LINUX HA IN A HIGH PERFORMANCE ENVIRONMENT

Eric Blau

Overview

- What is Linux HA?
 Uses
 Terminology
 Versions of Linux HA
 Configuration
 Resources
 Split Brain
- Tekelec's use of Linux HA

What is Linux HA?

Cluster infrastructure framework

- Communication and membership services
- Discovery of peer processes on other servers in the cluster
- Often referred to as "heartbeat" status messages sent between cluster members

Resource management

- Starting and stopping of services to keep services available
- Often referred to as the "Cluster Resource Manager (CRM)" or "Pacemaker"

Why use Linux HA?

- Protect from hardware failures, unexpected software errors
- Load balancing
- Maintain service during maintenance windows
- Rule of thumb: HA adds "1 nine" to uptime. 99.9% uptime -> 99.99% uptime

Linux HA Terminology

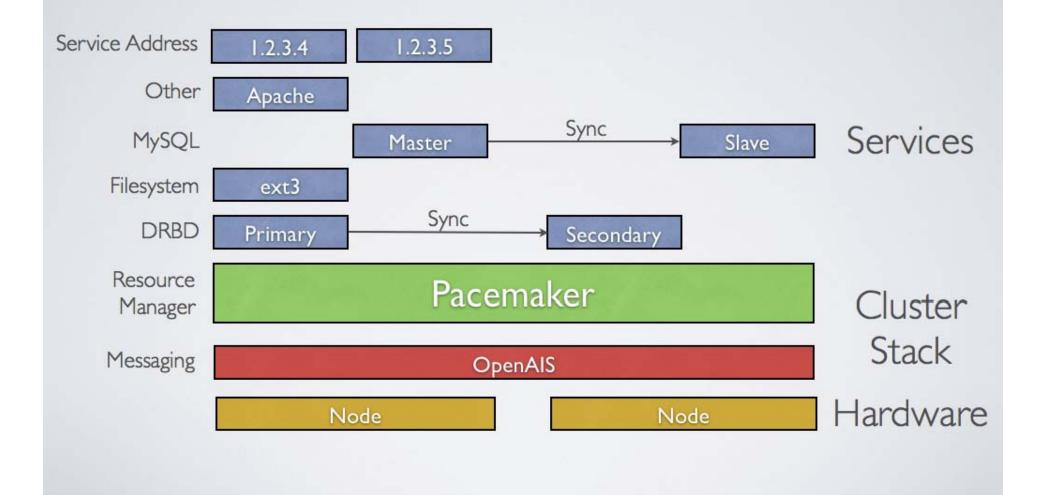
Node

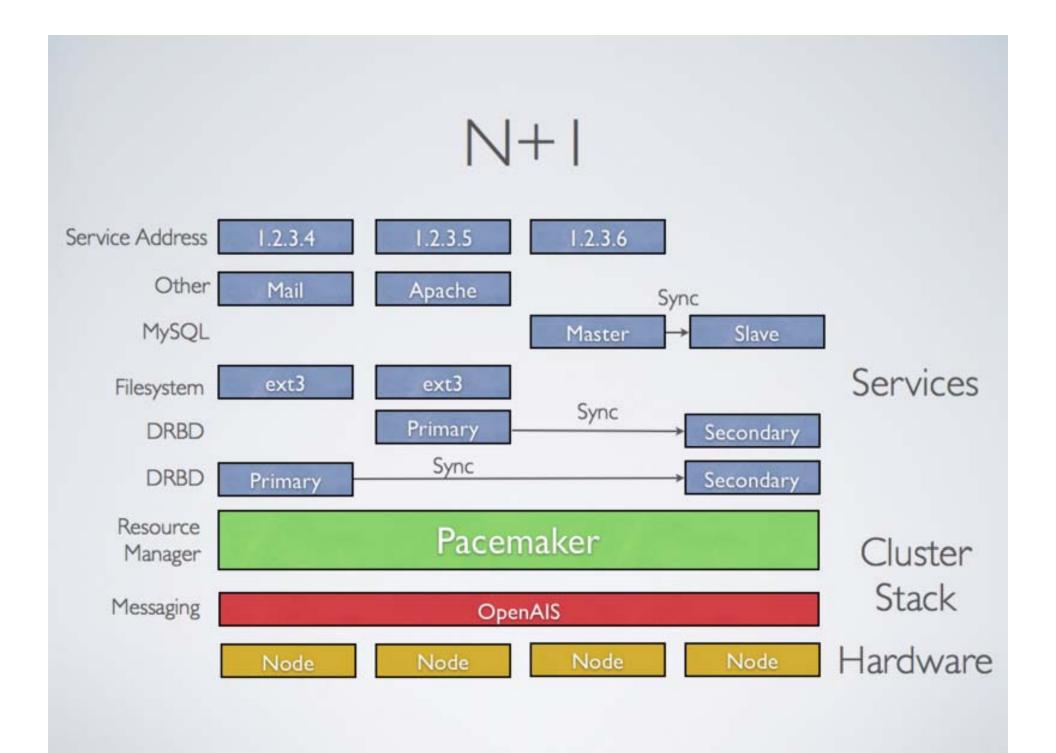
- A single server running HA.
- Cluster
 - One or more nodes running HA managing a common set of resources.
- Resource
 - A service managed by HA.
 - Linux HA starts and stops resources.
- Score
 - Numeric value expressing HA preference. A higher HA score means that a node is "more preferred" to run a given resource.
- Location constraint
 - Restriction, using score values, for specifying which node a given resource should be started on.
 - Location constraints can be used to express resource dependencies (e.g., an IP should only be added on the node that has mastership of the database).
- Stickiness
 - How resistant, using score values, a resource is to moving away from the current node it is started on.

Versions of Linux HA

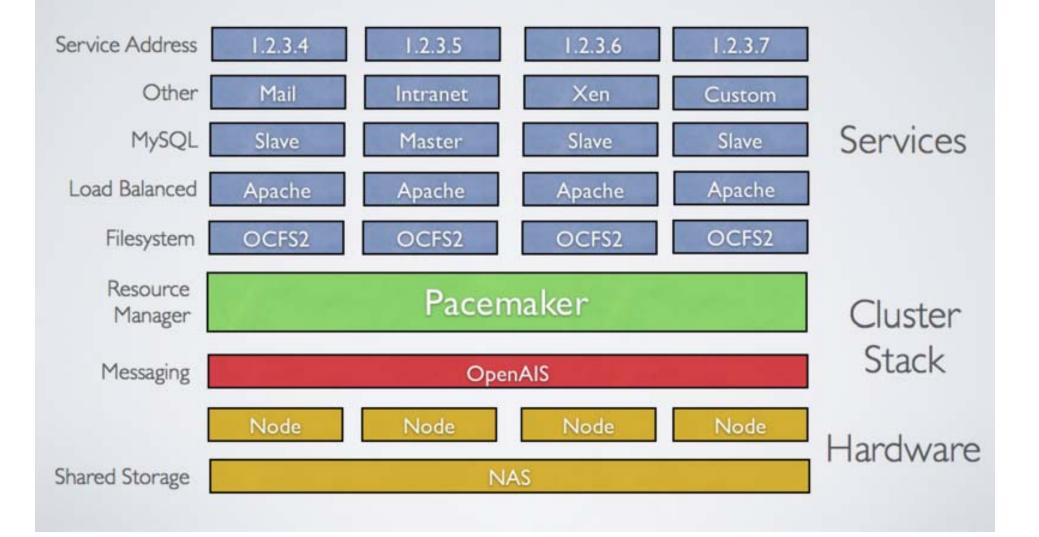
Version 1.x – linux-ha.org

- Supports only simple 2-node clusters
- No resource monitoring
- Version 2.x linux-ha.org
 - Supports multiple nodes in a cluster (up to 16 nodes tests)
 - Resource monitoring to detect failures and restart or move them to other servers
- Pacemaker clusterlabs.org
 - Project reorganization with the CRM split out from heartbeat and the ability to run on the alternative OpenAIS cluster infrastructure


Nodes and Clusters


- Configuration file specifies the nodes that are in a given cluster
- Communication path for nodes to communicate
 - UDP (port 694 by default) using unicast, broadcast and multicast IP addresses
 - Serial port communication is also supported
- Other cluster configuration options

Cluster configuration options


- Active/passive one server providing service with one other server ready to take over if needed
- N+1 many servers providing service with one backup server capable of taking over if any server fails
- N-to-N all servers providing service with any server capable of handling another server's load in the event of a failure

ACTIVE/PASSIVE

N-TO-N

Resources

- Resources are managed using scripts similar to LSB compliant init scripts
- For Linux HA v1, the resource script must support 3 operations:
 - start initiate or gain control of the resource
 - stop terminate or relinquish control of the resource
 - status report whether the resource is started or stopped
- For v2 configurations, the script must support an additional "monitor" operation

Applications for Linux HA

• The following types of applications are typical:

- Database servers
- ERP applications
- Web servers
- LVS director (load balancer) servers
- Mail servers
- Firewalls
- File servers
- DNS servers
- DHCP servers
- Proxy Caching servers
- Custom applications

Split Brain

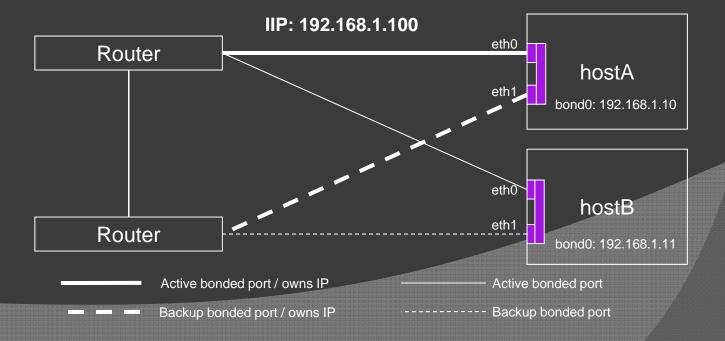
- Situation that occurs when multiple nodes in a cluster believe the other server is dead.
- Creates an active-active condition where a single resource is started on multiple nodes
- Should be avoided at all costs, especially if shared storage is involved data corruption!
- Redundant communication paths help prevent split brain

Split Brain (cont.)

- Can be mitigated/prevented using several strategies:
 - Quorum with an odd number of nodes, only the node with a quorum can become active
 - Fencing protect again nodes of unknown status from accessing/running resources
 - STONITH ("shoot the other node in the head") specific type of fencing
 - Scoring provide a location constraint score to allow HA to decide which server to become active when split brain is healed

Tekelec's problem

- Proprietary shared memory database and middleware layer
- Need for high performance HA solution to ensure 99.999% availability
- HA needed to manage:
 - Database replication master/slave roles
 - IP address(es) for database clients to access
 - Process awareness of activity (active/standby)


Tekelec's solution

- Linux HA version 2.x in an active/passive configuration
- One or more IP addresses and database resource configured
- Uses cluster messaging to communicate application status
 - Alarms used to trigger location constraints that influence HA activity
 - Heartbeat interval set low to detect failures more quickly (100-250 milliseconds)
 - Database resource communicates HA state change to other processes registered for notification

Tekelec's solution (cont.)

 To avoid split brain, port bonding in an active/backup configuration is used with redundant switches.

No single point of failure

Limitations of Linux HA v1

- Several significant limitations with previous Linux HA version
 1 configuration
 - No split brain recovery. After a split brain, the server that becomes active is essentially random. If the wrong choice is made, data will be lost.
 - No resource monitoring. Processes may be stopped on a given node, but Linux HA will never find out about it. Linux HA may decide to switch over to a node where the database is not sane (corrupted or auditing).
 - Only supports 2 node active/standby clusters.
 - Rudimentary support for resource dependencies or location constraints.
- Bottom line: Linux HA version 1 configurations are not robust enough and do not provide sufficient guarantees to ensure database integrity.

HA Scoring

- HA scoring controls on which server Linux HA makes database active vs. standby.
- Linux HA refers to this score as a "resource location constraint"
 - The higher the score, the more preferred the resource is to run (e.g., make database active) on a server
 - The lower the score, the less preferred the resource is to run on a server
- The DB state and current set of raised alarms are inputs to the HA score
- Each server publishes its own score to Linux HA
- When one server's score published to Linux HA is higher than another, a switchover is initiated

Example Linux HA status (crm_mon command)

🛃 root@cmlab1:~		
Refresh in 13s ==================================	4:39 2009 7d6a-4659-af68-adee12691e63) 659-af68-adee12691e63): online	
Node: cmlab2 (6770f941-b729-44	42c-afb2-e36ea9daff46): online	
comcol (ocf::tklc:comcol): IPaddr2_A0001_10.25.62.61	Started cmlab1 (ocf::heartbeat:IPaddr2):	Started cmlab1

Observations

- Linux HA works quite well in high performance environments
- Cluster configuration is extremely flexible – many different HA setups are possible
- Switchovers can generally be performed in < 1 second
- Version 2 configurations can be difficult to set up. The XML-based configuration is complex.

Questions?

- Any questions?
- www.linux-ha.org
- Insterlabs.org
- http://clusterlabs.org/mediawiki/images/f/ fb/Configuration_Explained.pdf