High Availability Low Dollar Load Balancing

Simon Karpen System Architect, VoiceThread <u>skarpen@voicethread.com</u> Via Karpen Internet Systems <u>skarpen@karpeninternet.com</u>

These slides are licensed under the Creative Commons Attribution Share-Alike 3.0 license, http://creativecommons.org/licenses/by-sa/3.0/US/

Overview

- What is Load Balancing
- Why load balance
- What services should you load balance
- What are some common load balancing topologies
- What are some open source load balancing technologies
- How would we build a HA configuration out of these technologies
- How do I IPv6 enable IPv4 services with a single command line on a dual-stack machine

What is Load Balancing

- Split traffic across two or more servers
- Many different techniques and topologies
- Layer 4 or layer 7
- Useful for most TCP services
- Divides traffic using a variety of algorithms (WLC, RR, etc)

Why Load Balance

- Improve performance
- Improve redundancy
- More cost effective scaling

 4-socket machines cost 4x as much as 2-socket
- More cost effective redundancy
 n+1 or n+2 instead of 2n
- SSL Acceleration
- Security / IPS / Choke Point

Which Services

- Without built-in failover
- More than one infrastructure unit of performance
- Good: web services, application services
- Probably not: DNS, inbound SMTP
- Examples: virtually any web site you visit!
- Stickiness understand your services

Background - OSI Model

- Layer 1: Physical (cable, electrical)
- Layer 2: Datalink (example: Ethernet)
- Layer 3: Network (example: IP)
- Layer 4: Transport (example: TCP)
- Layer 5: Session
- Layer 6: Presentation
- Layer 7: Application (example: HTTP)

Topologies

- Application Proxy
- Half-NAT
- Full-NAT
- Direct Server Return

Application Proxy

Request Src: Proxy Dst: Server

Reply Src: Server Dst: Proxy

Application Proxy

Positives

Simplest to setup
Minimal platform dependencies
Minimal changes to other infrastructure
100% Userspace

Negatives

Limited total performance
Hides end user IPs from applications

Full NAT

Half NAT

Half and Full NAT

- Full NAT
 - Similar to an application proxy
 - Destination still doesn't know source IP
 - All packets still go through the load balancer

Half NAT

Destination IP is changed, source IP is not
Allows the application to know the client
All packets still go through the load balancer

Direct Server Return

Reply Src: Service Addr Dst: Client

Direct Server Return

- Incoming packets pass through the load balancer
- Outgoing direct to the gateway / client
- Most scalable
- Most complex to configure
- Application servers must all have public application IP, non-ARP

 via arptables, loopback, etc

Apache mod_proxy_balancer

- Application (layer 7) proxy for web
- Runs under any cluster manager
- Cookie based persistence
- Apache rewrite, redirect, etc at the load balancer
- Web (http, https) traffic only
- SSL offload / SSL issues
- Anything that runs Apache (even Windows)

Apache mod_proxy_balancer

<VirtualHost my.site.com:80>

- ServerName my.site.com
- ProxyPass / balancer://mysite/ lbmethod=byrequests
- ProxyPassReverse / balancer://mysite
- <Proxy balancer://mysite>
 - BalancerMember http://10.0.0.1/ route=mysite1
 - BalancerMember <u>http://10.0.0.2/</u> route=mysite2

</Proxy>

ProxyPreserveHost On

</VirtualHost>

pen

- Runs under any cluster manager
- Simple layer 4 or layer 7 proxy
- Very simple configuration
- Moderate traffic
- Really shines for internal services
- Already IPv6 ready!
- Linux, BSD, Solaris

- Configuration via command line options
- Use init scripts from web site, or roll your own
- Init scripts store command line options in pen.cf

pen -x 6144 -c 262144 -h -H -p <pidfile> 192.168.232.20:80 192.168.232.21:80 192.168.232.22:80

pen -x 500 -c 16384 -h -p <pidfile> 192.168.232.20:993 192.168.232.23:993 192.168.232.24:993

IPVS / Pulse / Piranha

- These work together as a system
- IPVS: load balancing
- Pulse: cluster manager (lightweight)
- Piranha: web interface for configuration
- EL5 version is IPv4 only
- EL6 version is IPv4 / IPv6
- Layer 4, in-kernel, Linux only

IPVS

- IP Virtual Server, implemented via Netfilter
- Controlled via ipvsadm
- Or use a front-end like piranha
- Supports persistence, many schedulers

Command line: ipvsadm –A –† 192.168.23.20:80 –s rr ipvsadm –a –† 192.168.23.20:80 –r 192.168.23.21:80 –m Ipvsadm –a –† 192.168.23.20:80 –r 192.168.23.22:80 –m

Piranha

- Graphical configuration interface
- Manage Pulse and IPVS configuration
- Web based, some expensive LB use it too
- Handles half-NAT, full-NAT and DSR topologies
- Runs on port 3636, password protected
- Recommend access via ssh tunnel

Piranha - Pulse

- Simple, single purpose cluster manager
- Only supports 2-node active/passive failover
- Configured via Piranha web interface

Piranha - Pulse

Enable the Backup Server for HA

Piranha - Pulse

Configure the Redundant IP, Sync options

CONTROL/MONITORIN	IG	GLOBAL SETTINGS	REDUNDANCY
Backup: active			
Redundant server public IP:	192.168.220.2	1	
Heartbeat interval (seconds):	6		
Assume dead after (seconds):	18		
Heartbeat runs on port:	539		
Monitor NIC links for failures:	V		
Syncdaemon:			

Piranha – Virtual Server

Add a virtual server, then Edit its configuration Be sure to make all changes on **BOTH** hosts!

VIR	RTUAL	SERVERS							
CONTROL/MONITORING			<u>G</u>	GLOBAL SETTINGS					REDUNI
	STATUS	NAME	VIP	NETMASK	PORT	PROTOCOL	INTE	RFACE	
۲	down	[server_name]	0.0.0.0		80	tcp			
ADD DELETE EDIT (DE)ACTIVATE									

Piranha – Virtual Server

CONTROL/MONITORING

GLOBAL SETTINGS

EDIT: <u>VIRTUAL SERVER</u> | <u>REAL SERVER</u> | <u>MONITORING SCRIPTS</u>

Name:	web
Application port:	80
Protocol:	tcp 💌
Virtual IP Address:	192.168.22
Virtual IP Network Mask:	255.255.2
Sorry Server:	
Firewall Mark:	
Device:	eth1:1
Re-entry Time:	15
Service timeout:	6
Quiesce server:	© Yes (
Load monitoring tool:	none 💌
Scheduling:	Weighted
Persistence:	7200
Persistence Network Mask:	Unused

2.168.220.40
5.255.255.0 💌
1:1
Vac. @ No
ne 💌
eighted least-connections
0
used 💌

Piranha – Real Servers

Add two real servers, and prepare to edit

Piranha – Real Server

Configure both real servers on both hosts

<u>C0</u>	NTROL/MONITORING	3	G	LOBAL	SETTIN	<u>38</u>	
EDIT: <u>VIR</u>	TUAL SERVER RE	AL SEF	RVER N	<u>IONITOR</u>	ING SCF	<u>IPTS</u>	
Nama		1					
Name:	web0]					
Address:	192.168.220.10]					
Port:		(Leave b	blank to defa	ault to Virtu	al Server's	Application P	ort)
Weight:	1]					
_		_	_	_	_	_	_
ACCEPT							

Piranha - Finalize

- Configure monitoring scripts (write if needed)
- Activate real servers
- Activate virtual servers
- Add non-ARP'd VIPs on actual real servers (if using DSR)
- Start pulse (init script) on both servers
- Test, verify, debug!

Cluster Managers

- LVS / IPVS fits well with Pulse
- Pen and Apache are simple, run under virtually any cluster manager
- Positive experience with Heartbeat
- Choose based on organizational needs
- (aka use what your team knows!)
- Simple services, limited needs from CM

Heartbeat, pen, Apache

- Apache (on EL5/EL6) has good init scripts
- Pen init scripts from web site need killall in stop section (otherwise it doesn't work)
- Run under Heartbeat v1 configuration as a service and an IP Address
- Apache init scripts ready for Heartbeat v2 / Pacemaker / CRM
- Pen init scripts will need a rewrite

Minimal ha.cf

- ucast eth1 192.168.232.10
- ucast eth1 192.168.232.11
- keepalive 2
- warntime 10
- deadtime 30
- initdead 120
- udpport 694
- auto_failback on
- node lb0
- node lb1
- respawn hacluster /usr/lib64/heartbeat/ipfail

V1 style haresources for Load Balancing Ib0 192.168.232.20 pen httpd

lb1

IPv6!

- Bootstrapping problem, you can help!
- LVS / IPVS supports IPv6 in EL6 but not EL5
- Pen supports IPv6 out of the box
- Apache mod_proxy supports IPv6
- Reports mixed on mod_proxy_balancer
- Could use IPv6 mod_proxy in front of IPv4 mod_proxy_balancer

Easy IPv6

- One command line, as promised!
- Uses pen, mostly cross platform (Linux / Solaris / BSD)
- Must run on a dual stack box
- Application must be TCP, not UDP
- Run under a cluster manager for HA

pen <regular options> ipv6addr:svcport ipv4addr:svcport

Now you can IPv6 enable your web site!

Final Thoughts

- Lots of options in terms of software and topology
- This does not cover global load balancing
- This can be layered with global LB or ADN
- Balance performance, cost, complexity
- Think about organizational and application needs

Questions and resources http://siag.nu/pen/ http://httpd.apache.org/ http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/htmlsingle/Virtual_Server_Administration/inde x.html http://lbwiki.org/

http://www.linuxvirtualserver.org/