
process is broken during restoration can be devastating.

 How To: Implement Patch Management 747

Before You Begin
This section provides information about downloads and documentation that are
needed before you walk through the steps in this How To.

Tools You Will Need
You need the following tools in order to be able to perform the steps in this How To:
● Microsoft Baseline Security Analyzer (MBSA)

Download MBSA from the MBSA Home Page: http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp

● Latest Mssecure.cab
By default, MBSA downloads the latest update list (Mssecure.cab) from
Microsoft.com. If you do not have Internet access from the computer running
MBSA, you must download the file and copy it to the MBSA installation directory.
You can download the update file from: http://download.microsoft.com/download
/xml/security/1.0/NT5/EN-US/mssecure.cab

● Microsoft Software Update Service (SUS)
Microsoft Software Update Services (SUS) Server 1.0 enables administrators to
deploy critical updates to Windows 2000-based, Windows XP, and Windows
Server 2003 computers. You can download it from: http://www.microsoft.com
/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C
&displaylang=en

Contents
This How To shows you how to implement each phase of the patch management
process. These phases include:
● Detecting
● Assessing
● Acquiring
● Testing
● Deploying
● Maintaining

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/xml/security/1.0/NT5/EN-US/mssecure.cab
http://download.microsoft.com/download/xml/security/1.0/NT5/EN-US/mssecure.cab
http://www.microsoft.com/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en

748 Improving Web Application Security: Threats and Countermeasures

Detecting
Use MBSA to detect missing security patches for Windows NT 4.0, Windows 2000,
and Windows XP. You can use MBSA in two modes; GUI and command line. Both
modes are used to scan single or multiple computers. The command line can be
scripted to run on a schedule.

Note The login used to run MBSA must be a member of the Administrators group on the target
computer(s). To verify adequate access and privilege, use the command net use
\\computername\c$ where computername is the network name of a machine which you are going
to scan for missing patches. Resolve any issues accessing the administrative share before using
MBSA to scan the remote computer.

� To manually detect missing updates using the MBSA graphical interface

1. Run MBSA by double-clicking the desktop icon or by selecting it from the
Programs menu.

2. Click Scan a computer. MBSA defaults to the local computer. To scan multiple
computers, select Scan more than one computer and select either a range of
computers to scan or an IP address range.

3. Clear all check boxes except Check for security updates. This option detects
uninstalled patches and updates.

4. Click Start scan. Your server is now analyzed. When the scan is complete,
MBSA displays a security report and also writes the report to the
%userprofile%\SecurityScans directory.

5. Download and install the missing updates.
Click the Result details link next to each failed check to view the list of uninstalled
security updates. A dialog box displays the Microsoft security bulletin reference
number. Click the reference to find out more about the bulletin and to download
the update.

� To detect missing updates using the MBSA command line interface

● From a command window, change directory to the MBSA installation directory,
and type the following command:

mbsacli /i 127.0.0.1 /n OS+IIS+SQL+PASSWORD

You can also specify a computer name. For example:

mbsacli /c domain\machinename /n OS+IIS+SQL+PASSWORD

 How To: Implement Patch Management 749

You can also specify a range of computers by using the /r option. For example:

mbsacli /r 192.168.0.1-192.168.0.254 /n OS+IIS+SQL+PASSWORD

Finally, you can scan a domain by using the /d option. For example:

mbsacli /d NameOfMyDomain /n OS+IIS+SQL+PASSWORD

� To analyze the generated report

1. Run MBSA by double-clicking the desktop icon or by selecting it from the
Programs menu.

2. Click Pick a security report to view and open the report or reports, if you scanned
multiple computers.

3. To view the results of a scan against the target machine, mouse over the computer
name listed. Individual reports are sorted by the timestamp of the report.

As previously described, the advantage of the command line method is that it may
be scripted and scheduled to execute. This schedule is determined by the exposure
of your systems to hostile networks, and by your security policy.

MBSA Output Explained
The following example was taken using the MBSA version 1.1.

Figure 2
Screenshot of the report details for a scanned machine

750 Improving Web Application Security: Threats and Countermeasures

The top portion of the MBSA screenshot shown in Figure 2 is self explanatory.

Red crosses indicate that a critical issue has been found. To view the list of missing
patches, click the associated Result details link.

The results of a security update scan might show two types of issues:
● Missing patches
● Patch cannot be confirmed

Both types include links to the relevant Hotfix and security bulletin pages that
provide details about the patch together with download instructions.

Missing patches are indicated by a red cross. An example is shown in Figure 3.

Figure 3
Missing patch indication

When a patch cannot be confirmed, it is indicated by a blue asterisk. This occurs
when your system has a file that is newer than the file provided with a security
bulletin. This might occur if you install a new version of a product that updates
a common file.

Figure 4
Patch cannot be confirmed indication

For updates that cannot be confirmed, review the information in the bulletin and
follow the instructions. This may include installing a patch or making configuration
changes. For more information on patches that cannot be verified by MBSA, see
Microsoft Knowledge Base article, 306460, “HFNetChk Returns Note Messages for
Installed Patches.”

 How To: Implement Patch Management 751

Assessing
With the list of missing patches identified by MBSA, you must determine if the
vulnerabilities pose a significant risk. Microsoft Security Bulletins provide technical
details to help you determine the level of threat the vulnerability poses to your
systems.

The details from security bulletins that help you assess the risk of attack are:
● Technical details of requirements an attacker needs to exploit the vulnerability

addressed by the bulletin. For example, an attack may require physical access or
the user must open a malicious email attachment.

● Mitigating factors that you need to compare against your security policy to
determine your level of exposure to the vulnerability. It may be that your
security policy mitigates the need to apply a patch. For example, if you do not
have the Indexing Service running on your server, you do not need to install
patches to address vulnerabilities in the service.

● Severity rating that assists in determining priority. The severity rating is based
on multiple factors including the role of the machines that may be vulnerable, and
the level of exposure to the vulnerability.
For more information about the severity rating system used by the security
bulletins, see the TechNet article, “Microsoft Security Response Center Security
Bulletin Severity Rating System” at http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/policy/rating.asp

Note If you use an affected product, you should almost always apply patches that address
vulnerabilities rated critical or important. Patches rated critical should be applied as soon as
possible.

Acquiring
There are several ways you can obtain patches, including:
● Using MBSA report details. MBSA links to the security bulletin that contains the

patch, or instructions about obtaining the patch. You can use the link to download
the patch and save it on your local network. You can then apply the patch to
multiple computers.

● Windows Update. With a list of the updates you want to install, use
Internet Explorer on the server that requires the patch, and access
http://windowsupdate.microsoft.com/. Then select the required updates for
installation. The updates are installed from the site and cannot be downloaded
for installation on another computer. Windows Update requires that an ActiveX
control is installed on the server (you will be prompted when you visit the site if
the control is not found.) This method works well for standalone workstations or
where a small number of servers are involved.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/policy/rating.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/policy/rating.asp
http://windowsupdate.microsoft.com/

752 Improving Web Application Security: Threats and Countermeasures

● HotFix & Security Bulletin Search. MBSA includes the Microsoft Knowledge Base
article ID of the corresponding article for a given security bulletin. You can use the
article ID at the HotFix and Security Bulletin Search site to reach the matching
security bulletin. The search page is located at http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/current.asp. The bulletin contains the
details to acquire the patch.

Testing
If the results of your assessment determine that a patch must be installed, you should
test that patch against your system to ensure that no breaking changes are introduced
or, if a breaking change is expected, how to work around the change.

Methods for Testing Security Patches
Methods used to test the installation of security patches against your systems include:
● Testing security patches against a test mirror of your live server configuration

and scenario. This method allows you to both test the installation offline, without
disrupting service, and the freedom to test workarounds if a breaking change is
introduced, again without disrupting service.

● Testing the patch on a few select production systems prior to fully deploying
the update. If a test network that matches your live configuration is not available,
this is the safest method to introduce the security patch. If this method is
employed, you must perform a backup prior to installing the update.

Confirming the Installation of a Patch
Before deploying a patch to production servers, confirm that the tested patch has
made the appropriate changes on the test servers. Each security bulletin includes the
information you need to confirm that the patch has been installed. In each bulletin,
the Additional information about this patch section contains the entry Verifying
patch installation. It includes registry values, file versions, or similar configuration
changes that you can use to verify that the patch is installed.

Uninstalling a Security Patch
If you need to uninstall a patch, use Add/Remove Programs in the Control Panel.
If an uninstall routine is not an option for the patch and its installation introduces
breaking changes, you must restore your system from backup. Make sure that your
testing process also covers the patch uninstall routine.

The security bulletin lists the availability of an uninstall routine in the Additonal
information about this patch section.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp

 How To: Implement Patch Management 753

Deploying
If you decide that the patch is safe to install, you must deploy the update to your
production servers in a reliable and efficient way. You have a number of options for
deploying patches throughout the enterprise. These include:
● Using Software Updates Services (SUS)
● Using Systems Management Server (SMS)

Using Software Update Services (SUS)
SUS provides a way to automatically deploy crucial updates and security rollups to
computers throughout a network, without requiring you to visit each computer or
write script. For more information about using SUS, see “Software Update Services,
Part 1” at http://www.microsoft.com/technet/security/tools/tools/sadsus1.asp.

Using Systems Management Server (SMS)
SMS is an enterprise management tool for delivering configuration and change
management of Microsoft Windows server and workstation operating systems.
For more information about using SMS to deploy updates, see TechNet article,
“Patch Management Using Microsoft Systems Management Server” at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions
/MSM/swdist/pmsmsog.asp.

Maintaining
Bringing your servers up to date with the latest patches is part of the patch
management cycle. The patch management cycle begins again by knowing when new
security vulnerabilities are found and missing security updates become available.

Keeping your servers up to date with the latest security patches involves this entire
cycle. You start the cycle again by:
● Performing security assessments
● Using security notification services

Performing Security Assessments
Use MBSA to regularly check for security vulnerabilities and to identify missing
patches and updates. Schedule MBSA to run daily and analyze the results to take
action as needed. For more information about automating MBSA, see “How To:
Use MBSA” in the How To section of this guide.

http://www.microsoft.com/technet/security/tools/tools/sadsus1.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/MSM/swdist/pmsmsog.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/MSM/swdist/pmsmsog.asp

754 Improving Web Application Security: Threats and Countermeasures

Using Security Notification Services
Register to receive notifications of security bulletins released by Microsoft. Use the
following services:
● Microsoft Security Notification Service at http://register.microsoft.com/subscription

/subscribeme.asp?ID=135.
● TechNet security Web site at http://www.microsoft.com/technet/treeview

/default.asp?url=/technet/security/current.asp

Additional Considerations
When bringing a new service online on an existing server, run MBSA to verify the
patches for the service have been applied prior to having the server and service
listening on the network. For example, disconnect the network cable or apply
network based rules that block the newly added service’s ports.

Additional Resources
For related information, see the following resources:
● For more information about Software Update Services, see:

● The SUS homepage at http://www.microsoft.com/windows2000/windowsupdate
/sus/default.asp.

● TechNet article, “Patch Management Using Microsoft Software Update
Services” at http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/itsolutions/msm/swdist/pmsusog.asp.

● Software Update Services Deployment white paper at http://www.microsoft.com
/windows2000/windowsupdate/sus/susdeployment.asp.

● SUS Server with SP1 release notes and installation instructions at
http://www.microsoft.com/windows2000/windowsupdate/sus/sp1relnotes.asp.

● SUS Server with SP1 download page at http://www.microsoft.com/downloads
/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en.

● TechNet article, “Managing Security Hotfixes” at http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/tips/sechotfx.asp.

● TechNet article, “Enterprise Software Update Management using Systems
Management Server 2.0 Software Update Services Feature Pack” at
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol
/sms/deploy/confeat/SMSFPDEP.asp.

● TechNet article, “Best Practices for Applying Service Packs, Hotfixes and Security
Patches” at http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/bestprac/bpsp.asp.

http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/windows2000/windowsupdate/sus/default.asp
http://www.microsoft.com/windows2000/windowsupdate/sus/default.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/msm/swdist/pmsusog.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/msm/swdist/pmsusog.asp
http://www.microsoft.com/windows2000/windowsupdate/sus/susdeployment.asp
http://www.microsoft.com/windows2000/windowsupdate/sus/susdeployment.asp
http://www.microsoft.com/windows2000/windowsupdate/sus/sp1relnotes.asp
http://www.microsoft.com/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en
http://www.microsoft.com/downloads/details.aspx?FamilyId=A7AA96E4-6E41-4F54-972C-AE66A4E4BF6C&displaylang=en
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tips/sechotfx.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tips/sechotfx.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sms/deploy/confeat/SMSFPDEP.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/sms/deploy/confeat/SMSFPDEP.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bestprac/bpsp.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/bestprac/bpsp.asp

How To:
Harden the TCP/IP Stack

Applies To
This information applies to server computers that run the following:
● Microsoft® Windows® 2000 Server and Advanced Server

Summary
You can configure various TCP/IP parameters in the Windows registry in order to
protect against network-level denial of service attacks including SYN flood attacks,
ICMP attacks and SNMP attacks. You can configure registry keys to:
● Enable SYN flood protection when an attack is detected.
● Set threshold values that are used to determine what constitutes an attack.

This How To shows an administrator which registry keys and which registry values
must be configured to protect against network-based denial of service attacks.

Note These settings modify the way TCP/IP works on your server. The characteristics of your Web
server will determine the best thresholds to trigger denial of service countermeasures. Some values
may be too restrictive for your client connections. Test this document’s recommendations before you
deploy to a production server.

What You Must Know
TCP/IP is an inherently insecure protocol. However, the Windows 2000
implementation allows you to configure its operation to counter network denial of
service attacks. Some of the keys and values referred to in this How To may not exist
by default. In those cases, create the key, value, and value data.

For more details about the TCP/IP network settings that the registry for Windows
2000 controls, see the white paper “Microsoft Windows 2000 TCP/IP Implementation
Details,” at http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions
/network/deploy/depovg/tcpip2k.asp.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/network/deploy/depovg/tcpip2k.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/network/deploy/depovg/tcpip2k.asp

756 Improving Web Application Security: Threats and Countermeasures

Contents
This How To is divided into sections that address specific types of denial of service
protections that apply to the network. Those sections are:
● Protect Against SYN Attack
● Protect Against ICMP Attacks
● Protect Against SNMP Attacks
● AFD.SYS Protections
● Additional Protections
● Pitfalls
● Additional Resources

Protect Against SYN Attacks
A SYN attack exploits a vulnerability in the TCP/IP connection establishment
mechanism. To mount a SYN flood attack, an attacker uses a program to send a flood
of TCP SYN requests to fill the pending connection queue on the server. This prevents
other users from establishing network connections.

To protect the network against SYN attacks, follow these generalized steps, explained
later in this document:
● Enable SYN attack protection
● Set SYN protection thresholds
● Set additional protections

Enable SYN Attack Protection
The named value to enable SYN attack protection is located beneath the registry key:
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services.

Value name: SynAttackProtect

Recommended value: 2

Valid values: 0–2

Description: Causes TCP to adjust retransmission of SYN-ACKS. When you configure
this value the connection responses timeout more quickly in the event of a SYN
attack. A SYN attack is triggered when the values of TcpMaxHalfOpen or
TcpMaxHalfOpenRetried are exceeded.

 How To: Harden the TCP/IP Stack 757

Set SYN Protection Thresholds
The following values determine the thresholds for which SYN protection is triggered.
All of the keys and values in this section are under the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. These keys
and values are:
● Value name: TcpMaxPortsExhausted

Recommended value: 5
Valid values: 0–65535
Description: Specifies the threshold of TCP connection requests that must be
exceeded before SYN flood protection is triggered.

● Value name: TcpMaxHalfOpen
Recommended value data: 500
Valid values: 100–65535
Description: When SynAttackProtect is enabled, this value specifies the threshold
of TCP connections in the SYN_RCVD state. When SynAttackProtect is exceeded,
SYN flood protection is triggered.

● Value name: TcpMaxHalfOpenRetried
Recommended value data: 400
Valid values: 80–65535
Description: When SynAttackProtect is enabled, this value specifies the threshold
of TCP connections in the SYN_RCVD state for which at least one retransmission
has been sent. When SynAttackProtect is exceeded, SYN flood protection is
triggered.

Set Additional Protections
All the keys and values in this section are located under the registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services. These keys
and values are:
● Value name: TcpMaxConnectResponseRetransmissions

Recommended value data: 2
Valid values: 0–255
Description: Controls how many times a SYN-ACK is retransmitted before
canceling the attempt when responding to a SYN request.

758 Improving Web Application Security: Threats and Countermeasures

● Value name: TcpMaxDataRetransmissions
Recommended value data: 2
Valid values: 0–65535
Description: Specifies the number of times that TCP retransmits an individual data
segment (not connection request segments) before aborting the connection.

● Value name: EnablePMTUDiscovery
Recommended value data: 0
Valid values: 0, 1
Description: Setting this value to 1 (the default) forces TCP to discover the
maximum transmission unit or largest packet size over the path to a remote host.
An attacker can force packet fragmentation, which overworks the stack. Specifying
0 forces the MTU of 576 bytes for connections from hosts not on the local subnet.

● Value name: KeepAliveTime
Recommended value data: 300000
Valid values: 80–4294967295
Description: Specifies how often TCP attempts to verify that an idle connection is
still intact by sending a keep-alive packet.

● Value name: NoNameReleaseOnDemand
Recommended value data: 1
Valid values: 0, 1
Description: Specifies to not release the NetBIOS name of a computer when it
receives a name-release request.

Use the values that are summarized in Table 1 for maximum protection.

Table 1 Recommended Values

Value Name Value (REG_DWORD)
SynAttackProtect 2

TcpMaxPortsExhausted 1

TcpMaxHalfOpen 500

TcpMaxHalfOpenRetried 400

TcpMaxConnectResponseRetransmissions 2

TcpMaxDataRetransmissions 2

EnablePMTUDiscovery 0

KeepAliveTime 300000 (5 minutes)

NoNameReleaseOnDemand 1

 How To: Harden the TCP/IP Stack 759

Protect Against ICMP Attacks
The named value in this section is under the registry key
HKLM\System\CurrentControlSet\Services\AFD\Parameters

Value: EnableICMPRedirect

Recommended value data: 0

Valid values: 0 (disabled), 1 (enabled)

Description: Modifying this registry value to 0 prevents the creation of expensive host
routes when an ICMP redirect packet is received.

Use the value summarized in Table 2 for maximum protection:

Table 2 Recommended Values

Value Name Value (REG_DWORD)
EnableICMPRedirect 0

Protect Against SNMP Attacks
The named value in this section is located under the registry key
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters.

Value: EnableDeadGWDetect

Recommended value data: 0

Valid values: 0 (disabled), 1, (enabled)

Description: Prevents an attacker from forcing the switching to a secondary gateway

Use the value summarized in Table 3 for maximum protection.

Table 3 Recommended Values

Value Name Value (REG_DWORD)

EnableDeadGWDetect 0

760 Improving Web Application Security: Threats and Countermeasures

AFD.SYS Protections
The following keys specify parameters for the kernel mode driver Afd.sys. Afd.sys is
used to support Windows sockets applications. All of the keys and values in this
section are located under the registry key
HKLM\System\CurrentControlSet\Services\AFD\Parameters. These keys and
values are:
● Value: EnableDynamicBacklog

Recommended value data: 1
Valid values: 0 (disabled), 1 (enabled)
Description: Specifies AFD.SYS functionality to withstand large numbers of
SYN_RCVD connections efficiently. For more information, see “Internet Server
Unavailable Because of Malicious SYN Attacks,” at
http://support.microsoft.com/default.aspx?scid=kb;en-us;142641.

● Value name: MinimumDynamicBacklog
Recommended value data: 20
Valid values: 0–4294967295
Description: Specifies the minimum number of free connections allowed on a
listening endpoint. If the number of free connections drops below this value, a
thread is queued to create additional free connections

● Value name: MaximumDynamicBacklog
Recommended value data: 20000
Valid values: 0–4294967295
Description: Specifies the maximum total amount of both free connections plus
those in the SYN_RCVD state.

● Value name: DynamicBacklogGrowthDelta
Recommended value data: 10
Valid values: 0–4294967295
Present by default: No
Description: Specifies the number of free connections to create when additional
connections are necessary.

http://support.microsoft.com/default.aspx?scid=kb;en-us;142641

 How To: Harden the TCP/IP Stack 761

Use the values summarized in Table 4 for maximum protection.

Table 4 Recommended Values

Value Name Value (REG_DWORD)
EnableDynamicBacklog 1

MinimumDynamicBacklog 20

MaximumDynamicBacklog 20000

DynamicBacklogGrowthDelta 10

Additional Protections
All of the keys and values in this section are located under the registry key
HKLM\System\CurrentControlSet\Services\Tcpip\Parameters.

Protect Screened Network Details
Network Address Translation (NAT) is used to screen a network from incoming
connections. An attacker can circumvent this screen to determine the network
topology using IP source routing.

Value: DisableIPSourceRouting

Recommended value data: 1

Valid values: 0 (forward all packets), 1 (do not forward Source Routed packets),
2 (drop all incoming source routed packets).

Description: Disables IP source routing, which allows a sender to determine the route
a datagram should take through the network.

Avoid Accepting Fragmented Packets
Processing fragmented packets can be expensive. Although it is rare for a denial of
service to originate from within the perimeter network, this setting prevents the
processing of fragmented packets.

Value: EnableFragmentChecking

Recommended value data: 1

Valid values: 0 (disabled), 1 (enabled)

Description: Prevents the IP stack from accepting fragmented packets.

762 Improving Web Application Security: Threats and Countermeasures

Do Not Forward Packets Destined for Multiple Hosts
Multicast packets may be responded to by multiple hosts, resulting in responses that
can flood a network.

Value: EnableMulticastForwarding

Recommended value data: 0

Valid range: 0 (false), 1 (true)

Description: The routing service uses this parameter to control whether or not IP
multicasts are forwarded. This parameter is created by the Routing and Remote
Access Service.

Only Firewalls Forward Packets Between Networks
A multi-homed server must not forward packets between the networks it is
connected to. The obvious exception is the firewall.

Value: IPEnableRouter

Recommended value data: 0

Valid range: 0 (false), 1 (true)

Description: Setting this parameter to 1 (true) causes the system to route IP packets
between the networks to which it is connected.

Mask Network Topology Details
The subnet mask of a host can be requested using ICMP packets. This disclosure of
information by itself is harmless; however, the responses of multiple hosts can be
used to build knowledge of the internal network.

Value: EnableAddrMaskReply

Recommended value data: 0

Valid range: 0 (false), 1 (true)

Description: This parameter controls whether the computer responds to an ICMP
address mask request.

 How To: Harden the TCP/IP Stack 763

Use the values summarized in Table 5 for maximum protection

Table 5 Recommended Values

Value Name Value (REG_DWORD)
DisableIPSourceRouting 1

EnableFragmentChecking 1

EnableMulticastForwarding 0

IPEnableRouter 0

EnableAddrMaskReply 0

Pitfalls
When testing the changes of these values, test against the network volumes you
expect in production. These settings modify the thresholds of what is considered
normal and are deviating from the tested defaults. Some may be too narrow to
support clients reliably if the connection speed from clients varies greatly.

Additional Resources
For additional reading about TCP/IP, refer to the following resources:
● For more information on hardening the TCP/IP stack, see Microsoft Knowledge

Base article, 315669, “How To: Harden the TCP/IP Stack Against Denial of Service
Attacks in Windows 2000.”

● For more details on the Windows 2000 TCP/IP implementation, see the Microsoft
Press book, “Windows 2000 TCP/IP Protocols and Services,” by Lee Davies.

● For more information about the Windows 2000 TCP/IP implementation,
see “Microsoft Windows 2000 TCP/IP Implementation Details,”
at http://www.microsoft.com/technet/treeview/default.asp?url=/technet
/itsolutions/network/deploy/depovg/tcpip2k.asp, on the TechNet Web site.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/network/deploy/depovg/tcpip2k.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/itsolutions/network/deploy/depovg/tcpip2k.asp

How To:
Secure Your Developer Workstation

Applies To
This information applies to developer workstations that run the following:
● Microsoft® Windows® 2000 Server and Professional, Windows XP Professional
● Internet Information Services (IIS)
● .NET Framework versions 1.0 and 1.1
● Microsoft SQL Server™ 2000 and the Desktop Edition

Summary
This How To helps you improve your development workstation security. Developers
often have computers running software such as IIS, Microsoft SQL Server, or the
Microsoft SQL Server Desktop Engine (MSDE.) For example, Microsoft Visual Studio®
.NET is designed for local development with IIS, so it is common for a developer to
run IIS locally. As a developer, you need to be able to secure these services against
attack, even if your computer is in a protected local area network.

This How To provides quick tips to help you improve the security of your developer
workstation, along with tips about how to keep it secure. It also helps you avoid
common problems that you are likely to encounter when you secure your
workstation. Finally, it provides tips about how to determine problems and to revert
security settings if they prove too restrictive.

Note This How To is not exhaustive, but it highlights many of the key issues.

Before You Begin
Before you begin securing your workstation, you need the following tools:
● Microsoft Baseline Security Analyzer (MBSA). Microsoft provides the MBSA tool

to help analyze the security configuration of your computers and to identify
missing patches and updates. You can download the MBSA tool from
http://download.microsoft.com/download/e/5/7/e57f498f-2468-4905-aa5f-369252f8b15c
/mbsasetup.msi.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/e/5/7/e57f498f-2468-4905-aa5f-369252f8b15c/mbsasetup.msi
http://download.microsoft.com/download/e/5/7/e57f498f-2468-4905-aa5f-369252f8b15c/mbsasetup.msi

766 Improving Web Application Security: Threats and Countermeasures

● IISLockdown. The IISLockdown tool reduces your computer’s attack surface by
hardening default IIS and Windows configuration settings and by removing
unnecessary IIS extensions. IISLockown also installs the “404.dll” ISAPI filter,
which is used to report “404 File Not Found” messages when disabled extensions
are requested.
You can download the IISLockdown tool from http://download.microsoft.com
/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe.

● URLScan. URLScan is an ISAPI filter that rejects or allows HTTP requests based
on a configurable set of rules. It is integrated with IISLockdown, although you can
also download it separately. It comes with customizable templates for each
supported server role.
To install URLScan without IISLockdown, see Microsoft Knowledge Base
article 307608, “INFO: Availability of URLScan Version 2.5 Security Tool,”
at http://support.microsoft.com/default.aspx?scid=kb;en-us;307608, in the
Microsoft Knowledge Base.

Steps to Secure Your Developer Workstation
To secure your developer workstation, perform the following tasks:
● Run using a least privileged account
● Patch and update
● Secure IIS
● Secure SQL Server and MSDE
● Evaluate your configuration categories
● Stay secure

Run Using a Least-Privileged Account
You should develop applications using a non administrator account. Doing so is
important primarily to limit the exposure of the logged on user and to help you to
design more secure software. For example, if you design, develop, and test an
application while you are interactively logged in as an administrator, you are much
more likely to end up with software that requires administrative privileges to run.

You should not generally log on using the local administrator account. The account
that you use on a daily basis should not be a member of the local Administrators
group. Sometimes you might still need an account that has administrative privileges
— for example, when you install software or edit the registry. Because the default
local administrator account is well known, however, and it is the target of many
attacks, create a non-standard administrator account and use this only when it is
required.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe
http://support.microsoft.com/default.aspx?scid=kb;en-us;307608

 How To: Secure Your Developer Workstation 767

� To create accounts for development

1. Remove your current user account from the Administrators group if it is a
member.

2. Create a new custom administration account using a nonstandard name and
strong password.

3. Use your non-administrator account to logon interactively on a daily basis. When
you need to run a command with administrative privileges, use your custom
administration account with the Runas.exe command line utility.

Running Privileged Commands
To run a privileged command, you can use one of the following techniques to
temporarily change your security context:
● Use the Runas.exe utility from a command line. The following command shows

you how to use the Runas.exe utility to launch a command console that runs
under your custom administration account.

runas.exe /user:mymachine\mycustomadmin cmd.exe

By executing Cmd.exe, you start a new command window that runs under the
security context of the user you specify with the /user switch. Any program you
launch from this command window also runs under this context.

● Use Run As from Windows Explorer. You can right-click an executable file in
Windows Explorer and click Run As. To display this item on Windows 2000, hold
the shift key down and then right-click an executable file. When you click Run As,
you are prompted for the credentials of the account you want to use to run the
executable file.

● Use Run As shortcuts. You can create quick launch and desktop shortcuts to easily
run applications using a privileged user account. The following example shows a
shortcut that you can use to run Windows Explorer (Explorer.exe) using the
administrator account:

%windir%\System32\runas.exe /user:administrator explorer

Note If using a non-administrator account proves impractical for your environment, still test your
application or component while running as a least privileged user to catch and correct problems
before deploying. For example, your application might incorrectly require administrator privileges
without your realizing it, which would cause the application to fail when it is deployed in a production
environment.

768 Improving Web Application Security: Threats and Countermeasures

More Information
For more information about developing with a non-administrative account, see the
following articles:
● “Essential .NET Security,” at http://www.develop.com/kbrown/book/html/lifestyle.html
● “Developing Software in Visual Studio .NET with Non-Administrative

Privileges,” at http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dv_vstechart/html/tchDevelopingSoftwareInVisualStudioNETWithNon-Administrative
Privileges.asp

Patch and Update
Ensure that your workstation has the latest service packs and patches. Check the
operating system, IIS, SQL Server, MSDE, Microsoft Data Access Components
(MDAC), and the .NET Framework. Microsoft offers several tools and methods to
help you scan and update your system. These include the Windows Update site,
the Microsoft Baseline Security Analyzer (MBSA) tool, and the Automatic Updates
feature.

Using Windows Update
You can use Windows Update (available from the Start menu) to scan for updates
and patches for Windows. Alternatively, you can directly scan for updates at
http://windowsupdate.microsoft.com.

Note After you update your system using the Windows Update site, use MBSA to detect missing
updates for SQL Server, MSDE, and MDAC.

Using MBSA
You can use MBSA to assess security and to verify patches. If you used automatic
updates or Windows Update to update your operating system and components,
MBSA verifies those updates and additionally checks the status of updates for SQL
Server and Microsoft Exchange Server. MBSA lets you create a script to check
multiple computers.

� To detect and install patches and updates

1. Download MBSA from the MBSA home page at http://www.microsoft.com/technet
/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp.
If you do not have Internet access when you run MBSA, MBSA cannot retrieve
the XML file that contains the latest security settings from Microsoft. You can
use another computer to download the XML file, however. Then you can
copy it into the MBSA program directory. The XML file is available at
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab.

http://www.develop.com/kbrown/book/html/lifestyle.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/tchDevelopingSoftwareInVisualStudioNETWithNon-AdministrativePrivileges.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/tchDevelopingSoftwareInVisualStudioNETWithNon-AdministrativePrivileges.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dv_vstechart/html/tchDevelopingSoftwareInVisualStudioNETWithNon-AdministrativePrivileges.asp
http://windowsupdate.microsoft.com/
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/xml/security/1.0/nt5/en-us/mssecure.cab

 How To: Secure Your Developer Workstation 769

2. Run MBSA by double-clicking the desktop icon or selecting it from the
Programs menu.

3. Click Scan a computer. MBSA defaults to the local computer.
4. Clear all check boxes except for Check for security updates. This option detects

which patches and updates are missing.
5. Click Start scan. Your server is now analyzed. When the scan completes, MBSA

displays a security report, which it also writes to the
%Userprofile%\SecurityScans directory.

6. Download and install the missing updates. Click Result details next to each failed
check to view the list of missing security updates.
The resulting dialog box displays the Microsoft security bulletin reference number.
Click the reference to find out more about the bulletin and to download the
update.

For more information about using MBSA, see “How To: Use Microsoft Baseline
Security Analyzer (MBSA),” in the How To section of this guide.

Note MBSA will not indicate required .NET Framework updates and patches. Browse the .NET
Framework downloads page at http://msdn.microsoft.com/netframework/downloads/default.asp.

Using Automatic Updates
The Automatic Updates feature offers the easiest method to update your operating
system with the latest critical security patches. The feature is built into Windows XP
and is installed with Windows 2000 Service Pack 3.

To configure Automatic Updates with Windows 2000, click Automatic Updates in the
Control Panel. For more information about Automatic Updates and Windows 2000,
see Microsoft Knowledge Base article 327850, “How To: Configure and Use
Automatic Updates in Windows 2000.”

� To configure Automatic Updates with Windows XP

1. Right-click the My Computer icon on the desktop or the System icon in Control
Panel.

2. Click System Properties.

For more information about Automatic Updates and Windows XP, see Microsoft
Knowledge Base article, 306525, “How To: Configure and Use Automatic Updates
in Windows XP.”

http://msdn.microsoft.com/netframework/downloads/default.asp

770 Improving Web Application Security: Threats and Countermeasures

Automatic Updates scans and installs updates for the following operating systems
(including the .NET Framework and IIS where applicable):
● Microsoft Windows 2000 Professional
● Microsoft Windows 2000 Server
● Microsoft Windows XP Professional

In addition to using Automatic Updates, use MBSA to detect missing updates for
SQL Server, MSDE and MDAC.

Secure IIS
You often need to run IIS locally for Web development. If you run IIS, secure it.
IISLockdown and URLScan significantly reduce your Web server’s attack profile.
IISLockdown points unused or forbidden script mappings to 404.dll and helps secure
access to system directories and system tools. URLScan blocks known dangerous
requests.

Although IISLockdown improves IIS security, if you choose the wrong installation
options or do not modify the URLScan configuration file, URLScan.ini, you could
encounter the following issues:
● You cannot create new ASP.NET Web applications. NTFS file system permissions

are configured to strengthen default access to Web locations. This may prevent the
logged on user from creating new ASP.NET Web applications.

● Cannot debug existing ASP.NET Web applications. URLScan blocks the DEBUG
verb, which is used when you debug ASP.NET Web applications.

The following steps show you how to improve IIS security on your development
workstation and avoid the issues listed above:
● Install and run IISLockdown
● Configure URLScan
● Restrict access to the local Web server

Install and Run IISLockdown
� To install and run IISLockdown

1. Run the IISLockdown installation program (Iislockd.exe) from
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe.

Note If you run Iislockd.exe a second time, it removes all changes based on the log file
\WINNT\System32\Inetsrv\oblt-log.log.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe

 How To: Secure Your Developer Workstation 771

2. During setup, choose the Dynamic Web Site option, and choose the option to
install URLScan. ASP.NET Web Forms use the HTTP POST verb. Choosing the
static option and installing URLScan blocks the POST verb in URLScan.ini.
The Dynamic Web Site option does the following:
● Adds POST to the [AllowVerbs] section as shown below.

[AllowVerbs]
GET
HEAD
POST

● Disables the following Internet Services: Web service (HTTP), File Transfer
Protocol (FTP), the Simple Mail Transport Protocol (SMTP) e-mail service,
and the Network News Transport Protocol (NNTP) news service.

● Maps the following script maps to 404.dll: Index Server, Web Interface
(.idq, .htw, .ida), server side includes (.shtml, .shtm, .stm), Internet Data
Connector (.idc), HTR scripting (.htr), Internet printing (.printer)

● Removes the following virtual directories: IIS Samples, MSADC, IISHelp,
Scripts, and IISAdmin.

● Restricts anonymous access to system utilities and the ability to write to
Web content directories.

● Disables Web Distributed Authoring and Versioning (WebDAV).
● Installs the URLScan ISAPI filter.

Pitfalls
If you use IISLockdown, note the following pitfalls:
● IIS metabase updates can be lost. If you undo IISLockdown changes by running

Iislockd.exe a second time, you lose any changes made to the IIS metabase since
the last time IISLockdown was run. For example, if you configure a virtual
directory as an application root after running IIS lockdown, that change is lost
when you run IISLockdown again.

● Resources are blocked by 404.dll. If you receive a 404 error for a previously
available resource, it might be because the resource type is blocked by 404.dll. To
confirm whether or not this is the case, check the script mapping for the requested
resource type in IIS.

Configure URLScan
The URLScan ISAPI filter installs when you run IISLockdown. If you do not explicitly
allow the DEBUG verb, URLScan prevents debugging. Also, URLScan blocks
requests that contain unsafe characters such as the period (.) used for directory
traversal.

772 Improving Web Application Security: Threats and Countermeasures

To configure URLScan, edit URLScan.ini in %Windir%\System32\inetsrv\urlscan\.
To allow debugging with URLScan, add DEBUG to the [AllowVerbs] section in
URLScan.ini as shown below.

[AllowVerbs]
GET
HEAD
POST
DEBUG

Pitfalls
If you install URLScan, note the following pitfalls:
● When you debug an application by using Visual Studio.NET, you may see the

following error:

Microsoft Development Environment:
Error while trying to run project: Unable to start debugging on the Web server.
Could not start ASP.NET or ATL Server debugging.
Verify that ASP.NET or ATL Server is correctly installed on the server. Would
you like to disable future attempts to debug ASP.NET pages for this project?

You should see a log entry similar to the one shown below in URLScan<date>.log
in the \WINNT\system32\inetsrv\urlscan folder.

[01-18-2003 - 22:25:26] Client at 127.0.0.1: Sent verb 'DEBUG', which is not
specifically allowed. Request will be rejected.

● Requests that you expect to work might get blocked.
● You may not be able to create new Web projects in Visual Studio .NET because

you use characters in the project name that URLScan rejects. For example, the
comma (,) and the pound sign (#) will be blocked.

If you experience errors during debugging, see Microsoft Knowledge Base article
306172, “INFO: Common Errors When You Debug ASP.NET Applications in Visual
Studio .NET,” at http://support.microsoft.com/default.aspx?scid=kb;EN-US;306172.

Secure SQL Server and MSDE
To update SQL Server and MSDE, you must:
● Apply patches for each instance of SQL Server and MSDE
● Analyze SQL Server and MSDE security configuration

http://support.microsoft.com/default.aspx?scid=kb;EN-US;306172

 How To: Secure Your Developer Workstation 773

Apply Patches for Each Instance of SQL Server and MSDE
MSDE shares common technology with SQL Server, and it enables developers,
partners, and IT professionals to build database applications without requiring the
full SQL Server product. MSDE can be packaged with applications that require
database support. To apply patches to MSDE, you must know which application
installed it on your system. This is important because you must obtain the patch for
MSDE from the product vendor.

For more information on applications that include MSDE, refer to the following
resources:
● “Microsoft Products That Include MSDE,” at http://www.microsoft.com/technet

/treeview/default.asp?url=/technet/security/MSDEapps.asp
● “SQL Server/MSDE-Based Applications,” at http://www.sqlsecurity.com/forum

/applicationslistgridall.aspx

If your third-party vendor does not supply a patch for MSDE, and if it becomes
critical to have the latest patches, you can only do the following:
● Uninstall the instance of SQL Server using Add/Remove Programs. If you do not

see an uninstall option for your instance, you might need to uninstall your
application.

● Stop the instance of SQL Server using the Services MMC snap-in in Computer
Management. You can also stop the instance from the command line by running
the following command:

net stop mssqlserver (default instance), mssql$instancename (for instances)

● Use IPSec to limit which hosts can connect to the abandoned (unpatched)
instances of SQL Server. Restrict access to localhost clients.

Analyze SQL Server and MSDE Security Configuration
Use MBSA to analyze your Microsoft SQL Server or MSDE configuration on your
workstation.

� To analyze SQL Server and MSDE security configuration
1. Run MBSA by double-clicking the desktop icon or selecting it from the

Programs menu.
2. Click Scan a computer. MBSA defaults to the local computer.
3. Clear all check boxes except for Check for SQL vulnerabilities.

This option scans for security vulnerabilities in the configurations of SQL Server
7.0, SQL Server 2000, and MSDE. For example, it checks the authentication mode,
the sa account password, and the SQL Server service account, among other checks.
A number of the checks require that your instance of SQL Server is running. If it is
not running, start it.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSDEapps.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/MSDEapps.asp
http://www.sqlsecurity.com/forum/applicationslistgridall.aspx
http://www.sqlsecurity.com/forum/applicationslistgridall.aspx

774 Improving Web Application Security: Threats and Countermeasures

4. Click Start scan. Your configuration is now analyzed. When the scan
completes, MBSA displays a security report, which it also writes to the
%Userprofile%\SecurityScans directory.

5. Review the failed checks, and fix vulnerable configuration settings.
Click Result details next to each failed check for more information about why
the check failed. Click How to correct this, for information about how to fix the
vulnerability.

For more information about using MBSA, see “How To: Use Microsoft Baseline
Security Analyzer (MBSA),” in the How To section of this guide.

Evaluate Your Configuration Categories
To evaluate the security of your workstation configuration, review the configuration
categories shown in Table 6. Start by using the categories to evaluate the security
configuration of the base operating system. Then apply the same configuration
categories to review your IIS, SQL Server, and .NET Framework installation.

Table 6 Configuration Categories

Configuration Category Methodology
Patches and updates Setup Automatic Updates. Use MBSA or Windows Updates to verify that

the latest updates are installed

Services Disable unused services.

Protocols Check that SMB and NetBIOS over TCP are removed if your workstation
is not a member of a domain.

Accounts Check that all local accounts use strong passwords.

Files and directories Be sure your workstation uses only NTFS partitions.

Shares Enumerate shares, remove unnecessary ones, and secure the
remaining ones with restricted permissions.

Ports Ensure that unused ports are closed by disabling the service that has
the port open. To verify which ports are listening use the netstat –n –a
command.

Registry Disable null sessions.

Auditing and logging Audit failed Windows attempts to log on and log failed actions across
the file system.

 How To: Secure Your Developer Workstation 775

Stay Secure
Monitor the security state of your workstation, and update it regularly to help
prevent newly discovered vulnerabilities from being exploited. In addition to using
Windows Update, subscribe to the Microsoft Security Notification Service, at
http://register.microsoft.com/subscription/subscribeme.asp?ID=135, to register for regular
e-mail bulletins that notify you of new fixes and updates.

You can also use the “Hotfix & Security Bulletin Service,” at http://www.microsoft.com
/technet/treeview/default.asp?url=/technet/security/current.asp, on the TechNet Web site.
This allows you to view the security bulletins that are available for your system.

http://register.microsoft.com/subscription/subscribeme.asp?ID=135
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/current.asp

How To:
Use IPSec for Filtering Ports
and Authentication

Applies To
This information applies to server computers that run the following:
● Microsoft® Windows® 2000 Server or Windows Server 2003 operating system
● SQL Server™ 2000

Summary
Internet Protocol security (IPSec) is a protocol, not a service, that provides encryption,
integrity, and authentication services for IP-based network traffic. Because IPSec
provides server-to-server protection, you can use IPSec to counter internal threats
to the network, including eavesdropping, tampering, man in the middle attacks,
IP spoofing, and other password-based attacks. IPSec is completely transparent
to applications because encryption, integrity, and authentication services are
implemented at the transport level. Applications continue to communicate
normally with one another using TCP and UDP ports.

Contents
This How To contains the following sections:
● What you must know
● Restricting Web server communication
● Restricting database server communication
● Restricting server-to-server communication
● Using IPSec tools

778 Improving Web Application Security: Threats and Countermeasures

What You Must Know
Before you start to configure IPSec, you should be aware of the following.

Identify Your Protocol and Port Requirements
Before you create and apply IPSec policies to block ports and protocols, make sure
you know which communication you need to secure including the ports and
protocols used by day-to-day operations. Consider the protocol and port
requirements for remote administration, application communication, and
authentication.

IPSec Does Not Secure All Communication
Several types of IP traffic are exempt from filtering. For more information, see
Microsoft Knowledge Base article 253169, “Traffic That Can and Cannot Be Secured
by IPSec.”

Firewalls and IPSec
If a firewall separates two hosts that use IPSec to secure the communication channel,
the firewall must open the following ports:
● TCP port 50 for IPSec Encapsulating Security Protocol (ESP) traffic
● TCP port 51 for IPSec Authentication Header (AH) traffic
● UDP port 500 for Internet Key Exchange (IKE) negotiation traffic

Filters, Filter Actions, and Rules
An IPSec policy consists of a set of filters, filter actions, and rules.
● Filters

A filter is used to match traffic. It consists of:
● A source IP address or range of addresses
● A destination IP address or range of addresses
● An IP protocol, such as TCP, UDP, or “any”
● Source and destination ports (for TCP or UDP only)

Note An IP filter list is used to group multiple filters together so that multiple IP addresses and
protocols can be combined into a single filter.

 How To: Use IPSec for Filtering Ports and Authentication 779

● Filter Actions
A filter action specifies which actions to take when a given filter is invoked. It can
be one of the following:
● Permit. The traffic is not secured; it is allowed to be sent and received without

intervention.
● Block. The traffic is not permitted.
● Negotiate security. The endpoints must agree on and then use a secure method

to communicate. If they cannot agree on a method, the communication does not
take place. If negotiation fails, you can specify whether to allow unsecured
communication or to whether all communication should be blocked.

● Rules
A rule associates a filter with a filter action and is defined by the IPSec policy.

Restricting Web Server Communication
The following example shows you how to use IPSec to limit communication
with a Web server to port 80 (for HTTP traffic) and port 443 (for HTTPS traffic
that uses SSL.) This is a common requirement for Internet-facing Web servers.

Note After applying the steps below, communication will be limited to port 80 and 443. In a real
world environment, you will require additional communication such as that required for remote
administration, database access and authentication. A complete IPSec policy, in a production
environment, will include all authorized communication.

� Create filter actions

1. Start the Local Security Policy Microsoft Management Console (MMC) snap-in.
2. Right-click IPSec Security Policies on Local Machine, and then click Manage IP

filter lists and filter actions.
3. Click the Manage Filter Actions tab.
4. Click Add to create a new filter action, and then click Next to move past the

introductory Wizard dialog box.
5. Type MyPermit as the name for the new filter action. This filter action is used to

permit traffic.
6. Click Next.
7. Select Permit, click Next, and then click Finish.
8. Create a second filter action called “MyBlock” by repeating steps 4 to 8. This time,

select Block when you are prompted by the Filter Action dialog box.
9. Click Close to close the Manage IP filter lists and filter actions dialog box.

780 Improving Web Application Security: Threats and Countermeasures

� Create IP filters and filter lists

1. Right-click IPSec Security Policies on Local Machine, and then click Manage IP
filter lists and filter actions.

2. Click Add to add a new IP filter list., and then type MatchAllTraffic for the filter
list name.

3. Click Add to create a new filter and proceed through the IP Filter Wizard dialogs
boxes by selecting the default options.
This creates a filter that matches all traffic.

4. Click Close to close the IP Filter List dialog box.
5. Click Add to create a new IP filter list, and then type MatchHTTPAndHTTPS for

the filter list name.
6. Click Add, and then click Next to move past the introductory Wizard dialog box.
7. Select Any IP Address from the Source address drop-down list, and then

click Next.
8. Select My IP Address from the Destination address drop-down list, and then

click Next.
9. Select TCP from the Select a protocol type drop-down list, and then click Next.

10. Select To this port and then specify port 80.
11. Click Next and then Finish.
12. Click Add, and then repeat steps 9 to 14 to create another filter that allows traffic

through port 443.
Use the following values to create a filter that allows TCP over port 443:
● Source Address: Any IP address
● Destination Address: My IP Address
● Protocol: TCP
● From Port: Any
● To Port: 443

After finishing these steps, your IP Filter List should look like the one that Figure 5
shows.

 How To: Use IPSec for Filtering Ports and Authentication 781

Figure 5
IP Filter List dialog box

After creating the filter actions and filter lists, you need to create a policy and two
rules to associate the filters with the filter actions.

� Create and apply IPSec policy
1. In the main window of the Local Security Policy snap-in, right-click IPSec

Security policies on Local Machine, and then click Create IPSecurity Policy.
2. Click Next to move past the initial Wizard dialog box.
3. Type MyPolicy for the IPSec policy name and IPSec policy for a Web server that

accepts traffic to TCP/80 and TCP/443 from anyone for the description, and then
click Next.

4. Clear the Activate the default response rule check box, click Next, and then click
Finish.
The MyPolicy Properties dialog box is displayed so that you can edit the policy
properties.

5. Click Add to start the Security Rule Wizard, and then click Next to move past the
introductory dialog box.

6. Select This rule does not specify a tunnel, and then click Next.
7. Select All network connections, and then click Next.
8. Select Windows 2000 default (Kerberos V5 protocol), and then click Next.
9. Select the MatchHTTPAndHTTPS filter list, and then click Next.

10. Select the MyPermit filter action, click Next, and then click Finish.
11. Create a second rule by repeating steps 5 to 10. Instead of selecting

MatchHTTPAndHTTPS and MyPermit, select MatchAllTraffic and MyBlock.

782 Improving Web Application Security: Threats and Countermeasures

After creating the second rule, the MyPolicy Properties dialog box should look like
the one in Figure 6.

Figure 6
MyPolicy Properties dialog box

Your IPSec policy is now ready to use. To activate the policy, right-click MyPolicy
and then click Assign.

Summary of What You Just Did
In the previous three procedures, you performed these actions:
● You started by creating two filter actions: one to allow traffic and one to block

traffic.
● Next, you created two IP filter lists. The one called MatchAllTraffic matches on all

traffic, regardless of port. The one called MatchHTTPAndHTTPS contains two
filters that match TCP traffic from any source address to TCP ports 80 and 443.

● Then you created an IPSec policy by creating a rule that associated the MyBlock
filter action with the MatchAllTraffic filter list and the MyPermit filter action with
the MatchHTTPAndHTTPS filter list. The result of this is that the Web server only
allows TCP traffic destined for port 80 or 443. All other traffic is rejected.

 How To: Use IPSec for Filtering Ports and Authentication 783

Restricting Database Server Communication
On a dedicated SQL Server database server, you often want to restrict communication
to a specific SQL Server port over a particular protocol. By default, SQL Server listens
on TCP port 1433, and UDP port 1434 is used for negotiation purposes.

The following steps restrict a database server so that it only accepts incoming
connections on TCP port 1433 and UDP port 1434:
● Create two filter actions: one to permit traffic and the other to block traffic. For

details, see the Create filter actions procedure under “Restricting Web Server
Communication” earlier in this How To.

● Create two filter lists: one that matches all traffic and one that contains two filters
that match TCP traffic destined for port 1433 and UDP traffic destined for port
1433. For details, see “Create IP filter lists and filters” under “Restricting Web
Server Communication” earlier in this How To. The required filters are
summarized below.
● Enter the following values to create a filter that allows TCP over port 1433:

● Source Address: Any IP address
● Destination Address: My IP Address
● Protocol: TCP
● From Port: Any
● To Port: 1433

● Enter the following values to create a filter that allows UDP over port 1434:
● Source Address: Any IP address
● Destination Address: My IP Address
● Protocol: UDP
● From Port: Any
● To Port: 1434

● Create and apply IPSec policy by repeating the procedure under “Restricting Web
Server Communication” earlier in this How To.

784 Improving Web Application Security: Threats and Countermeasures

Restricting Server-to-Server Communication
You can also use IPSec to provide server authentication. This is useful when
restricting the range of computers that can connect to middle-tier application servers
or database servers. IPSec provides three authentication options:
● Kerberos

To use Kerberos, the computers must:
● Be part of the same domain and forest
● Be within a specific source address range
● Be within the same subnet
● Use static IP addresses

● Pre-shared secret key
To use pre-shared secret-key-based authentication, the two computers must share
an encryption key.

● Certificate-based authentication
To use certificate authentication, the two computers must trust a common
certificate authority (CA), and the server that performs the authentication must
request and install a certificate from the CA.

In this section, you set up IPSec authentication between two servers by using a pre-
shared secret key.

� To perform server-to-server authentication

1. Start the Local Security Policy MMC snap-in.
2. Right-click IPSec Security policies on the local machine, and then click Create IP

Security Policy.
3. Type “MyAuthPolicy” [SSJ2]for the name, and then click Next.
4. Clear the Activate the default response rule check box.
5. Click Next and then Finish.

The MyAuthPolicy Properties dialog box is displayed so that you can edit the
policy properties.

6. Click Add, and then click Next three times.
7. In the Authentication Method dialog box, select Use this string to protect the key

exchange (preshared key).
8. Enter a long, random set of characters in the text box, and then click Next.

You should copy the key to a floppy disk or CD. You need it to configure the
communicating server.

 How To: Use IPSec for Filtering Ports and Authentication 785

9. In the IP Filter List dialog box, select All IP Traffic, and then click Next.
10. In the Filter Action dialog box, select Request Security (Optional), and then

click Next.
11. Click Finish.
12. Test your application to verify the configured policy.

Using IPSec Tools
This section describes two useful IPSec diagnostic tools that are available as part of
the Windows 2000 resource kit:
● Netdiag.exe
● IPSecpol.exe

Netdiag.exe
Before creating a new policy, determine if your system already has an existing policy.
You can do this by performing the following steps:

� To check for existing IPSec policy

1. To install Netdiag.exe, run the Setup.exe program from the \Support\Tools folder
on the Windows 2000 Server CD.
The tools are installed in C:\Program Files\Resource kit.

2. Run the following command from the command line:

netdiag /test:ipsec

If there are no existing filters, then the output looks like the following:

IP Security test : Passed IPSec policy service is active, but
no policy is assigned.

IPSecpol.exe
The Internet Protocol Security Policies tool helps you automate the creation of
policies in local and remote registries. The tool supports the same settings that you
can configure by using the MMC snap-in.

Download the tool from the Microsoft Windows 2000 Web site at
http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/ipsecpol-o.asp.

For detailed examples of using Ipsecpol.exe to create and manipulate IPSec rules, see
Microsoft Knowledge Base article 813878, “How to Block Specific Network Protocols
and Ports by Using IPSec.”

http://www.microsoft.com/windows2000/techinfo/reskit/tools/existing/ipsecpol-o.asp

786 Improving Web Application Security: Threats and Countermeasures

Additional Resources
For more information, see the following resources:
● Step-by-Step guide to IPSec at http://www.microsoft.com/windows2000/techinfo

/planning/security/ipsecsteps.asp.
● IP Security for Windows 2000 Server at http://www.microsoft.com/windows2000

/techinfo/howitworks/security/ip_security.asp.
● “How To: Use IPSec to Provide Secure Communication Between Two Servers” in

the How To section of “Building Secure ASP.NET Applications” on MSDN.
● Article 313190, “How To: Use IPSec IP Filter Lists in Windows 2000” in the

Microsoft Knowledge Base.
● Article 813878, “How to Block Specific Network Protocols and Ports by Using

IPSec” in the Microsoft Knowledge Base.
● Article 313195, “How To: Use IPSec Monitor in Windows 2000” in the Microsoft

Knowledge Base.
● IPSec considerations at http://www.microsoft.com/technet/treeview/default.asp?url=

/technet/prodtechnol/winxppro/proddocs/sag_IPSECsec_con.asp?frame=true.

http://www.microsoft.com/windows2000/techinfo/planning/security/ipsecsteps.asp
http://www.microsoft.com/windows2000/techinfo/planning/security/ipsecsteps.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/security/ip_security.asp
http://www.microsoft.com/windows2000/techinfo/howitworks/security/ip_security.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/winxppro/proddocs/sag_IPSECsec_con.asp?frame=true
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prodtechnol/winxppro/proddocs/sag_IPSECsec_con.asp?frame=true

How To:
Use the Microsoft Baseline
Security Analyzer

Applies To
This information applies to computers that run the following:
● Servers running Microsoft ® Windows 2000 Server or Windows 2003 Server
● Developer workstations running Windows 2000 (all flavors), Windows XP

Professional or Windows 2003 Server
● SQL Server 2000, including the Desktop Edition (MSDE)

Summary
Microsoft Baseline Security Analyzer (MBSA) checks for operating system and SQL
Server updates. MBSA also scans a computer for insecure configuration. When
checking for Windows service packs and patches, it includes Windows components
such as Internet Information Service (IIS) and COM+. MBSA uses an XML file as the
manifest of existing updates. This XML file, contained in the archive Mssecure.cab, is
either downloaded by MBSA when a scan is run, or the file can be downloaded on
the local computer, or made available from a network server.

In this chapter, you will learn how to use MBSA to perform two processes:
● A security updates scan
● A check for default settings that are not secure

This How To reviews each mode separately, although both modes can be performed
in the same pass.

788 Improving Web Application Security: Threats and Countermeasures

Contents
● Before You Begin
● What You Must Know
● Scanning for Security Updates and Patches
● Scanning Multiple Systems for Updates and Patches
● SQL Server and MSDE Specifics
● Scanning for Secure defaults
● Pitfalls
● Additional Resources

Before You Begin
Install MBSA, using Mbsasetup.msi, to a tools directory. Copy the file Mssecure.cab
to the MBSA installation directory.
● Download MBSA. Download MBSA from the MBSA Home Page:

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools
/mbsahome.asp

● Updates for MBSA. If the machine you use has Internet access, the latest security
XML file will be downloaded automatically, if needed. If your computer does not
have Internet access, you need to download the latest XML file using the signed
CAB at the following location: http://download.microsoft.com/download/xml/security
/1.0/NT5/EN-US/mssecure.cab
The CAB file is signed to ensure it has not been modified. You must uncompress it
and store it in the same folder where MBSA is stored.

Note To view the latest XML file without downloading it, use the following location:
https://www.microsoft.com/technet/security/search/mssecure.xml

● Default installation directory: \Program Files\Microsoft Baseline Security
Analyzer\

Note You need to run commands from this directory. MBSA does not create an environment
variable for you.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/mbsahome.asp
http://download.microsoft.com/download/xml/security/1.0/NT5/EN-US/mssecure.cab
http://download.microsoft.com/download/xml/security/1.0/NT5/EN-US/mssecure.cab
https://www.microsoft.com/technet/security/search/mssecure.xml

 How To: Use the Microsoft Baseline Security Analyzer 789

What You Must Know
Before using this How To, you should be aware of the following:
● You can use MBSA by using the graphical user interface (GUI) or from the

command line. The GUI executable is Mbsa.exe and the command line executable
is Mbsacli.exe.

● MBSA uses ports 138 and 139 to perform its scans.
● MBSA requires administrator privileges on the computer that you scan. The

options /u (username) and /p (password) can be used to specify the username to
run the scan. Do not store user names and passwords in text files such as
command files or scripts.

● MBSA requires the following software:
● Windows NT 4.0 SP4 and above, Windows 2000, or Windows XP (local scans

only on Windows XP computers that use simple file sharing).
● IIS 4.0, 5.0 (required for IIS vulnerability checks).
● SQL 7.0, 2000 (required for SQL vulnerability checks).
● Microsoft Office 2000, XP (required for Office vulnerability checks).
● The following services must be installed/enabled: Server service, Remote

Registry service, File & Print Sharing.
● The section Additional Information later in this How To includes tips on

working with MBSA.

Scanning for Security Updates and Patches
You can run Mbsa.exe and Mbsacli.exe with options to verify the presence of security
patches.

Using the Graphical Interface
Use the MBSA GUI tool as described next.

� To use the MBSA GUI to scan for updates and patches

1. Click Microsoft Baseline Security Analyzer from the Programs menu.
2. Click Scan a computer.
3. Make sure that the following options are not selected, and then click Start scan.

● Check for Windows vulnerabilities
● Check for weak passwords
● Check for IIS vulnerabilities
● Check for SQL vulnerabilities

790 Improving Web Application Security: Threats and Countermeasures

The advantage of the GUI is that the report is opened immediately after scanning the
local computer. More details on interpreting the report are explained later in this
section.

Using the Command Line (Mbsacli.exe)
To use the command line tool (Mbsacli.exe) to check for security updates and patches,
run the following command from a command window. This scans the specified
computer with the supplied IP address and checks for missing updates:

mbsacli /i 192.168.195.137 /n OS+IIS+SQL+PASSWORD

A successful scan produces results similar to those shown below:

Scanning...
[] 0 o[..........] 1 of 1 computer scan(s) complete.
Scan Complete.
Computer Name, IP Address, Assessment, Report Name

Workgroup\SECNETSQL, 192.168.195.137, Severe Risk, Workgroup - SECNETSQL (04-07-
2003 03-01 PM)

You can view the report by using Mbsacli.exe, but is not recommended since it is
easier to extract patch details using the GUI. The command below allows you to view
a scan report using Mbsacli.exe:

mbsacli /ld "SecurityReportFile.xml"

Analyzing the Output
A report file is generated in the profile directory of the logged in user
(%userprofile%), on the computer from where you ran the Mbsacli.exe
command. The easiest way to view the results of those reports is by using
the GUI mode of MBSA.

Scanning Multiple Systems for Updates and Patches
You can also use MBSA to scan a range of computers. To do so, use the /r command
line switch as shown below.

mbsacli /r 192.168.195.130-192.168.195.254 /n OS+IIS+SQL+PASSWORD

The above command scans all computers in the range 192.168.195.130 to
192.168.195.254.

 How To: Use the Microsoft Baseline Security Analyzer 791

To scan all computers in a domain, use the /d option as show below:

mbsacli /d DOMAINNAME /n OS+IIS+SQL+PASSWORD

SQL Server and MSDE Specifics
SQL Server, including MSDE, instances are each scanned and reported separately.
Instances are noted with Instance Name as shown in Figure 7.

Figure 7
SQL Server and MSDE specifics

For more details on installing patches and service packs for SQL Server 2000,
including the Desktop Edition (MSDE), see “How To: Patch Management” in the
How To section of this guide.

Scanning for Secure Configuration
In addition to scanning for missing security updates, MBSA scans for system
configurations that are not secure. For a detailed list of what is checked by this scan,
see the MBSA documentation at: http://www.microsoft.com/technet/treeview
/default.asp?url=/technet/security/tools/tools/mbsawp.asp

The secure configuration scan can be done in the following phases
● Perform the scan.
● Analyze the scan.
● Correct any issues that you find.

These phases are described below.

Performing the Scan
Run MBSA and deselect Check for security updates when performing the scan.

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/mbsawp.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/mbsawp.asp

792 Improving Web Application Security: Threats and Countermeasures

Analyzing the Scan
The resulting report will appear similar to the patch scan you performed earlier. The
only difference is the link How to correct this will be available when issues are
found. When you click the link, a page will appear with the details of the issue found,
the solution to the issue, and instructions to correct the issue.

Compare the issue details against your security policy and follow the instructions if
the issue is not addressed by your policy.

Correcting Issues Found
Choose the link How to correct this. In the resulting page, the solution and
instructions explain the steps that you need to take to correct the issue.

Additional Information
The following information will help you troubleshoot scanning errors or explain
inconsistencies between scans.

False Positives From Security Update Checks
There may be cases where MBSA reports that an update is not installed, even after
you complete an update or take the steps documented in a security bulletin. There
are two reasons for these false reports:
1. Files scanned were updated by an installation that is unrelated to a security

bulletin. For example, a file shared by different versions of the same program may
be updated by the newer version. MBSA is unaware of the new versions and,
because it is not what is expected, it reports the update is missing.

2. Some security bulletins are not addressed by a file update but a configuration
change that cannot be verified. These types of flags will appear as Note or
Warning messages, marked with yellow Xs.

Both must be noted and ignored for future scans.

Requirements for Performing Remote Scans
MBSA makes use of the following network services to scan a computer:
● Windows NT 4.0 SP4 and above, Windows 2000, or Windows XP (local scans only

on Windows XP computers that use simple file sharing)
● IIS 4.0, 5.0 (required for IIS vulnerability checks)
● SQL 7.0, 2000 (required for SQL vulnerability checks)
● Services must be installed or enabled: Server service, Remote Registry service,

File & Print Sharing

 How To: Use the Microsoft Baseline Security Analyzer 793

f any of the services are unavailable or administrative shares (C$) are not accessible,
errors will result during the scan.

Password Scans
Password check performed by MBSA can take a long time, depending on the number
of user accounts on the machine. The password check enumerates all user accounts
and performs several password change attempts using common password pitfalls
such as a password that is the same as the username. Users may want to disable this
check before scanning Domain Controllers on their network. For details on the MBSA
password check, see the topic “Local Accounts Passwords” in the MBSA whitepaper
on TechNet http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security
/tools/tools/mbsawp.asp.

Differences Between Mbsa.exe and Mbsacli.exe
It is important to know the differences between the default options of the two MBSA
clients: the GUI tool, Mbsa.exe, and the command-line tool, Mbsacli.exe. The
examples shown previously in this How To take these defaults into account.

The MBSA GUI calls /nosum, /v, and /baseline by default. The details for those
options are:

/nosum Security update checks will not test file checksums.

/v Displays security update reason codes.

/baseline Checks only for baseline security updates.

The MBSA command line calls no options and runs a default scan.

Additional Resources
The MBSA home is the best resources for the latest on the Microsoft Baseline Security
Analyzer. http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools
/Tools/MBSAhome.asp

http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/mbsawp.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/tools/mbsawp.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/MBSAhome.asp
http://www.microsoft.com/technet/treeview/default.asp?url=/technet/security/tools/Tools/MBSAhome.asp

How To:
Use IISLockdown.exe

Applies To
This information applies to server computers that run the following:
● Microsoft® Windows® 2000 Server

Summary
You can largely automate the process of securing your Web server by running
the IISLockdown tool. It allows you to pick a specific type of server role and then
improve security for that server with customized templates that either disable or
secure various features. In addition, the URLScan ISAPI filter is installed when you
run IISLockdown. The URLScan ISAPI filter rejects potentially malicious requests
and accepts or rejects client requests based on a configurable set of rules.

What Does IISLockdown Do?
For a Windows 2000 computer that serves ASP.NET pages, select the Dynamic Web
server (ASP enabled) template when you run IISLockdown. When you use this
template, IIS Lockdown performs the following actions:
● It disables the following Internet Services:

● File Transfer Protocol (FTP)
● E-mail service (SMTP)
● News service (NNTP)

● It maps the following script maps to 404.dll:
● Index Server Web Interface (.idq, .htw, .ida)
● Server-side includes (.shtml, .shtm, .stm)
● Internet Data Connector (.idc)
● .HTR scripting (.htr)
● Internet printing (.printer)

796 Improving Web Application Security: Threats and Countermeasures

● It removes the following virtual directories:
● IIS Samples
● MSADC
● IISHelp
● Scripts
● IISAdmin

● It restricts anonymous access to system utilities as well as the ability to write to
Web content directories. To do this, IISLockdown creates two new local groups
called Web Anonymous Users and Web Applications and then it adds deny
access control entries (ACEs) for these groups to the access control list (ACL) on
key utilities and directories.
Next, IISLockdown adds the default anonymous Internet user account
(IUSR_MACHINE) to Web Anonymous Users and the IWAM_MACHINE
account to Web Applications.

Note If you create custom, anonymous Internet user accounts, add them to the
Web Anonymous Users group.

● It disables Web Distributed Authoring and Versioning (WebDAV).
● It installs the URLScan ISAPI filter.

Installing IISLockdown
To install IISlockdown, download it from the Microsoft Web site at
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe.

You can save it locally or run it directly by clicking Open when you are prompted. If
you save IISLockd.exe, you can unpack helpful files by running the following
command:

iislockd.exe /q /c

This command unpacks the following files:
● IISLockd.chm. This is the compiled help file for the IISLockdown tool.
● RunLockdUnattended.doc. This file includes instructions for unattended

IISLockdown execution.
● URLScan.exe and associated files. These files install URLScan without running

IISLockdown.exe.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe

 How To: Use IISLockdown.exe 797

Running IISLockdown
IISLockdown detects the Microsoft .NET Framework and takes steps to secure
.NET Framework files. Install the .NET Framework on your Web server before you
run IISLockdown.

IISLockd.exe is not an installation program. When you launch IISLockd.exe, it runs
the IIS Lockdown Wizard.

� To run IISLockdown

1. Run IISlockd.exe on your IIS Web server, click Next, and then read and accept the
license agreement.

2. For Web servers that host ASP.NET Web applications, select Dynamic Web server
(ASP enabled) from the Server templates list.

3. Select View template settings and then click Next.
This allows you to specify the changes that the IIS Lockdown tool should perform.

4. Select Web service (HTTP) and make sure that no other services are selected.
5. Select Remove unselected services, click Yes in response to the warning message

box, and then click Next.
6. On the Script Maps page, disable support for the following script maps, and then

click Next.
● Index Server Web Interface (.idq, .htw, .ida)
● Server side includes (.shtml, .shtm, .stm)
● Internet Data Connector (.idc)
● .HTR scripting (.htr)
● Internet printing (.printer)

7. On the Additional Security page, select all of the available options.
This causes IISLockdown to remove all of the listed virtual directories, configure
NTFS permissions for the anonymous Internet account, and disable WebDAV.

8. Click Next.
9. On the URLScan page, select Install URLScan filter on the server.

10. Click Next twice.
IISLockdown updates your server configuration using the selected options.

11. Click Next and then Finish to exit the tool.

798 Improving Web Application Security: Threats and Countermeasures

Log Files
A log file detailing the changes made by IISLockdown is written to
\WINNT\System32\inetsrv\oblt-log.log. When you run IISLockdown a second
time, it undoes any changes it made based on this log. You can view the log file by
using any text editor to see the exact changes made by IISLockdown.

Undoing IISLockdown Changes
To undo the changes made by IISLockdown, run IISlockd.exe a second time and
choose to undo the changes. The undo operation restores the system settings that
were in effect immediately before you previously ran IISLockdown. These details
are contained in the log file \WINNT\System32\inetsrv\0blt-log. Therefore, it is
important that you test the system promptly after you run IISLockdown. If an undo
is required, perform it immediately.

Note The URLScan ISAPI filter that is installed as part of IIS Lockdown is not removed as part of
the undo process. You can remove URLScan manually by using the ISAPI filters tab at the server
level in Internet Services Manager.

Unattended Execution
The following steps are from RunLockdUnattended.doc, which is available if you
unpack files by running IISLockd.exe with the /q and /c arguments.

� To configure IISLockdown for unattended execution

1. Open IISlockd.ini in a text editor.
2. Under the [Info] section, configure the UnattendedServerType setting by entering

the name that matches the server template you want to use. For example, if you
want to apply the dynamicweb template, the setting would look like this:

UnattendedServerType=dynamicweb

3. Change the Unattended setting to TRUE, as follows:

Unattended=TRUE

Note If you want to run IISlockd.exe unattended to undo a previous set of changes, ensure that
both the Unattended and Undo settings are set to TRUE.

 How To: Use IISLockdown.exe 799

4. Configure the server template that you chose in step 2. The template configuration
is denoted with square brackets around the server template name, for example,
[dynamicweb]. The template configuration contains the various feature settings
for that specific server template. These feature settings can be toggled on or off by
setting them to TRUE or FALSE.

Note The AdvancedSetup setting is ignored during an unattended installation, and the
UninstallServices setting applies only to Windows 2000.

5. Save IISlockd.ini.
6. Run IISlockd.exe using the command line or scripting.

Pitfalls
Be aware of the following potential pitfalls when working with IISLockdown:
● IISLockdown configures NTFS permissions using the new group Web

Anonymous Users. By default, this contains the IUSR_MACHINE account. If you
create new anonymous accounts, you must manually add these accounts to the
Web Anonymous Users group.

● If you debug ASP.NET pages using Microsoft Visual Studio® .NET, debugging
stops working. This is because IISLockdown installs URLScan and URLScan
blocks the DEBUG verb. For more information about using IISLockdown on
developer workstations, see “How To: Secure Your Developer Workstation” in
this guide.

How To:
Use URLScan

Applies To
This information applies to server computers that run the following:
● Microsoft® Windows® 2000 Server operating system

Summary
URLScan is an ISAPI filter that allows Web site administrators to restrict the kind of
HTTP requests that the server will process. By blocking specific HTTP requests, the
URLScan filter prevents potentially harmful requests from reaching the server and
causing damage.

Contents
This How To contains the following items:
● Installing URLScan
● Log files
● Removing URLScan
● Configuring URLScan
● Throttling request sizes with URLScan
● Debugging Microsoft ® Visual Studio .NET with URLScan installed
● Masking content headers (banners)
● Pitfalls
● References

Installing URLScan
At the time of writing (April 2003), URLScan 2.0 is installed when you run
IISLockdown (IISLockd.exe,) or you can install it independently.
● Installing URLScan 2.0 with IISLockdown: You can install URLScan 2.0 as part of

the IIS Lockdown Wizard (IISLockd.exe). IISLockd.exe is available as an Internet
download from Microsoft’s Web site at: http://download.microsoft.com/download/iis50
/Utility/2.1/NT45XP/EN-US/iislockd.exe.

http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe
http://download.microsoft.com/download/iis50/Utility/2.1/NT45XP/EN-US/iislockd.exe

802 Improving Web Application Security: Threats and Countermeasures

● Installing URLScan 2.0 without running IISLockdown: To install URLScan
without running IISLockdown, you need to manually extract it from the IIS
Lockdown Tool. First you need to save IISLockd.exe to a directory. Then to extract
the URLScan setup files, run the following command at the command line from
the directory where you installed IISLockd.exe:

iislockd.exe /q /c

This unpacks URLScan.exe which is the URLScan installation program.
For more information, refer to Microsoft Knowledge Base article 315522, “How To:
Extract the URLScan Tool and Lockdown Template Files from the IIS Lockdown
Tool.”

● Installing URLScan 2.5: URLScan 2.5 is currently the latest version of URLScan. If
you want to install URLScan 2.5, you first need URLScan 1.0 or URLScan 2.0.
For more information, refer to Microsoft Knowledge Base article 307608, “INFO:
Availability of URLScan Version 2.5 Security Tool.”

● Default installation directory: The URLScan files including Urlscan.dll,
URLScan.ini and URLScan logs are stored in
%windir%\system32\inetsrv\urlscan. URLScan.dll is the filter. You use
URLScan.ini to configure the way it works.

Log Files
URLScan creates log files that record rejected requests. Log files are located in the
following folder:

%windir%\system32\inetsrv\urlscan

Log files are named using the following convention: URLScan<date>.log.

Removing URLScan
You remove URLScan manually by using the ISAPI filters page of the Web server
properties dialog in Internet Services Manager

Configuring URLScan
To configure URLScan to determine which requests should be rejected, you use
URLScan.ini. This is located in the following folder:

%windir%\system32\inetsrv\urlscan

For more information on how to modify the various sections in URLScan.ini, refer
to Microsoft Knowledge Base article 815155 “How To: Configure URLScan to Protect
ASP.NET Web Applications.”

 How To: Use URLScan 803

Throttling Request Sizes with URLScan
You can use URLScan as another line of defense against denial of service attacks
even before requests reach ASP.NET. You do this by setting limits on the
MaxAllowedContentLength, MaxUrl and MaxQueryString attributes.

To throttle the request sizes, add the following configuration to URLScan.ini:

[RequestLimits]
; The entries in this section impose limits on the length
; of allowed parts of requests reaching the server.
;MaxAllowedContentLength=2000000000
;MaxUrl=16384
;MaxQueryString=4096

Debugging VS .NET with URLScan Installed
By default, URLScan does not allow the DEBUG verb. Therefore, when you use
VS.NET to debug a Web application on a server where URLScan is installed, you may
see the following error:

Microsoft Development Environment:
Error while trying to run project: Unable to start debugging on the web server.
Could not start ASP.NET or ATL Server debugging.

Verify that ASP.NET or ATL Server is correctly installed on the server. Would you
like to disable future attempts to debug ASP.NET pages for this project? Yes No
Help

Your URLScan log file will also contain an entry similar to the following:

[01-18-2003 - 22:25:26] Client at 127.0.0.1: Sent verb 'DEBUG', which is not
specifically allowed. Request will be rejected.

To support debugging, add DEBUG to the AllowVerbs section in URLScan.ini as
shown below:

[AllowVerbs]
GET
HEAD
POST
DEBUG

Note You need to restart IIS for changes to take effect.

804 Improving Web Application Security: Threats and Countermeasures

Masking Content Headers (Banners)
To prevent banner information that reveals the type and version of your Web server,
locate the RemoveServerHeader attribute in URLScan.ini, and set its value to 1 as
shown below.

RemoveServerHeader=1

For more information, see Microsoft Knowledge Base article, 317741, “How To: Mask
IIS Version Information from Network Trace and Telnet.”

Pitfalls
If you use URLScan, you might run into the following issues:
● URLScan blocks the DEBUG verb which breaks application debugging. If you

need to support debugging, add the DEBUG verb to the [AllowVerbs] section in
URLScan.ini.

● You need to recycle IIS for changes to take effect. URLScan is an ISAPI filter that
runs inside the IIS process (Inetinfo.exe) and URLScan’s options are loaded from
URLScan.ini when IIS starts up. You can run the IISReset command from a
command prompt to recycle IIS.

● URLScan blocks requests that contain potentially harmful characters, for example,
characters that have been used to exploit vulnerabilities in the past such as “.”
used for directory traversal. It is not recommended that project paths contain the
“.” character. If you must allow this, you need to set AllowDotInPath=1 in
URLScan.ini.
If your Web application directories include dots in the path, for example, a
directory containing the name “Asp.Net”, then URLScan will reject the request
and a “404 not found” message will be returned to the client.
Other characters to avoid in project names because they will be rejected by
URLScan include comma (,) and the pound sign (#).

References
For additional information, refer to the following resources:
● For more information about how to modify the various sections in Urlscan.ini,

refer to Microsoft Knowledge Base article 815155 “How To: Configure URLScan to
Protect ASP.NET Web Applications.”

● For more information about using URLScan, see http://www.nardware.co.uk/Security
/Docs/Nmsurlscan.html.

● For more information about URLScan 2.5, refer to Microsoft Knowledge Base
article 307608, “INFO: Availability of URLScan Version 2.5 Security Tool.”

http://www.nardware.co.uk/Security/Docs/Nmsurlscan.html
http://www.nardware.co.uk/Security/Docs/Nmsurlscan.html

How To:
Create a Custom
Encryption Permission

Applies To
This information applies to server or workstation computers that run the following:
● Microsoft® Windows® 2000 Server and Windows 2000 Professional,

Windows Server 2003, Windows XP Professional
● Internet Information Server (IIS)
● .NET Framework 1.1

Summary
This How To describes how to create a custom code access security permission to
control programmatic access to unmanaged encryption functionality that Win32®
Data Protection API (DPAPI) provides. Use this custom permission with the managed
DPAPI wrapper code described in “How To: Create a DPAPI Library,” in “Building
Secure ASP.NET Applications,” in the MSDN Library.

Before You Begin
Code access security permissions must derive from
System.Security.CodeAccessPermission, which provides an implementation of the
Demand method defined by the IPermission interface, together with others such as
Assert, Deny, and PermitOnly, which are defined by the IStackWalk interface.

Code access permissions (not identity permissions) also implement the
IUnrestrictedPermission interface, to indicate that the permission is part of
the unrestricted permission set. This means that the permission is automatically
granted to any code that has full trust. The inheritance hierarchy for the custom
EncryptionPermission implemented in this How To is shown in Figure 8.

806 Improving Web Application Security: Threats and Countermeasures

CodeAccessPermission

IPermission Copy
Demand
Intersect
IsSubsetOf
Union

IStackWalk
Assert
Demand
Deny
PermitOnly

ISecurityEncodable FromXml
ToXml

IUnrestrictedPermission

IsUnrestricted

Copy
Union
Intersect
IsSubsetOf
IsUnrestricted
FromXml
ToXml

EncryptionPermission

Demand
Assert
Deny
PermitOnly

Figure 8
Custom EncryptionPermission inheritance hierarchy

The custom EncryptionPermission class maintains the following states:
● EncryptionPermissionFlag. Determines whether code that is granted this

permission is able to encrypt data, decrypt data, or both.
● StorePermissionFlag. Determines whether code that is granted this permission is

able to use DPAPI with the machine store, current user store, or both.

Summary of Steps
This How To includes the following steps:

Step 1. Create the EncryptionPermission class.

Step 2. Create the EncryptionPermissionAttribute class.

Step 3. Install the Permission assembly in the global assembly cache (GAC).

Step 4. Update the DPAPI managed wrapper code.

Step 5. Call DPAPI from a medium trust Web application.

 How To: Create a Custom Encryption Permission 807

Step 1. Create the EncryptionPermission Class
The EncryptionPermission class is the custom permission implementation used to
authorize access to the unmanaged DPAPI functionality.

� To create the CustomPermission class

1. Create a new Visual C#TM development tool Class Library project
CustomPermission, and rename class1.cs to EncryptionPermission.cs.

2. Add a strong name to the assembly so that you can install it in the GAC. Use the
following attribute in assemblyinfo.cs:

[assembly: AssemblyKeyFile(@"..\..\CustomPermissions.snk")]

3. Use a fixed assembly version.

[assembly: AssemblyVersion("1.0.0.1")]

4. Add the following using statements to the top of EncryptionPermission.cs.

using System.Security;
using System.Security.Permissions;

5. Add the following enumerated types to the CustomPermissions namespace.

[Flags, Serializable]
public enum EncryptionPermissionFlag
{Encrypt = 0x01, Decrypt = 0x02}

[Flags, Serializable]
public enum StorePermissionFlag
{User = 0x01, Machine = 0x02}

6. Add serialization support to the EncryptionPermission class with the
[Serializable] attribute, and derive it from CodeAccessSecurity and
IUnrestrictedPermission. Also, seal the class, as the following shows.

[Serializable]
public sealed class EncryptionPermission : CodeAccessPermission,
 IUnrestrictedPermission

7. Add two private member variables to maintain the permission state.

private EncryptionPermissionFlag _permFlag;
private StorePermissionFlag _storePermFlag;

808 Improving Web Application Security: Threats and Countermeasures

8. Replace the default constructor with the following constructors.

// It is convention for permission types to provide a constructor
// that accepts the PermissionState enumeration.
public EncryptionPermission(PermissionState state)
{
 if (state.Equals(PermissionState.Unrestricted))
 {
 _permFlag = EncryptionPermissionFlag.Encrypt |
 EncryptionPermissionFlag.Decrypt;
 _storePermFlag = StorePermissionFlag.User | StorePermissionFlag.Machine;
 }
 else
 {
 _permFlag &= ~(EncryptionPermissionFlag.Encrypt |
 EncryptionPermissionFlag.Decrypt);
 _storePermFlag &= ~(StorePermissionFlag.User |
 StorePermissionFlag.Machine);
 }
}
// This constructor allows you to specify the encryption type (encrypt
// or decrypt) by using the EncryptionPermissionFlag enumeration and the DPAPI
// key store to use (user or machine) as defined by the StorePermissionFlag
// enumeration.
public EncryptionPermission(EncryptionPermissionFlag cipher,
 StorePermissionFlag store)
{
 _permFlag = cipher;
 _storePermFlag = store;
}
public EncryptionPermission()
{
 _permFlag &= ~EncryptionPermissionFlag.Encrypt |
 EncryptionPermissionFlag.Decrypt;
 _storePermFlag &= ~(StorePermissionFlag.User | StorePermissionFlag.Machine);
}

9. Add the following public properties to allow a consumer application to set the
permission class state.

// Set this property to true to allow encryption.
public bool Encrypt
{
 set {
 if(true == value)
 {
 _permFlag |= EncryptionPermissionFlag.Encrypt;
 }
 else
 {
 _permFlag &= ~EncryptionPermissionFlag.Encrypt;
 }
 }

 How To: Create a Custom Encryption Permission 809

(continued)

 get {
 return (_permFlag & EncryptionPermissionFlag.Encrypt).Equals(
 EncryptionPermissionFlag.Encrypt);
 }
}

// Set this property to true to allow decryption.
public bool Decrypt
{
 set {
 if(true == value)
 {
 _permFlag |= EncryptionPermissionFlag.Decrypt;
 }
 else
 {
 _permFlag &= ~EncryptionPermissionFlag.Decrypt;
 }
 }
 get {
 return (_permFlag & EncryptionPermissionFlag.Decrypt).Equals(
 EncryptionPermissionFlag.Decrypt);
 }
}
// Set this property to true to use the DPAPI machine key.
public bool MachineStore
{
 set {
 if(true == value)
 {
 _storePermFlag |= StorePermissionFlag.Machine;
 }
 else
 {
 _storePermFlag &= ~StorePermissionFlag.Machine;
 }
 }
 get {
 return (_storePermFlag & StorePermissionFlag.Machine).Equals(
 StorePermissionFlag.Machine);
 }
}
// Set this property to true to use the DPAPI user key.
public bool UserStore
{
 set {
 if(true == value)
 {
 _storePermFlag |= StorePermissionFlag.User;
 }

(continued)

810 Improving Web Application Security: Threats and Countermeasures

(continued)

 else
 {
 _storePermFlag &= ~StorePermissionFlag.User;
 }
 }
 get {
 return (_storePermFlag & StorePermissionFlag.User).Equals(
 StorePermissionFlag.User);
 }
}

10. Implement IPermission.Copy. This creates an identical copy of the current
permission instance and returns it to the caller.

public override IPermission Copy()
{
 return new EncryptionPermission(_permFlag, _storePermFlag);
}

11. Implement IPermission.Intersect. This returns a permission object that is the
result of the set intersection between the current permission and the supplied
permission.

public override IPermission Intersect(IPermission target)
{
 // An input of null indicates a permission with no state.
 // There can be no common state, so the method returns null.
 if (target == null)
 return null;

 if (!(target.GetType().Equals(this.GetType())))
 throw new ArgumentException(
 "Argument must be of type EncryptionPermission.");

 // Cast target to an EncryptionPermission.
 EncryptionPermission targetPerm = (EncryptionPermission)target;

 EncryptionPermissionFlag intersectEncryption = this._permFlag &
 targetPerm._permFlag;
 StorePermissionFlag intersectStore = this._storePermFlag &
 targetPerm._storePermFlag;

 return new EncryptionPermission(intersectEncryption, intersectStore);
}

 How To: Create a Custom Encryption Permission 811

12. Implement IPermission.Union. This returns a permission object that is the result
of the set union between the current permission and the supplied permission.

public override IPermission Union(IPermission target)
{
 if (target == null)
 return Copy();

 if (!(target.GetType().Equals(this.GetType())))
 throw new ArgumentException(
 "Argument must be of type EncryptionPermission.");

 // Cast the target to an EncryptionPermission.
 EncryptionPermission targetPerm = (EncryptionPermission)target;

 EncryptionPermissionFlag unionEncryption = this._permFlag |
 targetPerm._permFlag;
 StorePermissionFlag unionStore = this._storePermFlag |
 targetPerm._storePermFlag;

 return new EncryptionPermission(unionEncryption, unionStore);
}

13. Implement the IPermission.IsSubsetOf. This method returns a bool to indicate
whether or not the current permission is a subset of the supplied permission. To be
a subset, every item of state in the current permission must also be in the target
permission.

public override bool IsSubsetOf(IPermission target)
{
 // An input of null indicates a permission with no state.
 // The permission can only be a subset if it's in a similar empty state.
 bool canEncrypt, canDecrypt;
 bool canUseMachineStore, canUseUserStore;

 bool canTargetEncrypt, canTargetDecrypt;
 bool canTargetUseMachineStore, canTargetUseUserStore;

 canEncrypt = (this._permFlag &
 EncryptionPermissionFlag.Encrypt).
 Equals(EncryptionPermissionFlag.Encrypt);
 canDecrypt = (this._permFlag &
 EncryptionPermissionFlag.Decrypt).
 Equals(EncryptionPermissionFlag.Decrypt);
 canUseMachineStore = (this._storePermFlag &
 StorePermissionFlag.Machine).
 Equals(StorePermissionFlag.Machine);
 canUseUserStore = (this._storePermFlag &
 StorePermissionFlag.User).
 Equals(StorePermissionFlag.User);

(continued)

812 Improving Web Application Security: Threats and Countermeasures

(continued)

 if (target == null)
 {
 if ((canEncrypt == false && canDecrypt == false) && (canUseMachineStore ==
 false && canUseUserStore == false))
 return true;
 else
 return false;
 }

 if (!(target.GetType().Equals(this.GetType())))
 throw new ArgumentException(
 "Argument must be of type EncryptionPermission.");

 // Cast the target to an EncryptionPermission.
 EncryptionPermission targetPerm = (EncryptionPermission)target;

 canTargetEncrypt = (targetPerm._permFlag &
 EncryptionPermissionFlag.Encrypt).
 Equals(EncryptionPermissionFlag.Encrypt);
 canTargetDecrypt = (targetPerm._permFlag &
 EncryptionPermissionFlag.Decrypt).
 Equals(EncryptionPermissionFlag.Decrypt);

 canTargetUseMachineStore = (targetPerm._storePermFlag &
 StorePermissionFlag.Machine).
 Equals(StorePermissionFlag.Machine);
 canTargetUseUserStore = (targetPerm._storePermFlag &
 StorePermissionFlag.User).
 Equals(StorePermissionFlag.User);

 // Every value set (true) in this permission must be in the target.
 // The following code checks to see if the current permission is a subset
 // of the target. If the current permission has something that the target
 // does not have, it cannot be a subset.
 if(canEncrypt == true && canTargetEncrypt == false)
 return false;
 if(canDecrypt == true && canTargetDecrypt == false)
 return false;
 if(canUseMachineStore == true && canTargetUseMachineStore == false)
 return false;
 if(canUseUserStore == true && canTargetUseUserStore == false)
 return false;

 return true;
}

14. Implement ISecurityEncodable.ToXml and FromXml. These methods convert
instances of a permission object into an XML format and vice-versa. These
methods are used to support serialization. This is used, for example, when the
security attribute is stored in assembly metadata.

 How To: Create a Custom Encryption Permission 813

public override SecurityElement ToXml()
{
 // Create a new element. The tag name must always be IPermission.
 SecurityElement elem = new SecurityElement("IPermission");

 // Determine the fully qualified type name (including the assembly name) of
 // the EncryptionPermission class. (The security system uses this name to
 // locate and load the class.)
 string name = typeof(EncryptionPermission).AssemblyQualifiedName;

 // Add attributes for the class name and protocol version.
 // The version must currently be 1.
 elem.AddAttribute("class", name);
 elem.AddAttribute("version", "1");

 if (IsUnrestricted())
 {
 // Using the Unrestricted attribute is consistent with the
 // built-in .NET Framework permission types and helps keep
 // the encoding compact.
 elem.AddAttribute("Unrestricted", Boolean.TrueString);
 }
 else
 {
 // Encode each state field as an attribute of the Permission element.
 // To compact, encode only nondefault state parameters.
 elem.AddAttribute("Flags", this._permFlag.ToString());
 elem.AddAttribute("Stores", this._storePermFlag.ToString());
 }
 // Return the completed element.
 return elem;
}

// Converts a SecurityElement (or tree of elements) to a permission
// instance.
public override void FromXml(SecurityElement elem)
{
 string attrVal = "";
 // Check for an unrestricted instance.
 attrVal = elem.Attribute("Unrestricted");
 if (attrVal != null)
 {
 if(attrVal.ToLower().Equals("true"))
 {
 this._permFlag = EncryptionPermissionFlag.Encrypt |
 EncryptionPermissionFlag.Decrypt;
 this._storePermFlag = StorePermissionFlag.Machine |
 StorePermissionFlag.User;
 }
 return;
 }

(continued)

814 Improving Web Application Security: Threats and Countermeasures

(continued)

 //Turn off the permission and store flags.
 this._permFlag &= ~(EncryptionPermissionFlag.Encrypt |
 EncryptionPermissionFlag.Decrypt);
 this._storePermFlag &= ~(StorePermissionFlag.Machine |
 StorePermissionFlag.User);

 attrVal = elem.Attribute("Flags");
 if (attrVal != null)
 {
 if(!attrVal.Trim().Equals(""))
 {
 this._permFlag =
 (EncryptionPermissionFlag)Enum.Parse(typeof(EncryptionPermissionFlag),
 attrVal);
 }
 }

 attrVal = elem.Attribute("Stores");
 if (attrVal != null)
 {
 if(!attrVal.Trim().Equals(""))
 {
 this._storePermFlag =
 (StorePermissionFlag)Enum.Parse(typeof(StorePermissionFlag),
 attrVal);
 }
 }
}

15. Implement IUnrestrictedPermission.IsUnrestricted. This method returns true if
the permission instance is in the unrestricted state. In this case, an unrestricted
EncryptionPermission instance allows code to encrypt and decrypt data using
both the DPAPI machine and user stores.

public bool IsUnrestricted()
{
 bool canEncrypt, canDecrypt, canUseUserStore, canUseMachineStore;
 canEncrypt = (this._permFlag &
 EncryptionPermissionFlag.Encrypt).
 Equals(EncryptionPermissionFlag.Encrypt);
 canDecrypt = (this._permFlag &
 EncryptionPermissionFlag.Decrypt).
 Equals(EncryptionPermissionFlag.Decrypt);
 canUseUserStore = (this._storePermFlag &
 StorePermissionFlag.User).
 Equals(StorePermissionFlag.User);
 canUseMachineStore = (this._storePermFlag &
 StorePermissionFlag.Machine).
 Equals(StorePermissionFlag.Machine);
 return ((canEncrypt && canDecrypt) &&
 (canUseUserStore && canUseMachineStore));
}

 How To: Create a Custom Encryption Permission 815

Step 2. Create the EncryptionPermissionAttribute Class
The .NET Framework uses attribute classes that are associated with their partner
permission classes to encode permission instances. You need permission attributes to
support declarative security syntax.

� To create the EncryptionPermissionAttribute class
1. Add a new class file to the current project, EncryptionPermissionAttribute.cs.
2. Add the following using statements to the top of the new file.

using System.Security;
using System.Diagnostics;
using System.Security.Permissions;

3. Derive the attribute class from CodeAccessSecurityAttribute, and seal it.

public sealed class EncryptionPermissionAttribute :
 CodeAccessSecurityAttribute

4. Add serialization support to the class, and use the AttributeUsage attribute to
indicate where the custom permission attribute can be used.

[Serializable,
AttributeUsage(AttributeTargets.Method | // Can use on methods
 AttributeTargets.Constructor | // Can use on constructors
 AttributeTargets.Class | // Can use on classes
 AttributeTargets.Struct | // Can use on structures
 AttributeTargets.Assembly, // Can use at the assembly level
 AllowMultiple = true, // Can use multiple attribute
 // instances per program element
 // (class, method and so on)
 Inherited = false)] // Can not be inherited

5. Add private member variables to the class to mirror the state maintained by the
associated permission class.

// The following state fields mirror those used in the associated
// permission type.
private bool _encrypt = false;
private bool _decrypt = false;
private bool _machineStore = false;
private bool _userStore = false;

6. Replace the default constructor with the following constructor.

// Pass the action code back to the base class.
public EncryptionPermissionAttribute(SecurityAction action) : base(action)
{
}

816 Improving Web Application Security: Threats and Countermeasures

7. Add the following public properties to mirror those provided by the associated
permission class.

public bool Encrypt
{
 get {
 return _encrypt;
 }
 set {
 _encrypt = value;
 }
}
public bool Decrypt
{
 get {
 return _decrypt;
 }
 set {
 _decrypt = value;
 }
}
public bool UserStore
{
 get {
 return _userStore;
 }
 set {
 _userStore = value;
 }
}
public bool MachineStore
{
 get {
 return _machineStore;
 }
 set {
 _machineStore = value;
 }
}

8. Implement SecurityPermissionAttribute.CreatePermission. This method creates
a permission object that can then be serialized and persisted with the specified
SecurityAction enumeration in an assembly’s metadata.

public override IPermission CreatePermission()
{
 // The runtime automatically provides a property to indicate
 // whether or not an unrestricted instance is required.
 if((Unrestricted) || ((_encrypt && _decrypt) &&
 (_userStore && _machineStore)))
 {
 return new EncryptionPermission(PermissionState.Unrestricted);
 }

 How To: Create a Custom Encryption Permission 817

(continued)

 // Copy the state from the attribute to the permission object
 EncryptionPermissionFlag cipher = 0x0;
 StorePermissionFlag store = 0x0;

 if(_encrypt)
 cipher |= EncryptionPermissionFlag.Encrypt;

 if(_decrypt)
 cipher |= EncryptionPermissionFlag.Decrypt;

 if(_userStore)
 store |= StorePermissionFlag.User;

 if(_machineStore)
 store |= StorePermissionFlag.Machine;

 // Return the final permission.
 return new EncryptionPermission(cipher, store);
}

9. Build the solution.

Step 3. Install the Permission Assembly in the GAC
You must grant full trust to any assembly that implements a custom security
permission. In practice, this means that you need to install the assembly on the
computer where it is used, to ensure that it is granted full trust by default security
policy. Code within the My_Computer_Zone is granted full trust by default policy.

Installing an assembly in the GAC is one way to be sure it is granted full trust by
code access security policy. The GAC is an appropriate location for the permission
assembly because the assembly is used by code access security policy on the local
computer and is available for any .NET Framework application that is installed on
the local computer.

To install the custom permission assembly in the local computer’s GAC, run the
following command.

gacutil.exe /i custompermission.dll

Step 4. Update the DPAPI Managed Wrapper Code
DPAPI functionality is not currently exposed by the .NET Framework class library.
To call DPAPI from a .NET Framework application, you must use P/Invoke. For code
that demonstrates how to create a managed DPAPI wrapper assembly, see “How To:
Create a DPAPI Library,” in “Building Secure ASP.NET Applications: Authentication,
Authorization, and Secure Communication,” in the MSDN Library.

818 Improving Web Application Security: Threats and Countermeasures

Without further modification, you can only call the managed DPAPI wrapper in the
referenced How To article from full trust code. To be able to call the DPAPI wrapper
from partial trust code, such as a medium trust ASP.NET Web application, you must
sandbox the calls to the unmanaged DPAPI functions. To do this, make the following
modifications:
● Assert the unmanaged code permission in the DPAPI wrapper code. This means

that any calling code does not require the unmanaged code permission.
● Authorize the calling code inside the wrapper by demanding the custom

EncryptionPermission. The Demand call occurs before the Assert call to, in
accordance with the Demand/Assert usage pattern. For more information about
using Assert safely, see “Assert and RevertAssert,” in Chapter 8, “Code Access
Security in Practice.”

� To modify the DPAPI managed wrapper

1. Build the DPAPI managed wrapper by following the instructions in “How To:
Create a DPAPI Library.”

2. Add a reference to the CustomPermission assembly.
3. Open dataprotection.cs from the managed wrapper library, and add the following

using statements beneath the existing using statements at the top of the file.

using System.Security;
using System.Security.Permissions;
using CustomPermissions;

4. Locate the Encrypt method in dataprotection.cs, and add the following code at the
top of the outer try block in the Encrypt method.

// Set the storeFlag depending on how the caller uses
// the managed DPAPI wrapper.
StorePermissionFlag storeFlag;
if(Store.USE_MACHINE_STORE == store)
{
 storeFlag = StorePermissionFlag.Machine;
}
else
{
 storeFlag = StorePermissionFlag.User;
}
// Demand custom EncryptionPermission.
(new EncryptionPermission(EncryptionPermissionFlag.Encrypt, storeFlag)).
 Demand();

// Assert the unmanaged code permission.
(new SecurityPermission(SecurityPermissionFlag.UnmanagedCode)).Assert();
// Now use P/Invoke to call the unmanaged DPAPI functions.

 How To: Create a Custom Encryption Permission 819

5. Add the following finally block to the outer try block in the Encrypt method.

finally
{
 CodeAccessPermission.RevertAssert();
}

6. Locate the Decrypt method in dataprotection.cs, and add the following code at
the top of the outer try block.

StorePermissionFlag storeFlag;
if(Store.USE_MACHINE_STORE == store)
{
 storeFlag = StorePermissionFlag.Machine;
}
else
{
 storeFlag = StorePermissionFlag.User;
}
 // Demand custom EncryptionPermission.
 (new EncryptionPermission(EncryptionPermissionFlag.Decrypt, storeFlag)).
 Demand();
 // Assert the unmanaged code permission.
 (new SecurityPermission(SecurityPermissionFlag.UnmanagedCode)).Assert();

7. Add the following finally block to the outer try block in the Decrypt method.

finally
{
 CodeAccessPermission.RevertAssert();
}

Step 5. Call DPAPI from a Medium Trust Web Application
To use the DPAPI managed wrapper from a medium trust Web application or any
partial trust code, you must configure code access security policy to grant the code
the custom EncryptionPermission.

In this step, you create a test Web application and then modify ASP.NET code
access security policy for a medium trust Web application to grant it the
EncryptionPermission.

820 Improving Web Application Security: Threats and Countermeasures

� To create a test Web application

1. Add a new C# ASP.NET Web application project to your current solution.
2. Add a reference to the Dataprotection.dll assembly.
3. Add the following fields to Webform1.aspx.

● An input field for the data to encrypt. Use the ID txtDataToEncrypt.
● A field for the encrypted data. Use the ID txtEncryptedData.
● A field for the decrypted data. Use the ID txtDecryptedData.
● An Encrypt button. Use the ID btnEncrypt.
● A Decrypt button. Use the ID btnDecrypt.
● A label for an error message. Use the ID lblError.

4. Add the following using statement to the top of WebForm1.aspx.cs beneath the
existing using statements.

using DataProtection;

5. Add the following code for the Encrypt button-click event handler.

private void btnEncrypt_Click(object sender, System.EventArgs e)
{
 DataProtector dp = new DataProtector(
 DataProtector.Store.USE_MACHINE_STORE);
 try
 {
 byte[] dataToEncrypt = Encoding.ASCII.GetBytes(txtDataToEncrypt.Text);
 // Not passing optional entropy in this example
 // Could pass random value (stored by the application) for added security
 // when using DPAPI with the machine store.
 txtEncryptedData.Text =
 Convert.ToBase64String(dp.Encrypt(dataToEncrypt,null));
 }
 catch(Exception ex)
 {
 lblError.ForeColor = Color.Red;
 lblError.Text = "Exception.
" + ex.Message;
 return;
 }
 lblError.Text = "";
}

 How To: Create a Custom Encryption Permission 821

6. Add the following code for the Decrypt button-click event handler.

private void btnDecrypt_Click(object sender, System.EventArgs e)
{
 DataProtector dp = new DataProtector(DataProtector.Store.USE_MACHINE_STORE);
 try
 {
 byte[] dataToDecrypt = Convert.FromBase64String(txtEncryptedData.Text);
 // Optional entropy parameter is null.
 // If entropy was used within the Encrypt method, the same entropy
 // parameter must be supplied here.
 txtDecryptedData.Text =
 Encoding.ASCII.GetString(dp.Decrypt(dataToDecrypt,null));
 }
 catch(Exception ex)
 {
 lblError.ForeColor = Color.Red;
 lblError.Text = "Exception.
" + ex.Message;
 return;
 }
 lblError.Text = "";
}

7. Configure the Web application for medium trust by adding the following element
to the application’s Web.config file inside the <system.web> section.

<trust level="Medium" />

8. Build the solution.

� To modify medium trust policy
1. Open the medium trust policy file using Visual Studio® .NET or Notepad. The

policy file is in the following location.

%windir%\Microsoft.NET\Framework\{version}\CONFIG\web_mediumtrust.config

2. Declare the EncryptionPermission by adding the following <SecurityClass>
element to the <SecurityClasses> element.

<SecurityClass Name="EncryptionPermission"
 Description="CustomPermission.EncryptionPermission,
 CustomPermission, Version=1.0.0.1,
 Culture=neutral,
 PublicKeyToken=951cd7d57a536a94"/>

Set the PublicKeyToken attribute value to the specific public key token for your
assembly. To extract the public key token for your custom permission assembly,
use the following command.

sn -T custompermission.dll

Note Use a capital -T switch.

822 Improving Web Application Security: Threats and Countermeasures

3. Locate the ASP.NET named permission set in the medium trust policy file, and
add the following permission element.

<IPermission class="EncryptionPermission"
 version="1" Flags="Encrypt,Decrypt"
 Stores="Machine,User">
</IPermission>

This permission grants medium trust Web applications the unrestricted
EncryptionPermission because it allows code to encrypt and decrypt data and to
use the DPAPI machine and user store. The above element demonstrates the
supported syntax. It is equivalent to the following:

<IPermission class="EncryptionPermission"
 version="1" Unrestricted="true" >
</IPermission>

You can grant code a restricted permission by using only the relevant attributes.
For example, to limit code to decrypt data using only the machine key in the
machine store, use the following element.

<IPermission class="EncryptionPermission"
 version="1" Flags="Decrypt"
 Stores="Machine">
</IPermission>

4. Save the policy file.
You can now run the test Web application and verify that you can encrypt and
decrypt data by using DPAPI from a partial trust Web application.

For more information about sandboxing highly privileged code and about working
with ASP.NET code access security policy, see Chapter 9, “Using Code Access
Security with ASP.NET.”

How To:
Use Code Access Security Policy
to Constrain an Assembly

Applies To
This information applies to server or workstation computers that run the following:
● Microsoft® Windows® 2000 Server and the Windows 2000 Professional,

Windows Server 2003, Windows XP Professional operating systems
● Microsoft .NET Framework version 1.1

Summary
An administrator can configure code access security policy to constrain the
operations of .NET Framework code (assemblies.) In this How To, you configure code
access security policy to constrain the ability of an assembly to perform file I/O and
restrict file I/O to a specific directory.

You use the.NET Framework 1.1 Configuration tool to create a new permission set
and a new code group. The permission set defines what the code can and cannot do,
and the code group associates the permission set with particular code, for example a
specific assembly or set of assemblies.

In addition to constraining file I/O, you can use code access security policy to impose
other constraints on code. For example, you can restrict the ability of code to access
other types of resources protected by code access security, including databases,
directory services, event log, registry, Domain Name System (DNS) servers,
unmanaged code, and environment variables.

Note This list is not exhaustive but represents many of the common resource types accessed by
Web applications.

824 Improving Web Application Security: Threats and Countermeasures

Before You Begin
Before you begin to use code access security policy to constrain an assembly, you
should be aware of the following:
● To constrain a Web application so that it is only able to access files within its own

virtual directory hierarchy, you can configure the application to run with medium
trust by placing the following in Web.config:

<system.web>
 <trust level="Medium" />
</system.web>

This uses ASP.NET code access security policy to constrain the ability of the Web
application to perform file I/O and it also imposes other constraints. For example,
a medium trust application cannot directly access the event log, registry, or OLE
DB data sources.

● ASP.NET code access security policy is configured independently from enterprise-
level, machine-level, and user-level code access security policy. The.NET
Framework version 1.1 Configuration tool only supports enterprise-level,
machine-level, and user-level policy.
You must maintain ASP.NET policy by using a text or XML editor. For more
information about running Web applications using medium trust, see Chapter 9,
“Using Code Access Security with ASP.NET.”

● When you build an assembly, you can impose constraints programmatically using
code access security. For more information about how to do this, see Chapter 8,
“Code Access Security in Practice.”

● You should generally avoid building Web applications that accept file names and
paths from the user because of the security risks posed by canonicalization issues.
On occasion, you might need to accept a file name as input. This How To shows
you how you can constrain an assembly to ensure that it cannot access arbitrary
parts of the file system. For more information about performing file I/O, see
“File I/O” sections in Chapter 7, “Building Secure Assemblies” and Chapter 8,
“Using Code Access Security in Practice,” of Improving Web Application Security.

● For more information about code access security fundamentals, see Chapter 8,
“Code Access Security in Practice,” of Improving Web Application Security.

 How To: Use Code Access Security Policy to Constrain an Assembly 825

Summary of Steps
This How To includes the following steps:
1. Create an assembly that performs file I/O.
2. Create a Web application.
3. Test file I/O with no code access security constraints.
4. Configure code access security policy to constrain file I/O.
5. Test file I/O with code access security constraints.

Step 1. Create an Assembly That Performs File I/O
In this step, you create an assembly that performs file I/O using a supplied filename.

� To create a new assembly that performs file I/O

1. Create a new Microsoft Visual C#™ development tool class library project called
FileIO and rename class1.cs to FileIO.cs.

2. Add a strong name to the assembly.
By adding a strong name, you make the assembly tamper proof by digitally
signing it. The public key component of the strong name also provides
cryptographically strong evidence for code access security policy. An
administrator can apply policy by using the strong name to uniquely identify
the assembly.

3. Use a fixed assembly version. Open Assemblyinfo.cs and set the
AssemblyVersion attribute as shown below:

[assembly: AssemblyVersion("1.0.0.1")]

4. Add the following using statements to the top of FileIO.cs:

using System.IO;
using System.Text;

5. Rename Class1 to FileWrapper and seal the class to prevent inheritance.

public sealed class FileWrapper

6. Rename the default constructor to match the class name and change it to private,
which prevents instances of the FileWrapper class from being created. This class
provides static methods only.

826 Improving Web Application Security: Threats and Countermeasures

7. Add the following public method so that it reads from a specified file.

public static string ReadFile(string filename)
{
 byte[] fileBytes = null;
 long fileSize = -1;
 Stream fileStream = null;

 try
 {
 if(null == filename)
 {
 throw new ArgumentException("Missing filename");
 }
 // Canonicalize and validate the supplied filename
 // GetFullPath:
 // - Checks for invalid characters (defined by Path.InvalidPathChars)
 // - Checks for Win32 non file-type device names including
 // physical drives, parallel and serial ports, pipes, mail slots,
 // and so on
 // - Normalizes the file path

 filename = Path.GetFullPath(filename);
 fileStream = File.OpenRead(filename);
 if(!fileStream.CanRead)
 {
 throw new Exception("Unable to read from file.");
 }
 fileSize = fileStream.Length;
 fileBytes = new byte[fileSize];
 fileStream.Read(fileBytes, 0, Convert.ToInt32(fileSize));
 return Encoding.ASCII.GetString(fileBytes);
 }
 catch (Exception ex)
 {
 throw ex;
 }
 finally
 {
 if (null != fileStream)
 fileStream.Close();
 }
}

 How To: Use Code Access Security Policy to Constrain an Assembly 827

Step 2. Create a Web Application
In this step, you create a Web application assembly that calls the file I/O assembly.

� To create a Web application

1. Add a new C# ASP.NET Web application project called FileIOWeb to the current
solution.

2. Add a project reference in the new project that references the FileIO project.
3. Add a text box to WebForm1.aspx to allow the user to supply a path and filename.

Set its Text property to c:\temp\somefile.txt and set its ID to txtFileName.
4. Add a button to WebForm1.aspx and set its Text property to Read File and its ID

to btnReadFile.
5. Double-click the Read File button and add the following code to the event

handler:

string s = FileIO.FileWrapper.ReadFile(txtFileName.Text);
Response.Write(s);

6. Build the solution.

Step 3. Test File I/O with No Code Access Security Constraints
By default, Web applications and any assemblies they call on the local computer are
granted full trust by code access security policy. The default <trust> configuration in
Machine.config assigns the full trust level to all Web applications, as follows:

<trust level="Full" originUrl="" />

With full trust, Web applications are not constrained in any way by code access
security policy. The success or failure of resource access is determined purely by
operating system security.

� To test file I/O with no code access security constraints

1. Use Notepad to create a text file called Somefile.txt that contains a simple text
string, and then place the file in the C:\temp directory. Also place a copy in the
root C:\ directory.

2. Run the Web application and click Read File.
The contents of the text file are displayed.

3. Enter c:\somefile.txt in the text box and click Read File.
The contents of the text file are displayed.

828 Improving Web Application Security: Threats and Countermeasures

Step 4. Configure Code Access Security Policy to
Constrain File I/O

In this step, you configure code access security policy for the FileIO assembly
and grant it a restricted FileIOPermission so that it is only able to access files
from beneath C:\Temp. You start by creating a new permission set that includes
a restricted FileIOPermission. You then create a new code group to associate the
new permission set with the FileIO assembly by using strong name evidence.

� To create a new permission set

1. Start the .NET Framework version 1.1 Configuration tool from the Administrative
Tools program folder.

2. Expand the Runtime Security Policy node.
Three levels of code access security policy are displayed: Enterprise, Machine, and
User. The fourth level at which you can configure code access security policy is the
application domain level. ASP.NET implements application domain level policy,
but this is not maintained using the.NET Framework version 1.1 Configuration
tool. To edit ASP.NET policy, you must use a text editor.
For more information about ASP.NET policy and how to use it, see Chapter 9,
“Using Code Access Security with ASP.NET.”

3. Expand the Machine node.
The Code Groups and Permission Sets folders are displayed. Each policy file
contains a hierarchical collection of code groups. Code groups are used to assign
permissions to assemblies. A code group consists of two elements:
● A membership condition — This is based on evidence, for example an

assembly’s strong name.
● A permission set — The permissions that the permission set contains are

granted to assemblies whose evidence matches the membership condition.
A permission set is a grouping that contains a collection of individual code access
security permissions. Individual permissions represent the rights for code to
access specific resource types or perform specific types of privileged operations.

4. Right-click Permission Sets, and then click New.
5. Enter RestictedFileIO in the Name field, and then click Next.
6. Select FileIO from the Available Permissions list, and then click Add.

 How To: Use Code Access Security Policy to Constrain an Assembly 829

7. Enter c:\temp in the File Path column and select Read and Path Disc
(path discovery.)
Path discovery permissions are required by the Path.GetFullPath function that is
used by the FileIO assembly to canonicalize and validate the supplied filename.
Read permissions are required by the File.OpenRead method, which is used by
the FileIO assembly to open the text file.

8. Click OK.
9. Select Security from the Available Permissions list and click Add.

The FileIO assembly also needs the permission to execute in addition
to the FileIOPermission. The permission to execute is represented by
SecurityPermission with its Flags property set to
SecurityPermissionFlag.Execution.

10. Click Enable assembly execution, and then click OK.
11. Click Finish to complete the creation of the permission set.

You have now created a new permission set called RestrictedFileIO that contains
a restricted FileIOPermission, which allows read and path discovery to the
C:\Temp directory, and a restricted SecurityPermission, which allows assembly
execution.

� To create a new code group

1. Expand Code Groups, and then expand All_Code.
2. Right-click All_Code, and then click New.
3. Enter FileIOAssembly as the code group name, and then click Next.
4. Select StrongName from the Choose the condition type for this code group

drop-down list.
You use this code group to apply specific permissions as defined by the
RestrictedFileIO permission set to the FileIO assembly. A strong name provides
cryptographically strong evidence to uniquely identify an assembly.

5. To specify the FileIO assembly’s public key, (which it has because it contains a
strong name), click Import, and then browse to the project output folder that
contains FileIO.dll. Click Open to extract the public key from the assembly.

6. Click Next, and then select RestrictedFileIO from the Use existing permission set
drop-down list.

7. Click Next and then Finish to complete the creation of the code group.
You have now created a new code group that applies the permissions defined by
the RestrictedFileIO permission set to the FileIO assembly.

8. In the right window, select the FileIOAssembly code group, and then click Edit
Code Group Properties.

830 Improving Web Application Security: Threats and Countermeasures

9. Select This policy level will only have the permissions from the permission set
associated with this code group and Policy levels below this level will not be
evaluated.
By selecting these attributes for the code group, you ensure that no other code
group, either at the current machine level or from the ASP.NET application
domain level, affects the permission set that is granted to the FileIO assembly.
This ensures that the assembly is only granted the permissions defined by the
RestrictedFileIO permission set that you created earlier.

Note If you do not select these options, default machine policy grants the assembly full trust
because the assembly is installed on the local computer and falls within the My_Computer_Zone
setting.

10. Click OK to close the Properties dialog box.

Step 5. Test File I/O With Code Access Security Constraints
In this procedure, you install the FileIO assembly in the global assembly cache
(GAC). You then run the Web application and try to access files inside and outside of
C:\Temp. The code access security policy that you configured in Step 4 constrains the
code so that it is only allowed to access files from beneath C:\Temp.

The assembly should be installed in the GAC because of the ASP.NET loads strong
named assemblies as domain neutral assemblies. All strong named assemblies that
ASP.NET Web applications call should be installed in the GAC. For more information
about this issue, see “Strong Names” in Chapter 7, “Building Secure Assemblies.”

Note Normally, default machine policy and ASP.NET policy grant full trust to assemblies that are
installed in the GAC. The This policy level will only have the permissions from the permission set
associated with this code group and Policy levels below this level will not be evaluated attributes
that you assigned to the code group created in Step 4 ensure that the assembly is not granted full
trust, and is only granted the permissions defined by the RestrictedFileIO permission set that you
created earlier.

� To test file I/O with code access security constraints

1. Install the FileIO assembly into the GAC using the Gacutil.exe utility.
You can call Gacutil.exe as a post-build step to ensure that it is placed in the GAC
when it has been successfully built inside Microsoft Visual Studio® .NET.
a. Display the FileIO project’s Properties dialog box in Visual Studio .NET.
b. In Common Properties, select Build Events.
c. Type “C:\Program Files\Microsoft Visual Studio .NET 2003\SDK\v1.1

\Bin\gacutil” -i $(TargetPath) in the Post-build Event Command Line field.
d. Click OK to close the project Properties dialog box.

 How To: Use Code Access Security Policy to Constrain an Assembly 831

2. Rebuild the solution.
3. Run Iisreset.exe from a command line to force the ASP.NET process to be recycled.

This forces the permission grant for the FileIO assembly to be recomputed. If the
ASP.NET application domain is still active from the last time you ran the Web
application, the assembly could still be cached by ASP.NET.

4. Run the Web application, and then click Read File.
The contents of the text file should be successfully displayed. The policy that you
created allows the FileIO assembly to read files from C:\Temp and below.

5. Enter C:\somefile.txt in the text box, and then click Read File.
A SecurityException should be generated because the code access security policy
that you configured does not allow file I/O outside of the C:\Temp directory.
The exception details indicate that a request for the FileIOPermission has failed, as
shown below:

System.Security.SecurityException: Request for the permission of type
System.Security.Permissions.FileIOPermission, mscorlib, Version=1.0.5000.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089 failed.

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices

Proven practices for predictable results

Patterns & practices are Microsoft’s recommendations for architects, software developers,
and IT professionals responsible for delivering and managing enterprise systems on the
Microsoft platform. Patterns & practices are available for both IT infrastructure and software
development topics.

Patterns & practices are based on real-world experiences that go far beyond white papers
to help enterprise IT pros and developers quickly deliver sound solutions. This technical
guidance is reviewed and approved by Microsoft engineering teams, consultants, Product
Support Services, and by partners and customers. Organizations around the world have
used patterns & practices to:

Reduce project cost
� Exploit Microsoft’s engineering efforts to save time and money on projects

� Follow Microsoft’s recommendations to lower project risks and achieve predictable outcomes

Increase confidence in solutions
� Build solutions on Microsoft’s proven recommendations for total confidence and predictable

results

� Provide guidance that is thoroughly tested and supported by PSS, not just samples, but
production quality recommendations and code

Deliver strategic IT advantage
� Gain practical advice for solving business and IT problems today, while preparing companies

to take full advantage of future Microsoft technologies.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

pat ter ns & pract ices

Proven practices for predictable results

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

Patterns & practices are available for both IT infrastructure and software development
topics. There are four types of patterns & practices available:

Reference Architectures

Reference Architectures are IT system-level architectures that address the business
requirements, operational requirements, and technical constraints for commonly occurring
scenarios. Reference Architectures focus on planning the architecture of IT systems and
are most useful for architects.

Reference Building Blocks

References Building Blocks are re-usable sub-systems designs that address common technical
challenges across a wide range of scenarios. Many include tested reference implementations to
accelerate development.

Reference Building Blocks focus on the design and implementation of sub-systems and are most
useful for designers and implementors.

Operational Practices

Operational Practices provide guidance for deploying and managing solutions in a production
environment and are based on the Microsoft Operations Framework. Operational Practices focus on
critical tasks and procedures and are most useful for production support personnel.

Patterns

Patterns are documented proven practices that enable re-use of experience gained from solving
similar problems in the past. Patterns are useful to anyone responsible for determining the
approach to architecture, design, implementation, or operations problems.

To learn more about patterns & practices visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

p
a

tt
e

rn
s

 &
 p

ra
c
ti

c
e

s
Pr

ov
en

 p
ra

ct
ic

es
 f

or
 p

re
di

ct
ab

le
 r

es
ul

ts

pat ter ns & pract ices cur rent t i t les

December 2002

Reference Architectures
Microsoft Systems Architecture—Enterprise Data Center 2007 pages
Microsoft Systems Architecture—Internet Data Center 397 pages
Application Architecture for .NET: Designing Applications and Services 127 pages
Microsoft SQL Server 2000 High Availability Series: Volume 1: Planning 92 pages
Microsoft SQL Server 2000 High Availability Series: Volume 2: Deployment 128 pages
Enterprise Notification Reference Architecture for Exchange 2000 Server 224 pages
Microsoft Content Integration Pack for Content Management Server 2001

and SharePoint Portal Server 2001 124 pages
UNIX Application Migration Guide 694 pages
Microsoft Active Directory Branch Office Guide: Volume 1: Planning 88 pages
Microsoft Active Directory Branch Office Series Volume 2: Deployment and

Operations 195 pages
Microsoft Exchange 2000 Server Hosting Series Volume 1: Planning 227 pages
Microsoft Exchange 2000 Server Hosting Series Volume 2: Deployment 135 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 1: Planning 306 pages
Microsoft Exchange 2000 Server Upgrade Series Volume 2: Deployment 166 pages

Reference Building Blocks
Data Access Application Block for .NET 279 pages
.NET Data Access Architecture Guide 60 pages
Designing Data Tier Components and Passing Data Through Tiers 70 pages
Exception Management Application Block for .NET 307 pages
Exception Management in .NET 35 pages
Monitoring in .NET Distributed Application Design 40 pages
Microsoft .NET/COM Migration and Interoperability 35 pages
Production Debugging for .NET-Connected Applications 176 pages
Authentication in ASP.NET: .NET Security Guidance 58 pages
Building Secure ASP.NET Applications: Authentication, Authorization, and

Secure Communication 608 pages

Operational Practices
Security Operations Guide for Exchange 2000 Server 136 pages
Security Operations for Microsoft Windows 2000 Server 188 pages
Microsoft Exchange 2000 Server Operations Guide 113 pages
Microsoft SQL Server 2000 Operations Guide 170 pages
Deploying .NET Applications: Lifecycle Guide 142 pages
Team Development with Visual Studio .NET and Visual SourceSafe 74 pages
Backup and Restore for Internet Data Center 294 pages

For current list of titles visit: msdn.microsoft.com/practices

To purchase patterns & practices guides visit: shop.microsoft.com/practices

	Title Page
	Contents
	Forewords
	Introduction
	Why We Wrote This Guide
	What Is a Hack-Resilient Application?
	Scope of This Guide
	Securing the Network, Host, and Application
	Technologies in Scope

	Who Should Read This Guide
	How to Use This Guide
	Applying the Guidance to Your Role
	Applying the Guidance to Your Product Life Cycle
	Microsoft Solutions Framework

	Organization of This Guide
	Solutions at a Glance
	Fast Track
	Parts
	Checklists
	“How To” Articles

	Approach Used in This Guide
	Secure Your Network, Host, and Application
	Focus on Threats
	Follow a Principle-Based Approach

	Positioning of This Guide
	Volume I, Building Secure ASP.NET Applications
	Volume II, Improving Web Application Security

	Feedback and Support
	Feedback on the Guide
	Technical Support
	Community and Newsgroup Support

	The Team Who Brought You This Guide
	Contributors and Reviewers

	Tell Us About Your Success
	Summary

	Solutions at a Glance
	Architecture and Design Solutions
	Development Solutions
	Administration Solutions

	Fast Track — How To Implement the Guidance
	Goal and Scope
	The Holistic Approach
	Securing Your Network
	Securing Your Host
	Securing Your Application
	Identify Threats
	Applying the Guidance to Your Product Life Cycle
	Implementing the Guidance
	Who Does What?
	RACI Chart

	Summary

	Part I: Introduction to Threats and Countermeasures
	Chapter 1: Web Application Security Fundamentals
	We Are Secure — We Have a Firewall
	What Do We Mean By Security?
	The Foundations of Security

	Threats, Vulnerabilities, and Attacks Defined
	How Do You Build a Secure Web Application?
	Secure Your Network, Host, and Application
	Securing Your Network
	Network Component Categories

	Securing Your Host
	Host Configuration Categories

	Securing Your Application
	Application Vulnerability Categories

	Security Principles
	Summary
	Additional Resources

	Chapter 2: Threats and Countermeasures
	In This Chapter
	Overview
	How to Use This Chapter
	Anatomy of an Attack
	Survey and Assess
	Exploit and Penetrate
	Escalate Privileges
	Maintain Access
	Deny Service

	Understanding Threat Categories
	STRIDE
	STRIDE Threats and Countermeasures

	Network Threats and Countermeasures
	Information Gathering
	Sniffing
	Spoofing
	Session Hijacking
	Denial of Service

	Host Threats and Countermeasures
	Viruses, Trojan Horses, and Worms
	Footprinting
	Password Cracking
	Denial of Service
	Arbitrary Code Execution
	Unauthorized Access

	Application Threats and Countermeasures
	Input Validation
	Buffer Overflows
	Cross-Site Scripting
	SQL Injection
	Canonicalization

	Authentication
	Network Eavesdropping
	Brute Force Attacks
	Dictionary Attacks
	Cookie Replay Attacks
	Credential Theft

	Authorization
	Elevation of Privilege
	Disclosure of Confidential Data
	Data Tampering
	Luring Attacks

	Configuration Management
	Unauthorized Access to Administration Interfaces
	Unauthorized Access to Configuration Stores
	Retrieval of Plaintext Configuration Secrets
	Lack of Individual Accountability
	Over-privileged Application and Service Accounts

	Sensitive Data
	Access to Sensitive Data in Storage
	Network Eavesdropping
	Data Tampering

	Session Management
	Session Hijacking
	Session Replay
	Man in the Middle Attacks

	Cryptography
	Poor Key Generation or Key Management
	Weak or Custom Encryption
	Checksum Spoofing

	Parameter Manipulation
	Query String Manipulation
	Form Field Manipulation
	Cookie Manipulation
	HTTP Header Manipulation

	Exception Management
	Attacker Reveals Implementation Details
	Denial of Service

	Auditing and Logging
	User Denies Performing an Operation
	Attackers Exploit an Application Without Leaving a Trace
	Attackers Cover Their Tracks

	Summary
	Additional Resources

	Chapter 3: Threat Modeling
	In This Chapter
	Overview
	Before You Begin
	How to Use This Chapter
	Threat Modeling Principles
	The Process
	The Output

	Step 1. Identify Assets
	Step 2. Create an Architecture Overview
	Identify What the Application Does
	Create an Architecture Diagram
	Identify the Technologies

	Step 3. Decompose the Application
	Identify Trust Boundaries
	Identify Data Flow
	Identify Entry Points
	Identify Privileged Code
	Document the Security Profile

	Step 4. Identify the Threats
	Identify Network Threats
	Identify Host Threats
	Identify Application Threats
	Using Attack Trees and Attack Patterns

	Step 5. Document the Threats
	Step 6. Rate the Threats
	Risk = Probability * Damage Potential
	High, Medium, and Low Ratings
	DREAD

	What Comes After Threat Modeling?
	Generating a Work Item Report

	Summary
	Additional Resources

	Part II: Designing Secure Web Applications
	Chapter 4: Design Guidelines for Secure Web Applications
	In This Chapter
	Overview
	How to Use This Chapter
	Architecture and Design Issues for Web Applications
	Deployment Considerations
	Security Policies and Procedures
	Network Infrastructure Components
	Deployment Topologies
	Intranet, Extranet, and Internet

	Input Validation
	Assume All Input Is Malicious
	Centralize Your Approach
	Do Not Rely on Client-Side Validation
	Be Careful with Canonicalization Issues
	Constrain, Reject, and Sanitize Your Input
	In Practice

	Authentication
	Separate Public and Restricted Areas
	Use Account Lockout Policies for End-User Accounts
	Support Password Expiration Periods
	Be Able to Disable Accounts
	Do Not Store Passwords in User Stores
	Require Strong Passwords
	Do Not Send Passwords Over the Wire in Plaintext
	Protect Authentication Cookies

	Authorization
	Use Multiple Gatekeepers
	Restrict User Access to System Level Resources
	Consider Authorization Granularity

	Configuration Management
	Secure Your Administration Interfaces
	Secure Your Configuration Stores
	Separate Administration Privileges
	Use Least Privileged Process and Service Accounts

	Sensitive Data
	Secrets
	Sensitive Per User Data

	Session Management
	Use SSL to Protect Session Authentication Cookies
	Encrypt the Contents of the Authentication Cookies
	Limit Session Lifetime
	Protect Session State from Unauthorized Access

	Cryptography
	Do Not Develop Your Own Cryptography
	Keep Unencrypted Data Close to the Algorithm
	Use the Correct Algorithm and Correct Key Size
	Secure Your Encryption Keys

	Parameter Manipulation
	Encrypt Sensitive Cookie State
	Make Sure that Users Do Not Bypass Your Checks
	Validate All Values Sent from the Client
	Do Not Trust HTTP Header Information

	Exception Management
	Do Not Leak Information to the Client
	Log Detailed Error Messages
	Catch Exceptions

	Auditing and Logging
	Audit and Log Access Across Application Tiers
	Consider Identity Flow
	Log Key Events
	Secure Log Files
	Back Up and Analyze Log Files Regularly

	Design Guidelines Summary
	Summary
	Additional Resources

	Chapter 5: Architecture and Design Review for Security
	In This Chapter
	Overview
	How to Use This Chapter
	Architecture and Design Review Process
	Deployment and Infrastructure Considerations
	Does the Network Provide Secure Communication?
	Does Your Deployment Topology Include an Internal Firewall?
	Does Your Deployment Topology Include a Remote Application Server?
	What Restrictions Does Infrastructure Security Impose?
	Have You Considered Web Farm Issues?
	What Trust Levels Does the Target Environment Support?

	Input Validation
	How Do You Validate Input?
	What Do You Do with the Input?

	Authentication
	Do You Separate Public and Restricted Access?
	Have You Identified Service Account Requirements?
	How Do You Authenticate the Caller?
	How Do You Authenticate with the Database?
	Do You Enforce Strong Account Management Practices?

	Authorization
	How Do You Authorize End Users?
	How Do You Authorize the Application in the Database?
	How Do You Restrict Access to System-Level Resources?

	Configuration Management
	Do You Support Remote Administration?
	Do You Secure Configuration Stores?
	Do You Separate Administrator Privileges?

	Sensitive Data
	Do You Store Secrets?
	How Do You Store Sensitive Data?
	Do You Pass Sensitive Data Over the Network?
	Do You Log Sensitive Data?

	Session Management
	How Are Session Identifiers Exchanged?
	Do You Restrict Session Lifetime?
	How Is the Session State Store Secured?

	Cryptography
	Why Do You Use Particular Algorithms?
	How Do You Secure Encryption Keys?

	Parameter Manipulation
	Do You Validate All Input Parameters?
	Do You Pass Sensitive Data in Parameters?
	Do You Use HTTP Header Data for Security?

	Exception Management
	Do You Use Structured Exception Handling?
	Do You Reveal Too Much Information to the Client?

	Auditing and Logging
	Have You Identified Key Activities to Audit?
	Have You Considered How to Flow Original Caller Identity?
	Have You Considered Secure Log File Management Policies?

	Summary
	Additional Resources

	Part III: Building Secure Web Applications
	Chapter 6: .NET Security Overview
	In This Chapter
	Overview
	How to Use This Chapter
	Managed Code Benefits
	User vs. Code Security
	Role-Based Security
	Code Access Security

	.NET Framework Role-Based Security
	Principals and Identities
	PrincipalPermission Objects
	Role-Based Security Checks
	URL Authorization

	.NET Framework Security Namespaces
	System.Security
	System.Web.Security
	System.Security.Cryptography
	System.Security.Principal
	System.Security.Policy
	System.Security.Permissions

	Summary
	Additional Resources

	Chapter 7: Building Secure Assemblies
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Unauthorized Access or Privilege Elevation, or both
	Code Injection
	Information Disclosure
	Tampering

	Privileged Code
	Privileged Resources
	Privileged Operations

	Assembly Design Considerations
	Identify Privileged Code
	Identify the Trust Level of Your Target Environment
	Sandbox Highly Privileged Code
	Design Your Public Interface

	Class Design Considerations
	Restrict Class and Member Visibility
	Seal Non-Base Classes
	Restrict Which Users Can Call Your Code
	Expose Fields Using Properties

	Strong Names
	Security Benefits of Strong Names
	Using Strong Names
	Delay Signing
	ASP.NET and Strong Names
	Authenticode vs. Strong Names

	Authorization
	Exception Management
	Use Structured Exception Handling
	Do Not Log Sensitive Data
	Do Not Reveal Sensitive System or Application Information
	Consider Exception Filter Issues
	Consider an Exception Management Framework

	File I/O
	Avoid Untrusted Input for File Names
	Do Not Trust Environment Variables
	Validate Input File Names
	Constrain File I/O Within Your Application’s Cont

	Event Log
	Registry
	HKEY_LOCAL_MACHINE
	HKEY_CURRENT_USER
	Reading from the Registry

	Data Access
	Unmanaged Code
	Validate Input and Output String Parameters
	Validate Array Bounds
	Check File Path Lengths
	Compile Unmanaged Code With the /GS Switch
	Inspect Unmanaged Code for Dangerous APIs

	Delegates
	Do Not Accept Delegates from Untrusted Sources

	Serialization
	Do Not Serialize Sensitive Data
	Validate Serialized Data Streams
	Partial Trust Considerations

	Threading
	Do Not Cache the Results of Security Checks
	Consider Impersonation Tokens
	Synchronize Static Class Constructors
	Synchronize Dispose Methods

	Reflection
	Obfuscation
	Cryptography
	Use Platform-provided Cryptographic Services
	Key Generation
	Key Storage
	Key Exchange
	Key Maintenance

	Summary
	Additional Resources

	Chapter 8: Code Access Security in Practice
	In This Chapter
	Overview
	How to Use This Chapter
	Code Access Security Explained
	Code
	Evidence
	Permissions
	Assert, Deny, and PermitOnly Methods
	Policy
	Code Groups
	How Does It Work?
	How Is Policy Evaluated?

	APTCA
	Avoid Using APTCA
	Diagnosing APTCA Issues

	Privileged Code
	Privileged Resources
	Privileged Operations

	Requesting Permissions
	RequestMinimum
	RequestOptional
	RequestRefused
	Implications of Using RequestOptional or RequestRefuse

	Authorizing Code
	Restrict Which Code Can Call Your Code
	Restrict Inheritance
	Consider Protecting Cached Data
	Protect Custom Resources with Custom Permissions

	Link Demands
	Luring Attacks
	Performance and Link Demands
	Calling Methods with Link Demands
	Mixing Class and Method Level Link Demands
	Interfaces and Link Demands
	Structures and Link Demands
	Virtual Methods and Link Demands

	Assert and RevertAssert
	Use the Demand / Assert Pattern
	Reduce the Assert Duration

	Constraining Code
	Using Policy Permission Grants
	Using Stack Walk Modifiers

	File I/O
	Constraining File I/O within your Application’s C
	Requesting FileIOPermission

	Event Log
	Constraining Event Logging Code
	Requesting EventLogPermission

	Registry
	Constraining Registry Access
	Requesting RegistryPermission

	Data Access
	Directory Services
	Constraining Directory Service Access
	Requesting DirectoryServicesPermission

	Environment Variables
	Constraining Environment Variable Access
	Requesting EnvironmentPermission

	Web Services
	Constraining Web Service Connections

	Sockets and DNS
	Constraining Socket Access
	Requesting SocketPermission and DnsPermission

	Unmanaged Code
	Use Naming Conventions to Indicate Risk
	Request the Unmanaged Code Permission
	Sandbox Unmanaged API Calls
	Use SuppressUnmanagedCodeSecurity with Caution

	Delegates
	Serialization
	Restricting Serialization

	Summary
	Additional Resources

	Chapter 9: Using Code Access Security with ASP.NET
	In This Chapter
	Overview
	How to Use This Chapter
	Resource Access
	Full Trust and Partial Trust
	Configuring Code Access Security in ASP.NET
	Configuring Trust Levels
	Locking the Trust Level

	ASP.NET Policy Files
	ASP.NET Policy
	Inside an ASP.NET Policy File
	Permission State and Unrestricted Permissions
	The ASP.NET Named Permission Set
	Substitution Parameters

	Developing Partial Trust Web Applications
	Why Partial Trust?
	Problems You Might Encounter

	Trust Levels
	Approaches for Partial Trust Web Applications
	Customize Policy
	Sandbox Privileged Code
	A Sandboxing Pattern

	Deciding Which Approach to Take
	Customizing Policy
	Sandboxing

	Medium Trust
	Reduced Attack Surface
	Application Isolation

	Medium Trust Restrictions
	OLE DB
	Event Log
	Web Services
	Registry

	Summary
	Additional Resources

	Chapter 10: Building Secure ASP.NET Pages and Controls
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Code Injection
	Session Hijacking
	Identity Spoofing
	Parameter Manipulation
	Network Eavesdropping
	Information Disclosure

	Design Considerations
	Use Server-Side Input Validation
	Partition Your Web Site
	Consider the Identity That Is Used for Resource Access
	Protect Credentials and Authentication Tickets
	Fail Securely
	Consider Authorization Granularity
	Place Web Controls and User Controls in Separate Assemblies
	Place Resource Access Code in a Separate Assembly

	Input Validation
	Constrain, Then Sanitize
	Regular Expressions
	String Fields
	Date Fields
	Numeric Fields
	Sanitizing Input
	Validating HTML Controls
	Validating Input Used for Data Access
	Validating Input Used For File I/O
	Common Regular Expressions

	Cross-Site Scripting
	Validate Input
	Encode Output
	Defense in Depth Countermeasures

	Authentication
	Forms Authentication
	Partition Your Web Site
	Secure Restricted Pages with SSL
	Use URL Authorization
	Secure the Authentication Cookie
	Use Absolute URLs for Navigation
	Use Secure Credential Management

	Authorization
	Use URL Authorization for Page and Directory Access Control
	Use File Authorization with Windows Authentication
	Use Principal Demands on Classes and Methods
	Use Explicit Role Checks for Fine-Grained Authorization

	Impersonation
	Using Programmatic Impersonation

	Sensitive Data
	Do not Pass Sensitive Data from Page to Page
	Avoid Plaintext Passwords in Configuration Files
	Use DPAPI to Avoid Key Management
	Do Not Cache Sensitive Data

	Session Management
	Require Authentication for Sensitive Pages
	Do Not Rely on Client-Side State Management Options
	Do Not Mix Session Tokens and Authentication Tokens
	Use SSL Effectively
	Secure the Session Data

	Parameter Manipulation
	Protect View State with MACs
	Use Page.ViewStateUserKey to Counter One-Click Attacks
	Maintain Sensitive Data on the Server
	Validate Input Parameters

	Exception Management
	Return Generic Error Pages to the Client
	Implement Page-Level or Application-Level Error Handlers

	Auditing and Logging
	EventLogPermission

	Summary
	Additional Resources

	Chapter 11: Building Secure Serviced Components
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Network Eavesdropping
	Unauthorized Access
	Unconstrained Delegation
	Disclosure of Configuration Data
	Repudiation

	Design Considerations
	Role-Based Authorization
	Sensitive Data Protection
	Audit Requirements
	Application Activation Type
	Transactions
	Code Access Security

	Authentication
	Use (At Least) Call Level Authentication

	Authorization
	Enable Role-Based Security
	Enable Component Level Access Checks
	Enforce Component Level Access Checks

	Configuration Management
	Use Least Privileged Run-As Accounts
	Avoid Storing Secrets in Object Constructor Strings
	Avoid Unconstrained Delegation

	Sensitive Data
	Auditing and Logging
	Audit User Transactions

	Building a Secure Serviced Component
	Assembly Implementation
	Serviced Component Class Implementation

	Code Access Security Considerations
	Deployment Considerations
	Firewall Restrictions

	Summary
	Additional Resources

	Chapter 12: Building Secure Web Services
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Unauthorized Access
	Parameter Manipulation
	Network Eavesdropping
	Disclosure of Configuration Data
	Message Replay

	Design Considerations
	Authentication Requirements
	Privacy and Integrity Requirements
	Resource Access Identities
	Code Access Security

	Input Validation
	Strongly Typed Parameters
	Loosely Typed Parameters
	XML Data
	SQL Injection
	Cross-Site Scripting

	Authentication
	Platform Level Authentication
	Message Level Authentication
	Application Level Authentication

	Authorization
	Web Service Endpoint Authorization
	Web Method Authorization
	Programmatic Authorization

	Sensitive Data
	XML Encryption
	Encrypting Parts of a Message

	Parameter Manipulation
	Exception Management
	Using SoapExceptions
	Application Level Error Handling in Global.asax

	Auditing and Logging
	Proxy Considerations
	Code Access Security Considerations
	Deployment Considerations
	Intranet Deployment
	Extranet Deployment
	Internet Deployment

	Summary
	Additional Resources

	Chapter 13: Building Secure Remoted Components
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Unauthorized Access
	Network Eavesdropping
	Parameter Manipulation
	Serialization

	Design Considerations
	Do Not Expose Remoted Objects to the Internet
	Use the HttpChannel to Take Advantage of ASP.NET Security
	Use the TcpChannel Only in Trusted Server Scenarios

	Input Validation
	Serialization Attacks
	MarshalByRefObject Attacks

	Authentication
	ASP.NET Hosting
	Custom Process Hosting

	Authorization
	Use IPSec for Machine Level Access Control
	Enable File Authorization for User Access Control
	Authorize Users with Principal-Based Role Checks
	Consider Limiting Remote Access

	Sensitive Data
	Using IPSec
	Using SSL
	Using a Custom Encryption Sink

	Denial of Service
	Exception Management
	Using a Custom Channel Sink

	Auditing and Logging
	Using a Custom Channel Sink

	Code Access Security (CAS) Considerations
	Summary
	Additional Resources

	Chapter 14: Building Secure Data Access
	In this Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	SQL Injection
	Disclosure of Configuration Data
	Disclosure of Sensitive Application Data
	Disclosure of Database Schema and Connection Details
	Unauthorized Access
	Network Eavesdropping

	Design Considerations
	Use Windows Authentication
	Use Least Privileged Accounts
	Use Stored Procedures
	Protect Sensitive Data in Storage
	Use Separate Data Access Assemblies

	Input Validation
	SQL Injection
	Preventing SQL Injection
	Constrain Input
	Use Type Safe SQL Parameters
	Using Parameter Batching
	Using Filter Routines
	Using LIKE Clauses

	Authentication
	Use Windows Authentication
	Protect the Credentials for SQL Authentication
	Connect Using a Least Privileged Account

	Authorization
	Restrict Unauthorized Callers
	Restrict Unauthorized Code
	Restrict the Application in the Database

	Configuration Management
	Use Window Authentication
	Secure Your Connection Strings
	Secure UDL Files with Restricted ACLs

	Sensitive Data
	Encrypt Sensitive Data if You Need to Store It
	Secure Sensitive Data Over the Network
	Store Password Hashes with Salt

	Exception Management
	Trap and Log ADO.NET Exceptions
	Ensure Database Connections Are Closed
	Use a Generic Error Page in Your ASP.NET Applications

	Building a Secure Data Access Component
	Code Access Security Considerations
	Deployment Considerations
	Firewall Restrictions
	Connection String Management
	Login Account Configuration
	Logon Auditing
	Data Privacy and Integrity on the Network

	Summary
	Additional Resources

	Part IV: Securing Your Network, Host, and Application
	Chapter 15: Securing Your Network
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Information Gathering
	Sniffing
	Spoofing
	Session Hijacking
	Denial of Service

	Methodology
	Router
	Firewall
	Switch

	Router Considerations
	Patches and Updates
	Protocols
	Administrative Access
	Services
	Auditing and Logging
	Intrusion Detection

	Firewall Considerations
	Patches and Updates
	Filters
	Logging and Auditing
	Perimeter Networks

	Switch Considerations
	Patches and Updates
	VLANs
	Insecure Defaults
	Services
	Encryption

	Additional Considerations
	Snapshot of a Secure Network
	Summary
	Additional Resources

	Chapter 16: Securing Your Web Server
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Profiling
	Denial of Service
	Unauthorized Access
	Arbitrary Code Execution
	Elevation of Privileges
	Viruses, Worms, and Trojan Horses

	Methodology for Securing Your Web Server
	Configuration Categories

	IIS and .NET Framework Installation Considerations
	What Does IIS Install?
	What Does the .NET Framework Install?

	Installation Recommendations
	IIS Installation Recommendations
	.NET Framework Installation Recommendations
	Including Service Packs with a Base Installation

	Steps for Securing Your Web Server
	Step 1. Patches and Updates
	Detect and Install Patches and Updates
	Update the .NET Framework

	Step 2. IISLockdown
	Install and Run IISLockdown
	Install and Configure URLScan

	Step 3. Services
	Disable Unnecessary Services
	Disable FTP, SMTP, and NNTP Unless You Require Them
	Disable the ASP.NET State Service Unless You Require It

	Step 4. Protocols
	Disable or Secure WebDAV
	Harden the TCP/IP Stack
	Disable NetBIOS and SMB

	Step 5. Accounts
	Delete or Disable Unused Accounts
	Disable the Guest Account
	Rename the Administrator Account
	Disable the IUSR Account
	Create a Custom Anonymous Web Account
	Enforce Strong Password Policies
	Restrict Remote Logons
	Disable Null Sessions (Anonymous Logons)

	Step 6. Files and Directories
	Restrict the Everyone Group
	Restrict Access to the IIS Anonymous Account
	Secure or Remove Tools, Utilities and SDKs
	Remove Sample Files
	Additional Considerations

	Step 7. Shares
	Remove Unnecessary Shares
	Restrict Access to Required Shares
	Additional Considerations

	Step 8. Ports
	Restrict Internet-Facing Ports to TCP 80 and 443
	Encrypt or Restrict Intranet Traffic

	Step 9. Registry
	Restrict Remote Administration of the Registry
	Secure the SAM (Stand-alone Servers Only)

	Step 10. Auditing and Logging
	Log All Failed Logon Attempts
	Log All Failed Actions Across the File System
	Relocate and Secure the IIS Log Files
	Archive Log Files for Offline Analysis
	Audit Access to the Metabase.bin File
	Additional Considerations

	Step 11. Sites and Virtual Directories
	Move Your Web site to a Non-System Volume
	Disable the Parent Paths Setting
	Remove Potentially Dangerous Virtual Directories
	Remove or Secure RDS
	Set Web Permissions
	Remove or Secure FrontPage Server Extensions

	Step 12. Script Mappings
	Map IIS File Extensions
	Map .NET Framework File Extensions

	Step 13. ISAPI Filters
	Remove Unused ISAPI Filters

	Step 14. IIS Metabase
	Restrict Access to the Metabase Using NTFS Permissions
	Restrict Banner Information Returned by IIS

	Step 15. Server Certificates
	Step 16. Machine.Config
	Map Protected Resources to HttpForbiddenHandler
	Verify That Tracing Is Disabled
	Verify That Debug Compiles Are Disabled
	Verify That ASP.NET Errors Are Not Returned to Clients
	Verify Session State Settings

	Step 17. Code Access Security
	Remove All Permissions for the Local Intranet Zone
	Remove All Permissions for the Internet Zone

	Snapshot of a Secure Web Server
	Staying Secure
	Audit Group Membership
	Monitor Audit Logs
	Stay Current With Service Packs and Patches
	Perform Security Assessments
	Use Security Notification Services

	Remote Administration
	Securing Terminal Services

	Simplifying and Automating Security
	Summary
	Additional Resources

	Chapter 17: Securing Your Application Server
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	Network Eavesdropping
	Unauthorized Access
	Viruses, Worms, and Trojan Horses

	Methodology
	Communication Channel Considerations
	Enterprise Services
	.NET Remoting
	Web Services
	SQL Server

	Firewall Considerations
	Enterprise Services
	.NET Remoting
	Web Services
	SQL Server

	.NET Remoting Security Considerations
	Hosting in a Windows Service (TCP Channel)
	Hosting in IIS (HTTP Channel)

	Enterprise Services (COM+) Security Considerations
	Secure the Component Services Infrastructure
	Secure Enterprise Services Applications

	Summary
	Additional Resources

	Chapter 18: Securing Your Database Server
	In This Chapter
	Overview
	How to Use This Chapter
	Threats and Countermeasures
	SQL Injection
	Network Eavesdropping
	Unauthorized Server Access
	Password Cracking

	Methodology for Securing Your Server
	Configuration Categories

	SQL Server Installation Considerations
	What Does SQL Server Install?

	SQL Server Installation Recommendations
	Before Running SQL Server Setup
	Installing SQL Server

	Steps for Securing Your Database Server
	Step 1. Patches and Updates
	Detect Missing Service Packs and Updates
	Patching MSDE

	Step 2. Services
	Disable Unused SQL Server Services
	Disable the Microsoft DTC (if not required)

	Step 3. Protocols
	Restrict SQL Server to TCP/IP
	Harden the TCP/IP Stack
	Additional Considerations

	Step 4. Accounts
	Secure the SQL Server Service Account
	Delete or Disable Unused Accounts
	Disable the Windows Guest Account
	Rename the Administrator Account
	Enforce Strong Password Policy
	Restrict Remote Logons
	Disable Null Sessions (Anonymous Logons)
	Additional Considerations

	Step 5. Files and Directories
	Verify Permissions on SQL Server Install Directories
	Verify Everyone Group Does Not Have Permissions for SQL Server Files
	Secure Setup Log Files
	Secure or Remove Tools, Utilities, and SDKs
	Additional Considerations

	Step 6. Shares
	Remove Unnecessary Shares
	Restrict Access to Required Shares
	Additional Considerations

	Step 7. Ports
	Restrict Access to the SQL Server Port
	Configure Named Instances to Listen on the Same Port
	Configure the Firewall to Support DTC Traffic (if necessary)
	Additional Considerations

	Step 8. Registry
	Verify Permissions for the SQL Server Registry Keys
	Secure the SAM (Stand-alone Servers Only)

	Step 9. Auditing and Logging
	Log All Failed Windows Logon Attempts
	Log All Failed Actions Across the File System
	Enable SQL Server Login Auditing
	Additional Considerations

	Step 10. SQL Server Security
	Set SQL Server Authentication to Windows Only
	Set SQL Server Audit Level to Failure or All
	Run SQL Server Using a Least Privileged Account

	Step 11. SQL Server Logins, Users, and Roles
	Use a Strong sa (System Administrator) Password
	Remove the SQL Guest User Account
	Remove the BUILTIN\Administrators Server Login
	Do Not Grant Permissions for the Public Role
	Additional Considerations

	Step 12. SQL Server Database Objects
	Remove the Sample Databases
	Secure Stored Procedures
	Secure Extended Stored Procedures
	Restrict cmdExec Access to the sysadmin Role

	Snapshot of a Secure Database Server
	Additional Considerations
	Staying Secure
	Perform Regular Backups
	Audit Group Membership
	Monitor Audit Logs
	Stay Current with Service Packs and Patches
	Perform Security Assessments
	Use Security Notification Services

	Remote Administration
	Securing Terminal Services

	Summary
	Additional Resources

	Chapter 19: Securing Your ASP.NET Application and Web Services
	In This Chapter
	Overview
	How to Use This Chapter
	Methodology
	What You Must Know
	ASP.NET Process Model
	ASP.NET Account
	Aspnet_setreg.exe and Process, Session, and Identity
	Impersonation is Not the Default
	HttpForbiddenHandler, Urlscan, and the 404.dll
	AppSettings

	Machine.Config and Web.Config Explained
	Hierarchical Policy Evaluation
	<location>

	Machine.Config and Web.Config Guidelines
	ACLs and Permissions

	Trust Levels in ASP.NET
	<trust>

	Process Identity for ASP.NET
	<processModel>

	Impersonation
	<identity>

	Authentication
	<authentication>
	Forms Authentication Guidelines

	Authorization
	File Authorization
	URL Authorization

	Session State
	<sessionState>
	Securing a SQL Server Session State Store
	Securing the Out-of-Process State Service

	View State
	<pages>

	Machine Key
	Use Unique Encryption Keys with Multiple Applications
	Set validation=“SHA1”
	Generate Keys Manually For Web Farms

	Debugging
	<compilation>

	Tracing
	<trace>

	Exception Management
	<customErrors>

	Remoting
	Web Services
	Disable Web Services if They Are Not Required
	Disable Unused Protocols
	Disable the Automatic Generation of WSDL

	Forbidden Resources
	Map Protected Resources to HttpForbiddenHandler

	Bin Directory
	Secure the Bin Directory

	Event Log
	File Access
	ACLs and Permissions
	Registry
	Data Access
	Configuring Data Access for Your ASP.NET Application

	UNC Shares
	Accessing Files on UNC Shares
	Hosting Applications on UNC Shares

	COM/DCOM Resources
	Denial of Service Considerations
	<httpRuntime>

	Web Farm Considerations
	Session State
	Encryption and Verification
	DPAPI

	Snapshot of a Secure ASP.NET Application
	Summary
	Additional Resources

	Chapter 20: Hosting Multiple Web Applications
	In This Chapter
	Overview
	ASP.NET Architecture on Windows 2000
	ASP.NET Architecture on Windows Server 2003
	Configuring ACLs for Network Service

	Isolating Applications by Identity
	Anonymous Account Impersonation
	Fixed Identity Impersonation

	Isolating Applications with Application Pools
	Isolating Applications with Code Access Security
	Forms Authentication Issues
	UNC Share Hosting
	Summary

	Part V: Assessing Your Security
	Chapter 21: Code Review
	In This Chapter
	Overview
	FxCop
	Performing Text Searches
	Search for Hard-Coded Strings
	ILDASM

	Cross-Site Scripting (XSS)
	Identify Code That Outputs Input
	Identify Potentially Dangerous HTML Tags and Attributes
	Identify Code That Handles URLs
	Check That Output Is Encoded
	Check for Correct Character Encoding
	Check the validateRequest Attribute
	Check the HttpOnly Cookie Option
	Check the <frame> Security Attribute
	Check the Use of the innerText and innerHTML Properties
	More Information

	SQL Injection
	Buffer Overflows
	Managed Code
	Is Your Class Design Secure?
	Do You Create Threads?
	Do You Use Serialization?
	Do You Use Reflection?
	Do You Handle Exceptions?
	Do You Use Cryptography?
	Do You Store Secrets?
	Do You Use Delegates?

	Code Access Security
	Do You Support Partial-Trust Callers?
	Do You Restrict Access to Public Types and Members?
	Do You Use Declarative Security Attributes?
	Do You Call Assert?
	Do You Use Permission Demands When You Should?
	Do You Use Link Demands?
	Do You Use Potentially Dangerous Permissions?
	Do You Compile With the /unsafe Option?

	Unmanaged Code
	ASP.NET Pages and Controls
	Do You Disable Detailed Error Messages?
	Do You Disable Tracing?
	Do You Validate Form Field Input?
	Are You Vulnerable to XSS Attacks?
	Do You Validate Query String and Cookie Input?
	Do You Secure View State?
	Are Your Global.asax Event Handlers Secure?
	Do You Provide Adequate Authorization?

	Web Services
	Do You Expose Restricted Operations or Data?
	How Do You Authorize Callers?
	Do You Constrain Privileged Operations?
	Do You Use Custom Authentication?
	Do You Validate All Input?
	Do You Validate SOAP Headers?

	Serviced Components
	Do You Use Assembly Level Metadata?
	Do You Prevent Anonymous Access?
	Do You Use a Restricted Impersonation Level?
	Do You Use Role-Based Security?
	Do You Use Object Constructor Strings?
	Do You Audit in the Middle Tier

	Remoting
	Do You Pass Objects as Parameters?
	Do You Use Custom Authentication and Principal Objects?
	How Do You Configure Proxy Credentials?

	Data Access Code
	Do You Prevent SQL Injection?
	Do You Use Windows Authentication?
	Do You Secure Database Connection Strings?
	How Do You Restrict Unauthorized Code?
	How Do You Secure Sensitive Data in the Database?
	Do You Handle ADO .NET Exceptions?
	Do You Close Database Connections?

	Summary
	Additional Resource

	Chapter 22: Deployment Review
	In This Chapter
	Overview
	Web Server Configuration
	Patches and Updates
	Services
	Protocols
	Accounts
	Files and Directories
	Shares
	Ports
	Registry
	Auditing and Logging

	IIS Configuration
	IISLockdown
	URLScan
	Sites and Virtual Directories
	ISAPI Filters
	IIS Metabase
	Server Certificates

	Machine.Config
	<trace>
	<httpRunTime>
	<compilation>
	<pages>
	<customErrors>
	<authentication>
	<identity>
	<authorization>
	<machineKey>
	<trust>
	<sessionState>
	<httpHandlers>
	<processModel>

	Web Services
	Enterprise Services
	Accounts
	Files and Directories
	Authentication
	Authorization
	Remote Serviced Components

	Remoting
	Port Considerations
	Hosting in ASP.NET with the HttpChannel
	Hosting in a Custom Process with the TcpChannel

	Database Server Configuration
	Patches and Updates
	Services
	Protocols
	Accounts
	Files and Directories
	Shares
	Ports
	Registry
	Auditing and Logging
	SQL Server Security
	SQL Server Logins, Users, and Roles
	SQL Server Database Objects

	Network Configuration
	Router
	Firewall
	Switch

	Summary

	Resources
	Related Microsoft patterns & practices Guidance
	Security-Related Web Sites
	Microsoft Security-Related Web Sites
	Third-Party, Security-Related Web Sites

	Microsoft Security Services
	Partners and Service Providers
	Communities and Newsgroups
	Newsgroup Home Pages

	Patches and Updates
	Service Packs

	Alerts and Notification
	Microsoft Security Notification Services
	Third Party Security Notification Services

	Additional Resources
	Checklists and Assessment Guidelines
	Common Criteria
	Reference Hub
	Security Knowledge in Practice
	Vulnerabilities
	World Wide Web Security FAQ

	Checklists
	Checklist: Architecture and Design Review
	How to Use This Checklist
	Deployment and Infrastructure Considerations
	Application Architecture and Design Considerations
	Input Validation
	Authentication
	Authorization
	Configuration Management
	Sensitive Data
	Session Management
	Cryptography
	Parameter Manipulation
	Exception Management
	Auditing and Logging

	Checklist: Securing ASP.NET
	How to Use This Checklist
	Design Considerations
	Application Categories Considerations
	Input Validation
	Authentication
	Authorization
	Configuration Management
	Sensitive Data
	Session Management
	Parameter Manipulation
	Exception Management
	Auditing and Logging

	Configuration File Settings
	Web Farm Considerations
	Hosting Multiple Applications
	ACLs and Permissions
	Application Bin Directory

	Checklist: Securing Web Services
	How to Use This Checklist
	Design Considerations
	Development Considerations
	Input Validation
	Authentication
	Authorization
	Sensitive Data
	Parameter Manipulation
	Exception Management
	Auditing and Logging
	Proxy Considerations

	Administration Considerations

	Checklist: Securing Enterprise Services
	How to Use This Checklist
	Developer Checks
	Authentication
	Authorization
	Configuration Management
	Sensitive Data
	Auditing and Logging
	Deployment Considerations
	Impersonation

	Administrator Checklist

	Checklist: Securing Remoting
	How to Use This Checklist
	Design Considerations
	Input Validation
	Authentication
	Authorization
	Configuration Management
	Sensitive Data
	Exception Management
	Auditing and Logging

	Checklist: Securing Data Access
	How to Use This Checklist
	SQL Injection Checks
	Authentication
	Authorization
	Configuration Management
	Sensitive Data
	Exception Management
	Deployment Considerations

	Checklist: Securing Your Network
	How to Use This Checklist
	Router Considerations
	Firewall Considerations
	Switch Considerations

	Checklist: Securing Your Web Server
	How to Use This Checklist
	Patches and Updates
	IISLockdown
	Services
	Protocols
	Accounts
	Files and Directories
	Shares
	Ports
	Registry
	Auditing and Logging
	Sites and Virtual Directories
	Script Mappings
	ISAPI Filters
	IIS Metabase
	Server Certificates
	Machine.config
	Code Access Security
	Other Check Points

	Dos and Don’ts

	Checklist: Securing Your Database Server
	How to Use This Checklist
	Installation Considerations for Production Servers
	Patches and Updates
	Services
	Protocols
	Accounts
	Files and Directories
	Shares
	Ports
	Registry
	Auditing and Logging
	SQL Server Security
	SQL Server Logins, Users, and Roles
	SQL Server Database Objects
	Additional Considerations
	Staying Secure

	Checklist: Security Review for Managed Code
	How to Use This Checklist
	General Code Review Guidelines
	Managed Code Review Guidelines
	Assembly-Level Checks
	Class-Level Checks
	Cryptography
	Secrets
	Exception Management
	Delegates
	Serialization
	Threading
	Reflection
	Unmanaged Code Access

	Resource Access Considerations
	File I/O
	Event Log
	Registry
	Environment Variables

	Code Access Security Considerations

	How Tos
	How To: Implement Patch Management
	Applies To
	Summary
	What You Must Know
	The Patch Management Process
	The Role of MBSA in Patch Management
	Backups and Patch Management

	Before You Begin
	Tools You Will Need

	Contents
	Detecting
	MBSA Output Explained

	Assessing
	Acquiring
	Testing
	Methods for Testing Security Patches
	Confirming the Installation of a Patch
	Uninstalling a Security Patch

	Deploying
	Using Software Update Services (SUS)
	Using Systems Management Server (SMS)

	Maintaining
	Performing Security Assessments
	Using Security Notification Services

	Additional Considerations
	Additional Resources

	How To: Harden the TCP/IP Stack
	Applies To
	Summary
	What You Must Know
	Contents
	Protect Against SYN Attacks
	Enable SYN Attack Protection
	Set SYN Protection Thresholds
	Set Additional Protections

	Protect Against ICMP Attacks
	Protect Against SNMP Attacks
	AFD.SYS Protections
	Additional Protections
	Protect Screened Network Details
	Avoid Accepting Fragmented Packets
	Do Not Forward Packets Destined for Multiple Hosts
	Only Firewalls Forward Packets Between Networks
	Mask Network Topology Details

	Pitfalls
	Additional Resources

	How To: Secure Your Developer Workstation
	Applies To
	Summary
	Before You Begin
	Steps to Secure Your Developer Workstation
	Run Using a Least-Privileged Account
	Running Privileged Commands
	More Information

	Patch and Update
	Using Windows Update
	Using MBSA
	Using Automatic Updates

	Secure IIS
	Install and Run IISLockdown
	Configure URLScan

	Secure SQL Server and MSDE
	Apply Patches for Each Instance of SQL Server and MSDE
	Analyze SQL Server and MSDE Security Configuration

	Evaluate Your Configuration Categories
	Stay Secure

	How To: Use IPSec for Filtering Ports and Auth
	Applies To
	Summary
	Contents
	What You Must Know
	Identify Your Protocol and Port Requirements
	IPSec Does Not Secure All Communication
	Firewalls and IPSec
	Filters, Filter Actions, and Rules

	Restricting Web Server Communication
	Summary of What You Just Did

	Restricting Database Server Communication
	Restricting Server-to-Server Communication
	Using IPSec Tools
	Netdiag.exe
	IPSecpol.exe

	Additional Resources

	How To: Use the Microsoft Baseline Security An�
	Applies To
	Summary
	Contents
	Before You Begin
	What You Must Know
	Scanning for Security Updates and Patches
	Using the Graphical Interface
	Using the Command Line (Mbsacli.exe)
	Analyzing the Output

	Scanning Multiple Systems for Updates and Patches
	SQL Server and MSDE Specifics
	Scanning for Secure Configuration
	Performing the Scan
	Analyzing the Scan
	Correcting Issues Found

	Additional Information
	False Positives From Security Update Checks
	Requirements for Performing Remote Scans
	Password Scans
	Differences Between Mbsa.exe and Mbsacli.exe

	Additional Resources

	How To: Use IISLockdown.exe
	Applies To
	Summary
	What Does IISLockdown Do?
	Installing IISLockdown
	Running IISLockdown
	Log Files
	Undoing IISLockdown Changes
	Unattended Execution
	Pitfalls

	How To: Use URLScan
	Applies To
	Summary
	Contents
	Installing URLScan
	Log Files
	Removing URLScan
	Configuring URLScan
	Throttling Request Sizes with URLScan
	Debugging VS .NET with URLScan Installed
	Masking Content Headers (Banners)
	Pitfalls
	References

	How To: Create a Custom Encryption Permission
	Applies To
	Summary
	Before You Begin
	Summary of Steps
	Step 1. Create the EncryptionPermission Class
	Step 2. Create the EncryptionPermissionAttribute Class
	Step 3. Install the Permission Assembly in the GAC
	Step 4. Update the DPAPI Managed Wrapper Code
	Step 5. Call DPAPI from a Medium Trust Web Application

	How To: Use Code Access Security Policy to Con
	Applies To
	Summary
	Before You Begin
	Summary of Steps
	Step 1. Create an Assembly That Performs File I/O
	Step 2. Create a Web Application
	Step 3. Test File I/O with No Code Access Security Constraints
	Step 4. Configure Code Access Security Policy to
	Step 5. Test File I/O With Code Access Security Constraints

	Additional Resources

